A Photon Echo-Based Quantum Memory Using Double Rephasing and Optical Locking

Byoung S. Ham

Inha University, S. Korea

Asia Pacific Conf. & Workshop in Quantum Information Science Pullman Lakeside, Putrajaya, Malaysia Dec. 3~7, 2012

Experiments were performed by J. Hahn.

Motivation: Quantum memories

- 1. For scalable quantum nodes in quantum networks
- 2. For quantum repeaters in long-distance quantum communications

Physics: Coherent control of collective atom phases

- 1. Quantum mapping between optical and spin states
- 2. Double rephasing and optical locking

Optical locking: -BS Ham, Nature Photon. 3, 518 (2009) Double rephasing: -BS Ham, PRA 85, 031402R (2012)

1. Background

- 2. Photon echoes
- 3. Modified photon echo protocols
- 4. Double rephasing & Optical locking

Functional Quantum Nodes:

- 1. Single photon generation, transmission/reception, and storage
- 2. Long-time storage for long-distance entanglement creation
- 3. Scalable

Remote Quantum Node Entanglement Creation:

- 1. Trapped single ion in an optical cavity: Nature 484, 195 (2012)
- 2. Bulk solids: Nature Photon 6, 234 (2012)

Constraint of Storage Time:

-Phase (spin) decay time: ~ms

To increase coherence (storage) time,

-Purely grown Isotopes: single spin (2012)

- 1. NV color center (¹³C nuclear spin): 1.4 sec
- 2. ²⁸Si (nuclear spin): 180 sec

Trade-off: storage time vs. efficiency

Inha University, S. Korea

I. Quantum Memory

-Definition: Random quantum state storage and retrieval in a reversible manner

Trade-off: Efficient interface vs. Long-time storage

-History: Ensemble-based

- -Early 2000s: Single mode
 - 1. Slow light: Hau/Harris, Scully/Lukin, Hemmer/Ham, etc.
 - 2. Raman: Polzik (2004)
- -Late 2000s: Multimode; Modified Photon echo, Spin echo
 - 1. AFC:Gisin group
 - 2. Gradient Echo: ANU group
 - 3. Optically locked photon echo: Ham group
 - 4. Spin echo in NV: Harvard/Stuttgart group

II. Why ultralong quantum memories?

2. Photon echoes

- 4. Double rephasing & Optical locking

Two-Pulse Photon Echoes (2PE): Hahn Echoes

Inha University, S. Korea

Problem 2: Population inversion

Spontaneous emission: negligible!

Stimulated emission

Violation to 'no cloning' theorem!

Modified photon echo protocols Double rephasing & Optical locking

PIP Center

Solution for the population inversion: -Deshelving: Atomic Frequency Comb (AFC) -Linear Stark: Gradient echo -Double Rephasing

Inha University, S. Korea

1. Spontaneous Deshelving: AFC A. With a single pulse: - Wide pop excitation! ρ → time 0 Γ_{opt} δ 0 B. With delayed pulses by τ:- Modulation spectrum! |aux> lq: •••|••• Г $\Delta = 1/\tau$ ¢ $\Gamma_{\rm spin} << \Gamma_{\rm opt}; \tau_{\rm spin} >> \tau_{\rm opt}$ ρ 0τ time In 1970's, \rightarrow -To extend 2PE storage time! 0 δ →Population Grating → 3PE
→AFC PIP Center

2. Linear Stark Effect: Gradient Echo

PHYSICAL REVIEW A 85, 031402(R) (2012) Coherent control of collective atom phase for ultralong, inversion-free photon echoes

Byoung S. Hara¹ Center for Photon Information Processing, School of Electrical Engineering, Julia University, 263 Yanghyan-dang, Inchron 402-751, South Korrel (Received 18 October 2011; published 37 March 2012)

To everyone the hadamental luminators of the π optical possibilities of solution inversion and optical decay-caused sheet storage time in convertional phonon reduces, a cohorsen comparing of collective atoms is studied for investion-free, optical decay-tabled phonon reduces, where the constraint of phonon storage time is now replaced by a spin population decay posses. Using phase-constrained emission-driven quantum noise extens. Two, the generation is obtained, where no spontaneous or stimulated emission-driven quantum noise extens. Two, the present method can be applied for ultraleag quantum memories in quantum regenters for long-distance quantum communications.

PSCS number(s): 42.50.Md. 82.53.Kp

3. Double Rephasing (with optical locking)

0000

Inha University, S. Korea

DOI: 10.1103/PhysRevA.85.031402

4. Double rephasing & Optical locking

1. Storage time extension: Optical locking

[B. S. Ham, Opt. Exp. 18, 1704 (2010)]

Experimental Scheme

Inha University, S. Korea

Pr³+(0.05 at.%):YSO

2. Three-pulse photon echo (3PE): population grating

3. 3PE with optical locking

Problem: -Population inversion!

4. Double Rephasing

[Ham, PRA 85, 031402(R) (2012)]

Conclusion

 Presented double rephaisng via controlled deshelving to remove spontaneous emission noise or echo gain, and to extend photon storage time longer than a second.

Acknowledgment: Supported by 1. CRI program, MOST/NRF, S. Korea 2. Korea Communications Commission

Thank you for your attention!

http://photon.re.kr

