Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover 6th APCWQIS, December 2012

Bilal Tanatar

December 6, 2012

Prologue				
Introduction ●00000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Prologue Cooling Techniques

2 BCS-BEC Crossover

Motivation The Theory of Crossover

3 Disorder

Anderson Localization (AL) Experiments

4 The Dirty Crossover

Continuum Model (3D) Fidelity Susceptibility (FS)

6 Conclusion

Epilogue Acknowledgement

Introduction 00000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Prologue				
1 Intro Pr Co	duction ologue voling Techniques			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 BCS-BEC Crossover

Motivation The Theory of Crossover

O Disorder

Anderson Localization (AL) Experiments

The Dirty Crossover

Continuum Model (3D) Fidelity Susceptibility (FS)

6 Conclusion

Epilogue Acknowledgement

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Prologue				

- Observation of superconductivity in 1911.
- ✓ Theoretical Prediction of Bose-Einstein Condensate in 1925.
- ✓ Theory of Superconductivity (BCS) in 1957.
- ✓ Experimental Observation of Bose-Einstein Condensate in 1995.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Image Source:

1. http://www.quantumconsciousness.org/penrose-hameroff/anesthesiahydrophobic.html

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
000000	00000000	0000	00000000000000000	00
Cooling Techniques				

Sisyphus Cooling

- Six lasers applied opposite to each other from each direction.
- Light is red detuned to activate Doppler effect.
- Temperature attain $\lesssim 1 m K$.

 Opposite polarization of the laser beams create a potential crest and valley.

• Takes down temperature to $\lesssim 1 \mu K$.

Image Source:

2. http://www.physics.otago.ac.nz/research/jackdodd/resources/exp_aspects.html

3. http://cold-atoms.physics.lsa.umich.edu/projects/lattice/sis1.html

Introduction ○○○●○○	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion
Cooling Techniques				

- Six lasers applied opposite to each other from each direction.
- Light is red detuned to activate Doppler effect.
- Temperature attain $\lesssim 1 m K$.

 Opposite polarization of the laser beams create a potential crest and valley.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• Takes down temperature to $\lesssim 1\mu K$.

Image Source:

 $2.\ http://www.physics.otago.ac.nz/research/jackdodd/resources/exp_aspects.html$

 $3. \ http://cold-atoms.physics.lsa.umich.edu/projects/lattice/sis1.html$

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
Cooling Techniques				

 Cut the higher edge of the magnetic trap with rf spectra.
 Atoms with higher energy will leave the pot leaving cooler atoms inside.

イロト 不得 トイヨト イヨト

 Takes down temperature to nK level.

Sympathetic Cooling

- Evaporative cooling does not work well for fermions.
- Mix evaporative cooled bosons to fermions to cool the laser cooled fermions sympathetically.

Image Source:

4. http://www.physics.otago.ac.nz/research/jackdodd/resources/exp_aspects.htm

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
000000				
Cooling Techniques				

 Cut the higher edge of the magnetic trap with rf spectra.
 Atoms with higher energy will leave the pot leaving cooler atoms inside.

 Takes down temperature to nK level.

Sympathetic Cooling

- Evaporative cooling does not work well for fermions.
- Mix evaporative cooled bosons to fermions to cool the laser cooled fermions sympathetically.

Image Source:

4. http://www.physics.otago.ac.nz/research/jackdodd/resources/exp_aspects.html

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
00000	00000000	0000	000000000000000	
Cooling Techniques				

$$a = a_0 \Big[1 - \frac{\Delta B}{B - B_0} \Big]$$

 Image Source:

 5. http://cua.mit.edu/ketterle_group/experimental_setup/BEC_I/background.html

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion

Introduction Prologue Cooling Technique

2 BCS-BEC Crossover Motivation The Theory of Crossover

B Disorder

Anderson Localization (AL) Experiments

4 The Dirty Crossover

Continuum Model (3D) Fidelity Susceptibility (FS)

6 Conclusion

Epilogue Acknowledgement

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Motivation				
BCS-BEC	Crossover			

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Motivation				

- Leggett in 1980 showed that starting from a BCS ground state for a Fermi gas with attractive interaction one can reach composite boson limit¹ at T = 0 for sufficiently strong attraction.
- Nozieres and Schmitt-Rink in 1985 extended this to finite temperature².
- Evolution from weak coupling to strong coupling is smooth. So it is a crossover, not a phase transition.

^{1.} A. J. Leggett, J. Phys. 41, C7-19 (1980).

^{2.} P. Nozieres, S. Schmitt-Rink, J. Low. Temp. Phys. 59, 195 (1985). Image Source:

^{6.} http://jilawww.colorado.edu/research/highlights_archive/2006_spring/images/fermisea.jpg

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Motivation				

Phase diagram BCS-BEC Crossover

Image Source:

C. A. R. Sa de Melo, Physics Today,

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion
Motivation				

Image Source:

7. Modern Quantum Mechanics, J. J. Sakurai

- Discovery of High Temperature Superconductors.
- High transition temperature and pseudogap.
- The order of $k_F \xi_{pair}$ is similar in the crossover and in HTSC.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Image Source:

8. P.hD. thesis of Cindy Regal

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
000000	00000000	0000	0000000000000000	00
Motivation				

Beauty of BCS Wave function

 BCS ground state wave function can be extended to BEC limit under some constraint.

$$|\Psi
angle = \prod_{\mathbf{k}} \left[u_{\mathbf{k}} + v_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow}
ight] |0
angle$$

• Set
$$g_{\mathbf{k}} = v_{\mathbf{k}}/u_{\mathbf{k}}$$
,
 $|\Psi\rangle = \left(\prod_{\mathbf{k}'} u_{\mathbf{k}'}\right) \exp\left[\sum_{\mathbf{k}} g(\mathbf{k}) c_{\mathbf{k}\uparrow}^{\dagger} c_{-\mathbf{k}\downarrow}^{\dagger}\right]|0\rangle$

- ▶ Define a new operator: $b^{\dagger} = \sum_{\mathbf{k}} g(\mathbf{k}) c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow}$
- ► $[b, b^{\dagger}] = \sum_{\mathbf{k}} |g(\mathbf{k})|^2 (1 n_{\mathbf{k}\uparrow} n_{-\mathbf{k}\downarrow}) \neq c$ number.
- Provided $\langle n_{\mathbf{k}\sigma} \rangle << 1 \Rightarrow [b, b^{\dagger}] = c$ number.
- $|\Psi\rangle = \exp(b^{\dagger})|0\rangle$ represents a Bosonic coherent state.

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
	000000000			
The Theory of Crossover				

The appropriate Hamiltonian:

$$H_{eff} = \int d\mathbf{r} \left\{ \sum_{\alpha} \Psi^{\dagger}(\mathbf{r}\alpha) H_{e}(\mathbf{r}) \Psi(\mathbf{r}\alpha) + V(\mathbf{r}) \Psi^{\dagger}(\mathbf{r}\alpha) \Psi(\mathbf{r}\alpha) \right\}$$
$$+ \int d\mathbf{r} \left\{ \Delta(\mathbf{r}) \Psi^{\dagger}(\mathbf{r}\uparrow) \Psi^{\dagger}(\mathbf{r}\downarrow) + \Delta^{*}(\mathbf{r}) \Psi(\mathbf{r}\downarrow) \Psi(\mathbf{r}\uparrow) \right\}$$

Perform unitary transformation³:

$$\Psi(\mathbf{r}\uparrow) = \sum_{n} \left(\gamma_{n\uparrow} u_{n}(\mathbf{r}) - \gamma_{n\downarrow}^{\dagger} v_{n}^{*}(\mathbf{r})\right)$$
$$\Psi(\mathbf{r}\downarrow) = \sum_{n} \left(\gamma_{n\downarrow} u_{n}(\mathbf{r}) + \gamma_{n\uparrow}^{\dagger} v_{n}^{*}(\mathbf{r})\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3. P. D. de GennesSuperconductivity of Metals and Alloys, Addition-Wesley Publishing Company, Inc. 1989.

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
	000000000			
The Theory of Crossover				

Bogoliubov deGennes Equation

$$\epsilon u(\mathbf{r}) = [H_e + V(\mathbf{r})] u(\mathbf{r}) + \Delta(\mathbf{r})v(\mathbf{r})$$

$$\epsilon v(\mathbf{r}) = -[H_e^* + V(\mathbf{r})] v(\mathbf{r}) + \Delta^*(\mathbf{r})u(\mathbf{r})$$

• The order parameter is $\Delta(\mathbf{r}) = g \sum_{n} v_n^*(\mathbf{r}) u_n(\mathbf{r}) (1 - 2f_n)$.

Gap & Density Equation $\Delta(\mathbf{r}) = g \sum_{\epsilon_n > 0} u_n(\mathbf{r}) v_n^*(\mathbf{r})$ $n(\mathbf{r}) = 2 \sum_{\epsilon_n > 0} |v_n(\mathbf{r})|^2$

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
	000000000			
The Theory of Crossover				

Bogoliubov deGennes Equation

$$\epsilon u(\mathbf{r}) = [H_e + V(\mathbf{r})] u(\mathbf{r}) + \Delta(\mathbf{r})v(\mathbf{r})$$

$$\epsilon v(\mathbf{r}) = -[H_e^* + V(\mathbf{r})] v(\mathbf{r}) + \Delta^*(\mathbf{r})u(\mathbf{r})$$

• The order parameter is $\Delta(\mathbf{r}) = g \sum_{n} v_{n}^{*}(\mathbf{r})u_{n}(\mathbf{r})(1-2f_{n}).$

Gap & Density Equation

$$\Delta(\mathbf{r}) = g \sum_{\epsilon_n > 0} u_n(\mathbf{r}) v_n^*(\mathbf{r})$$
$$n(\mathbf{r}) = 2 \sum_{\epsilon_n > 0} |v_n(\mathbf{r})|^2$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
	00000000			
The Theory of Crossover				

- Consider no external potential
- fermion-fermion interaction is mediated via short range contact potential.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
	00000000			
The Theory of Crossover				

- Consider no external potential
- fermion-fermion interaction is mediated via short range contact potential.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion
1 Intro P C	oduction rologue ooling Techniques			
2 BCS M T	-BEC Crossover lotivation he Theory of Crosso	ver		
③ Diso A E:	rder nderson Localization xperiments	(AL)		
4 The	Dirty Crossover			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fidelity Susceptibility (FS)

6 Conclusion

Epilogue Acknowledgement

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
		0000		
Anderson Localization (Al	_)			

Definition

Beyond a critical amount of impurity, motion of the electron can come to a complete halt. The electron becomes trapped and the conductivity vanishes.

- Direct observation of AL for electron is very difficult.
 - Number of phenomena can mask single particle quantum effects genuinely induced by disorder.
 - Most of the evidences are indirect and stem from conductivity measurement.
- Cold atoms are good candidate for observation of AL:
 - Genuine quantum particles described as matter waves.
 - Single atom matter waves can be directly visualized by different imaging techniques in Bose-Einstein Condensate.

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
		0000		
Anderson Localization (A	L)			

Definition

Beyond a critical amount of impurity, motion of the electron can come to a complete halt. The electron becomes trapped and the conductivity vanishes.

- Direct observation of AL for electron is very difficult.
 - Number of phenomena can mask single particle quantum effects genuinely induced by disorder.
 - Most of the evidences are indirect and stem from conductivity measurement.
- Cold atoms are good candidate for observation of AL:
 - Genuine quantum particles described as matter waves.
 - Single atom matter waves can be directly visualized by different imaging techniques in Bose-Einstein Condensate.

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
		0000		
Anderson Localization (A	L)			

Definition

Beyond a critical amount of impurity, motion of the electron can come to a complete halt. The electron becomes trapped and the conductivity vanishes.

- Direct observation of AL for electron is very difficult.
 - Number of phenomena can mask single particle quantum effects genuinely induced by disorder.
 - Most of the evidences are indirect and stem from conductivity measurement.
- Cold atoms are good candidate for observation of AL:
 - Genuine quantum particles described as matter waves.
 - Single atom matter waves can be directly visualized by different imaging techniques in Bose-Einstein Condensate.

Introduction 000000	BCS-BEC Crossover	Disorder ○●00	The Dirty Crossover	Conclusion 00
Experiments				
Optical D	isorder			

(ロ)、

Introduction 000000	BCS-BEC Crossover	Disorder ○0●0	The Dirty Crossover	Conclusion
Experiments				

In One Dimension

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000	BCS-BEC Crossover	Disorder ○○○●	The Dirty Crossover	Conclusion
Experiments				

In Three Dimension

Optical Speckle, ⁴⁰K

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion
1 Intr F (roduction Prologue Cooling Techniques			
2 BC	S-BEC Crossover Motivation The Theory of Crossov	rer		
3 Dis A E	order Anderson Localization Experiments	(AL)		
④ The (F	e <mark>Dirty Crossover</mark> Continuum Model (3D Fidelity Susceptibility () [FS]		
5 Cor E	nclusion Epilogue Acknowledgement			
			◆□> ◆□> ◆目> ◆目	

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00		
Continuum Model (3D)						
What to Expect?						

- Disorder should not affect the BCS superfluid.
- Disorder should seriously affect the molecular BEC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

What happens in the crossover?

Introduc		BCS-BEC Crossover		Disorder 0000	Th O	e Dirty Crosso	ver	Conclusion
Continu	um Model (3D)							
The	Scheme	9						
ſ								
				A CAR		ار میں این میں میں اور		*** <u>}</u>
		=	·			+	ret in the serve Based on the serve	al an al the Beach and the
					Y		A Carlon Carlos and Ca	

Image Source:

9. L. Han & C. A. R. Sa de Melo, New J. Phys. 13, 055012 (2011).

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion
Continuum Model (3D)				
Theory-I				

The Hamiltonian

$$H = \Psi_{\sigma}^{\dagger} \Big[(-\frac{\nabla^2}{2m} - \mu) + V(\mathbf{r}) \Big] \Psi_{\sigma} - g \Psi_{\uparrow}^{\dagger} \Psi_{\downarrow}^{\dagger} \Psi_{\downarrow} \Psi_{\uparrow}$$

The random potential originating from the scattering of fermions against impurity atoms:

$$V(\mathbf{r}) = \sum_{j} g_{d} \delta(\mathbf{r} - \mathbf{R}_{j}).$$

• Corresponding correlation function: $\langle V(-q)V(q)\rangle = \beta \delta_{i\omega_m,0}\kappa$, where $q = (\mathbf{q}, i\omega_m)$ and κ is the disorder strength.

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Continuum Model (3D)				
Theory-II				

$$-\frac{m}{4\pi a} = \sum_{k} \left[\frac{1}{2E_{k}} - \frac{1}{2\epsilon_{k}} \right]$$
$$n = \sum_{k} \left[1 - \frac{\xi_{k}}{E_{k}} \right] - \frac{\partial \Omega_{k}}{\partial \mu}$$

Disorder induced thermodynamic potential:

$$\Omega_B = \lim_{\beta \to 0} \frac{1}{2\beta} \sum_q \ln |M| = -\frac{\kappa}{2} \sum_{q,\omega_m=0} W^{\dagger} M^{-1} W$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Continuum Model (3D)				
Theory-II				

$$\frac{m}{4\pi a} = \sum_{k} \left[\frac{1}{2E_{k}} - \frac{1}{2\epsilon_{k}} \right]$$
$$n = \sum_{k} \left[1 - \frac{\xi_{k}}{E_{k}} \right] - \frac{\partial \Omega_{B}}{\partial \mu}.$$

Disorder induced thermodynamic potential:

$$\Omega_B = \lim_{\beta \to 0} \frac{1}{2\beta} \sum_q \ln |M| = -\frac{\kappa}{2} \sum_{q,\omega_m=0} W^{\dagger} M^{-1} W$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Continuum Model (3D)				
Theory-II				

$$\frac{m}{4\pi a} = \sum_{k} \left[\frac{1}{2E_{k}} - \frac{1}{2\epsilon_{k}} \right]$$
$$n = \sum_{k} \left[1 - \frac{\xi_{k}}{E_{k}} \right] - \frac{\partial \Omega_{B}}{\partial \mu}.$$

Disorder induced thermodynamic potential:

$$\Omega_B = \lim_{\beta \to 0} \frac{1}{2\beta} \sum_q \ln |M| = \frac{1}{2} \sum_{q, \omega_m = 0} W^{\dagger} M^{-1} W$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Continuum Model (3D)				
Theory-II				

$$\frac{m}{4\pi a} = \sum_{k} \left[\frac{1}{2E_{k}} - \frac{1}{2\epsilon_{k}} \right]$$
$$n = \sum_{k} \left[1 - \frac{\xi_{k}}{E_{k}} \right] - \frac{\partial \Omega_{B}}{\partial \mu}.$$

Disorder induced thermodynamic potential:

$$\Omega_B = \lim_{\beta \to 0} \frac{1}{2\beta} \sum_q \ln |M| - \frac{\kappa}{2} \sum_{q,\omega_m=0} W^{\dagger} M^{-1} W$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○ ○

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Continuum Model (3D)				

Analytical Extensions⁵:

$$\frac{1}{k_{F}a} = -\frac{2}{\pi} \left[\frac{2}{3I_2(x_0)}\right]^{1/3} I_1(x_0)$$
$$\frac{\Delta}{\epsilon_F} = \left[\frac{2}{3I_2(x_0)}\right]^{2/3}.$$

Disorder induced Density Equation^o

$$\begin{aligned} \frac{\Delta}{\epsilon_F} &= \left(\frac{2}{3h_1(x_0)}\right)^{2/3} + \frac{\eta}{\pi^2} l_3(x_0), \\ \frac{\Delta - \Delta(\eta = 0)}{\epsilon_F} &= \frac{\eta}{\pi^2} l_3(x_0), \ \eta = \kappa m^2/k_F \end{aligned}$$

5. M. Marini, F. Pistolesi, and G. C. Strinati, Eur. Phys. J. B 1, 151, (1998)

6. Personal communication with G. Orso is acknowledged

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Continuum Model (3D)				

Analytical Extensions⁵:

$$\frac{1}{k_{F}a} = -\frac{2}{\pi} \left[\frac{2}{3l_2(x_0)}\right]^{1/3} l_1(x_0)$$
$$\frac{\Delta}{\epsilon_F} = \left[\frac{2}{3l_2(x_0)}\right]^{2/3}.$$

Disorder induced Density Equation⁶:

$$\begin{aligned} \frac{\Delta}{\epsilon_F} &= \left(\frac{2}{3l_1(x_0)}\right)^{2/3} + \frac{\eta}{\pi^2} l_3(x_0), \\ \frac{\Delta - \Delta(\eta = 0)}{\epsilon_F} &= \frac{\eta}{\pi^2} l_3(x_0), \ \eta = \kappa m^2/k_F \end{aligned}$$

5. M. Marini, F. Pistolesi, and G. C. Strinati, Eur. Phys. J. B 1, 151, (1998).

6. Personal communication with G. Orso is acknowledged.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What they say?

- Order parameter (Δ) remains unaffected by weak disorder in the BCS limit but follows the approximation to the hard core bosons in BEC limit i.e Δ − Δ₀ ∝ η/k_Fa.
- Chemical potential (μ) remains unaffected.

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion
Continuum Model (3D)				

Condensate Fraction

$$n_c = \sum_k \left[\frac{\Delta(\eta)}{2E_k(\eta)}\right]^2$$

A. Khan, S. Basu, S. W. Kim, J. Phys. B 45, 135302 (2012).

- Nonmonotonicity of condensate fraction.
- BCS side follows mean field approximation i.e n_c ∝ Δ.
- BEC side follows correction due to disorder i.e

 $n_c - n_{c_0} \propto \eta \Delta.$

 Enhancement of condensate fraction around the crossover.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

What they say?

- Critical velocity (v_c) is nonmonotonic and the maxima is pinned in the vicinity of a → ∞.
- Sound velocity (v_s) get depleted in the BEC side might be due to additional random scattering rendered by impurity.

A. Khan, S. Basu, S. W. Kim, J. Phys. B 45, 135302 (2012).

Introduction BCS-BEC Crossover Disorder The Dirty Crossover Conclusion

Fidelity in Quantum Phase Transition

- Fidelity is the measure of closeness of two quantum states, $F = |\langle \Psi | \Phi \rangle|$ (for normalized states).
- Quantum Phase Transition is a sudden change in the ground state of a many body system when a controlling parameter λ of the Hamiltonian crosses critical value λ_c.
- There should be an abrupt change in the fidelity
 F(λ + δλ, λ) = |⟨Ψ(λ + δλ)|Ψ(λ)⟩| in the vicinity of λ_c.
- A hasty drop of the ground-state fidelity at the critical point will then correspond to a divergence of the fidelity susceptibility,

$$\chi(\lambda) = rac{1}{\Omega} rac{\partial \langle \Psi(\lambda) |}{\partial \lambda} rac{\partial |\Psi(\lambda)
angle}{\partial \lambda}.$$

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion 00
Fidelity Susceptibility (FS	5)			
Fidelity in E	BCS-BEC Cross	over		

- Start with BCS ground state wave function⁷, $|\Psi(\lambda)\rangle = \prod_{\mathbf{k}} \left[u_{\mathbf{k}}(\lambda) + v_{\mathbf{k}}(\lambda)c^{\dagger}_{\mathbf{k}\uparrow}c^{\dagger}_{-\mathbf{k}\downarrow} \right] |0\rangle.$
- The fidelity-susceptibility is:

 $\chi(\lambda) = \int \frac{d\mathbf{k}}{(2\pi)^3} \left[\left(\frac{du_k}{d\lambda} \right)^2 + \left(\frac{dv_k}{d\lambda} \right)^2 \right].$

► The dependence of u_k and v_k on λ is determined by BCS gap and density equation:

$$\Delta_k = -\int \frac{d\mathbf{k}'}{(2\pi)^3} V_{\lambda}(\mathbf{k},\mathbf{k}') \frac{\Delta_{k'}}{2E_{k'}}, \ n = \int \frac{d\mathbf{k}}{(2\pi)^3} 2v_k^2.$$

The resulting fidelity susceptibility will be:

$$\chi(\lambda) = \int \frac{d\mathbf{k}}{(2\pi)^3} \frac{1}{4E_k^4} \Big[\Delta_k \frac{d\mu}{d\lambda} + \xi_k \frac{d\Delta_k}{d\lambda} \Big]^2$$

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のへの

7. A. Khan and P. Pieri, Phys. Rev. A 80, 012303 (2009).

Dirty Fermi Gas

A.Khan, S. Basu and BT, submitted in Phys. Lett. A.

Notations

• χ is in dimensions of k_F^{-3} in both the plots.

•
$$\lambda = (k_F a)^{-1}$$

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
			0000000000000000	
Fidelity Susceptibility (FS)			

A.Khan, S. Basu and BT, submitted in Phys. Lett. A.

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
Fidelity Susceptibility (FS)			

Statistical Analysis

Definition

Skewness

$$S = rac{\langle (x - \langle x
angle)^3
angle}{\langle (x - \langle x
angle)^2
angle^{3/2}}.$$

Kurtosis

$$\kappa = rac{\langle (x - \langle x
angle)^4
angle}{\langle (x - \langle x
angle)^2
angle^2} - 3.$$

•
$$x = (k_F a)^{-1}$$
.

- Both S and κ monotonically moves towards zero.
- $\eta_c = 10 \sim 13$ obtained from the linear fit of the data.

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
000000	00000000	0000	000000000000000000000000000000000000000	00
Fidelity Susceptibility (FS)				

Density of States (DOS)

$$N(\omega) = \sum_{k} u_k^2 \delta(\omega - E_k) + v_k^2 \delta(\omega + E_k)$$

Introduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion
			000000000000000	
Fidelity Susceptibility (FS)			

Observations

- N(\u03c6) is low in the BCS and BEC regions but the singular pile up is high at the unitarity.
- Distinct reduction of spectral gap at the unitarity.
- S and κ data predict for a phase transition at a moderate to high disorder value.
- From the behavior of DOS as well as FS, we consider the possible phases after transition might be Anderson glass for BCS superfluid, Fermi glass for unitary superfluid and Bose glass for BEC superfluid.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

troduction 00000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion ●○
pilogue				

Field of dirty crossover is introduced.

- Effect of weak disorder in three dimensional continuum model:
 - Monotonic depletion of order parameter is observed.
 - Nonmonotonic behavior of condensate fraction is discussed.
 - Suppression of sound velocity is presented.
- Study of FS and DOS:
 - The FS looses symmetric nature in presence of disorder, associated skewness and kurtosis approach zero for large disorder strength.
 - Spectral gap is considerably reduced at unitarity where as BCS and BEC extremes remains unaffected.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

ntroduction	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion ●○
pilogue				

- **Field of dirty crossover is introduced.**
- Effect of weak disorder in three dimensional continuum model:
 - Monotonic depletion of order parameter is observed.
 - Nonmonotonic behavior of condensate fraction is discussed.
 - Suppression of sound velocity is presented.
- Study of FS and DOS:
 - The FS looses symmetric nature in presence of disorder, associated skewness and kurtosis approach zero for large disorder strength.
 - Spectral gap is considerably reduced at unitarity where as BCS and BEC extremes remains unaffected.

nilogue				
00000	00000000	0000	00000000000000000	00
ntroduction	BCS-BEC Crossover	Disorder	The Dirty Crossover	Conclusion

- **Field of dirty crossover is introduced.**
- Effect of weak disorder in three dimensional continuum model:
 - Monotonic depletion of order parameter is observed.
 - Nonmonotonic behavior of condensate fraction is discussed.
 - Suppression of sound velocity is presented.
- Study of FS and DOS:
 - The FS looses symmetric nature in presence of disorder, associated skewness and kurtosis approach zero for large disorder strength.
 - Spectral gap is considerably reduced at unitarity where as BCS and BEC extremes remains unaffected.

Introduction 000000	BCS-BEC Crossover	Disorder 0000	The Dirty Crossover	Conclusion o
Acknowledgement				

I hanks to my Collaborators

- Collaboration of Ayan Khan with Sang Wook Kim is acknowledged.
- Saurabh Basu, Indian Institute of Technology Guwahati, India.
- Ayan Khan, Bilkent University, Turkey.

Thank You for Your Kind Attention