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Plan of the talk:
1. Hidden-variables model
2. Conditional measurement and hidden-variables
model
”Failure of Bell’s construction in d = 2”
3. Quantum discord and hidden-variables model
”No consistent hidden-variables model descrip-
tion of quantum discord”
4. CHSH inequality and hidden-variables model
”CHSH inequality does not test hidden-variables
model in d = 4”
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Bell’s hidden-variables model in d = 2:

Pm =
1

2
(1 + m · σ)

with a unit vector |m| = 1 and Pauli matrix σ.
Dispersion free representation of Pm with hid-

den parameter ω in 1
2 ≥ ω ≥ −1

2,

Pmψ(ω) =
1

2
[1 + sign(ω +

1

2
|s · m|)sign(s · m)]

for the pure state |ψ⟩⟨ψ| = 1
2(1 + s · σ) with

|s| = 1.

3



Pmψ(ω) reproduces the quantum mechanical
result after integration over ω ( a uniform non-
contextual weight for the hidden variable ω)∫ 1/2

−1/2
Pmψ(ω)dω = ⟨ψ|Pm|ψ⟩.

For a general 2 × 2 hermitian operator O in a
spectral decomposition O = µ1P1 + µ2P2 with
two orthogonal projectors P1 and P2, P1 + P2 =
1,

Oψ(ω) = µ1P1,ψ(ω) + µ2P2,ψ(ω).

Linearity is OK.
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Conditional measurement for state ρ:
First measure projector B then measure projec-
tor A with AB ̸= 0.

ρB ≡ BρB

TrρB
, TrρB ̸= 0,

and

Tr[ρBA] =
Tr[(BρB)A]

Tr[ρB]

This construction is faithful to the original quan-
tum mechanical definition of the conditional mea-
surement.
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In Bell’s construction, the projected state ρB
corresponds to |ψB⟩⟨ψB| = B in a matrix nota-
tion and we have the dispersion free representa-
tion (with A = Pm⃗, B = Pn⃗)

AψB
(ω) =

1

2
[1 + sign(ω +

1

2
|n⃗ · m⃗|)sign(n⃗ · m⃗)]

which is symmetric in A and B, and we obtain
the identical expression for BψA

(ω).
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An alternative way is to define the ratio of av-
erages

αB(A) =
Trρ(BAB)

Tr[ρB]
, Tr[ρB] ̸= 0

as the conditional probability measure of A after
the measurement of B.

Here we emphasize a new composite operator
BAB, which is no more a projection operator,
while we emphasize the modification of the state
before. These two are naturally identical in quan-
tum mechanics.

7



For the projectors, we have

Pn⃗Pm⃗Pn⃗ =
1

2
(1 + n⃗ · m⃗)Pn⃗

and Pm⃗Pn⃗Pm⃗ = 1
2(1 + n⃗ · m⃗)Pm⃗.

We then obtain the dispersion free representa-
tion,

(BAB)ψ(ω)

⟨ψ|B|ψ⟩
=

(1 + n⃗ · m⃗)

(1 + n⃗ · s⃗)

× 1

2
[1 + sign(ω +

1

2
|s⃗ · n⃗|)sign(s⃗ · n⃗)]

using Bψ(ω) with A = Pm⃗ and B = Pn⃗.
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One then confirms that the conditional mea-
surement is consistently described by either way,in
agreement with quantum mechanics as

Tr[ρBAB]

Tr[ρB]
=

∫
dωAψB

(ω)

=

∫
dω

(BAB)ψ(ω)

⟨ψ|B|ψ⟩

=
(1 + n⃗ · m⃗)

2
,

which also agrees with Tr[ρABA]/Tr[ρA].
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This example shows that the conditional mea-
surement in hidden variables models does not fol-
low the classical conditional probability rule

Tr[ρBAB]

Tr[ρB]
̸=
µ[aρ ∩ bρ]
µ[bρ]

for general non-commuting A and B.
The classical conditional probability rule, if im-

posed on noncontextual hidden-variables models,
eliminates the crucial notion of reduction in quan-
tum mechanics, as is seen by the fact that aρ and
bρ in µ[aρ ∩ bρ] are defined by the same original
state ρ although µ[aρ ∩ bρ] is divided by µ[bρ].
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We recognize

AψB
(ω) =

1

2
[1 + sign(ω +

1

2
|n⃗ · m⃗|)sign(n⃗ · m⃗)],

(BAB)ψ(ω)

⟨ψ|B|ψ⟩
=

(1 + n⃗ · m⃗)

(1 + n⃗ · s⃗)

× 1

2
[1 + sign(ω +

1

2
|s⃗ · n⃗|)sign(s⃗ · n⃗)]

lead to two conflicting dispersion free represen-
tations in hidden variables space parameterized
by ω for the identical quantum mechanical ob-
ject Tr[ρBAB]/Tr[ρB], although both of them
reproduce the same quantum mechanical result
after averaging over hidden variables.
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We here postulate that any physical quantity
should have a unique expression in hidden vari-
ables space, just as any quantum mechanical quan-
tity has a unique space-time dependence.

This requirement is not satisfied by the expres-
sion of the conditional measurement in the d = 2
noncontextual hidden variables model of Bell.

Reduction and state preparation are not con-
sistently described.
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From a point of view of the dual structure of
operator and state (O, ρ) in quantum mechanics,

(A,BρB) or (BAB, ρ),

respectively, before moving to hidden variables
models. These two are obviously equivalent in
quantum mechanics (or in any trace representa-
tion with density matrix), but they are quite dif-
ferent in Bell’s construction due to the lack of
definite associative properties of various opera-
tions.
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An interesting example is given by the measure-
ment of A immediately after the measurement of
A:

One expression gives an ω independent unit
representation, while the other givesAψ(ω)/

∫
Aψ(ω)dω

which has the same ω dependence as the first
measurement of A.

Hidden-variables model cannot describe the
conditional measurement consistently.
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Quantum discord for a two-partite sys-
tem described by ρXY :
Difference of quantum conditional entropy∑

j

pjS(ρ
Y |ΠX

j
)

and formal conditional entropy S(X,Y )−S(X),

D =
∑
j

pjS(ρ
Y |ΠX

j
) − [S(X,Y ) − S(X)].

The quantum discord D is defined at the min-
imum of the first term with respect to all the
possible choices of the set {ΠXj }.
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Orthogonal projectors

ΠXi ΠXj = ΠXj ΠXi = δi,jΠ
X
j ,

∑
j ΠXj = 1,

and

ρ
Y |ΠX

j
=

TrX [(ΠXj ⊗ 1)ρXY (ΠXj ⊗ 1)]

pj

with pj = Tr[(ΠXj ⊗ 1)ρXY ].

”Quantum discord survives even for the separa-
ble system without any entanglement”. Ollivier
and Zurek (2002), Henderson and Vedral (2001).
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The following general properties of the quan-
tum discord are known:

D = 0 ⇐⇒ ρXY =
∑
j

ΠXj ρXYΠXj

=
∑
j

pjΠ
X
j ⊗ ρYj ,

0 ≤ D ≤ S(ρX)

See Ollivier and Zurek(2002), Datta(2008), Dakic
et al.(2010).
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Vanishing condition of the quantum dis-
cord:
It is necessary to show

TrXAXρXY =
∑
j

TrXAXΠXj ρXYΠXj

for any projector AX .

We thus have to deal with general positive op-
erators , ΠXj AXΠXj , to discuss the criterion of
the vanishing quantum discord.
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In the case of separable state,

ρXY =
∑
k wkρ

(k)
X ⊗ ρ

(k)
Y ,

we have∑
k

wk[TrXAXρ
(k)
X ]ρ

(k)
Y

=
∑
k

wk
∑
j

[TrXAXΠXj ρ
(k)
X ΠXj ]ρ

(k)
Y .

It is interesting to examine this condition in
Bell’s hidden-variables model.
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But two different prescriptions for

TrX [AXΠXj ρ
(k)
X ΠXj ]

lead to conflicting expressions in hidden variables
space.

One may thus conclude that the description
of the criterion of quantum discord in hidden
variables space is ill-defined in Bell’s construc-
tion.
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On the basis of Bell’s explicit construction in
d = 2, it was pointed out that the description of
the criterion of quantum discord in hidden vari-
ables space is ill-defined. The same conclusion ap-
plies to the d = 2 model by Kochen and Specker.

In the framework of non-contextual hidden vari-
ables models in d = 2, the ”quantumness” of
quantum discord is traced to the reduction of
states, in contrast to the locality in the analysis
of entanglement.
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CHSH inequality:Entanglement

For dichotomic (±1) variables, we have
aj(bj + b′j) + a′j(bj − b′j) = ±2,
Sum with any uniform weight factor Pj ≥ 0
with

∑
j Pj = 1 to obtain CHSH inequality

|⟨ab⟩ + ⟨ab′⟩ + ⟨a′b⟩ − ⟨a′b′⟩| ≤ 2

with ⟨ab⟩ =
∑
j Pjajbj.

The uniform weight for all the combinations of
dichotomic variables manifests the strict locality
which also implies non-contextuality.
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Quantum CHSH operator(Cirel’son):

B = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ
for a system of two spin-1/2 particles as a d = 4
dimensional system.

||B|| ≤ 2
√

2

by noting

||a · σ ⊗ (b + b′) · σ|| ≤ |b + b′|,
||a′ · σ ⊗ (b − b′) · σ|| ≤ |b − b′|

and 2 ≤ |b + b′| + |b − b′| ≤ 2
√

2.

For separable pure state |⟨ψ|B|ψ⟩| ≤ 2.
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Local non-contextual hidden-variables model of
Bell and CHSH:

For any pure (4 × 4) state ρ = |ψ⟩⟨ψ|,

⟨a · σ ⊗ b · σ⟩ψ =

∫
Λ
P (λ)aψ(θ, λ)bψ(φ, λ)dλ

with dichotomic variables aψ(θ, λ) and bψ(φ, λ).
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Analyze the CHSH operator by re-writing the
CHSH operator for non-collinear b and b′ as

B = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ
= |b + b′|[a · σ ⊗ b̃ · σ] + |b − b′|[a′ · σ ⊗ b̃′ · σ]

by defining unit vectors

b̃ =
b + b′

|b + b′|
, b̃′ =

b − b′

|b − b′|
, b̃ · b̃′ = 0.
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For hidden-variables formula, we obtain

⟨B⟩ψ =

∫
P (λ)dλ[|b + b′|aψ(θ, λ)b̃ψ(ϕ, λ)

+|b − b′|aψ(θ′, λ)b̃′ψ(ϕ′, λ)].

using non-contextuality. By noting

|[|b + b′|aψ(θ, λ)b̃ψ(ϕ, λ)

+|b − b′|aψ(θ′, λ)b̃′ψ(ϕ′, λ)]|
≤ [|b + b′| + |b − b′|]

and 2 < |b + b′|+ |b− b′| ≤ 2
√

2, we conclude

|⟨B⟩ψ| ≤ 2
√

2.
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Some domain in hidden variables space with
aψ(θ, λ)b̃ψ(ϕ, λ) = aψ(θ′, λ)b̃′ψ(ϕ′, λ) = 1 or

aψ(θ, λ)b̃ψ(ϕ, λ) = aψ(θ′, λ)b̃′ψ(ϕ′, λ) = −1 is

essential.
If one assumes otherwise; if aψ(θ, λ)b̃ψ(ϕ, λ) =

±1 should always imply aψ(θ′, λ)b̃′ψ(ϕ′, λ) = ∓1

for any λ, respectively, the hidden-variables for-
mula would imply for a sum of two non-commuting
operators

⟨a · σ ⊗ b̃ · σ⟩ψ + ⟨a′ · σ ⊗ b̃′ · σ⟩ψ = 0.

This does not hold for generic states ψ.
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Conventional CHSH:

⟨B⟩ψ = ⟨a · σ ⊗ (b + b′) · σ⟩ + ⟨a′ · σ ⊗ (b − b′) · σ⟩

=

∫
P (λ)dλ{aψ(θ, λ)[bψ(φ, λ) + bψ(φ′, λ)]

+aψ(θ′, λ)[bψ(φ, λ) − bψ(φ′, λ)]}
uses the simultaneous dispersion free representa-
tions for non-commuting operators.
As aψ(θ, λ)[bψ(φ, λ)+bψ(φ′, λ)]+aψ(θ′, λ)[bψ(φ, λ)−
bψ(φ′, λ)] = ±2, we conclude for any P (λ)

|⟨B⟩ψ| ≤ 2.
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Model of Bell and CHSH thus predicts |⟨B⟩ψ| ≤
2
√

2 or |⟨B⟩ψ| ≤ 2, for the identical quantum op-
erator B depending on the two different ways of
evaluation.

Physical processes described by ⟨|b+b′|[a ·σ⊗
b̃·σ]⟩ψ and ⟨a·σ⊗b·σ⟩ψ+⟨a·σ⊗b′·σ⟩ψ are quite
different, but both of them are measurable and
quantum mechanics tells that these two should
always agree.
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Hidden-variables model of Bell and CHSH does
not satisfy linearity

⟨a · σ ⊗ (b ± b′) · σ⟩
= ⟨a · σ ⊗ b · σ⟩ ± ⟨a · σ ⊗ b′ · σ⟩

for non-collinear b and b′, in general.

Linearity is a local property of quantum me-
chanics in contrast to entanglement.
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One may conclude either

(i) the local hidden variables model of Bell and
CHSH contradicts quantum mechanics due to the
failure of linearity without referring to long-ranged
EPR entanglement, or

(ii) one needs to examine the consequences of
the linearity condition which renders the conven-
tional CHSH inequality |⟨B⟩ψ| ≤ 2 as the unique
prediction of the model.
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Linearity for non-collinear b and b′,

⟨1 ⊗ (b + b′) · σ⟩

=

∫
|b + b′|b̃ψ(ϕ, λ)P (λ)dλ

=

∫
bψ(φ, λ)P (λ)dλ +

∫
bψ(φ′, λ)P (λ)dλ

and

⟨a · σ ⊗ (b + b′) · σ⟩

=

∫
aψ(θ, λ)|b + b′|b̃ψ(ϕ, λ)P (λ)dλ

=

∫
aψ(θ, λ)[bψ(φ, λ) + bψ(φ′, λ)]P (λ)dλ.
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But the expressions local in λ space are quite
different as is shown by von Neumann’s no-go
argument, namely,

|b + b′|b̃ψ(ϕ, λ) ̸= bψ(φ, λ) + bψ(φ′, λ)

which is a general statement on the dispersion free
representations of two non-commuting operators
at any point in hidden variables space λ.
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Quantum mechanical linearity condition im-
plies: KF, Prog. Theor. Phys.(2012).
Formula of Bell and CHSH is now written as

⟨a · σ ⊗ b · σ⟩ψ =

∫
Λ1

P1(λ1)aψ(θ, λ1)dλ1

×
∫

Λ2

P2(λ2)bψ(φ, λ2)dλ2

valid only for the pure separable state,

ρ = |ψ1⟩⟨ψ1| ⊗ |ψ2⟩⟨ψ2|,
and not applicable to entangled states.
A factored product of two non-contextual d = 2
hidden variables models. No contradiction with
Gleason’s theorem.
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For pure separable quantum states, the ordi-
nary CHSH inequality

|⟨B⟩| ≤ 2.

holds. Werner (1989).
Interesting application of CHSH inequality to

quantum cryptography by Ekert(1991), which is
based on the mixed separable quantum states

ρ =

∫
dnadnbw(na,nb)ρ(na) ⊗ ρ(nb),

and satisfies the relation −2 ≤ Tr[ρB] ≤ 2.
No dispersion-free representations appear in

these considerations.

35



Conclusion:
It is our opinion that we should interpret the ex-
perimental refutation of the conventional CHSH
inequality as a proof that the full contents of
quantum mechanics even for a far-apart sys-
tem cannot be described by separable quantum
mechanical states only, instead of referring to
the ill-defined local non-contextual hidden vari-
ables model in d = 4.
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Besides, non-contextual hidden variables mod-
els in d = 2 such as the ones of Bell and Kochen-
Specker, are excluded by the analysis of condi-
tional measurements. (Reduction cannot be treated
by local hidden-variables model since the model
is introduced to avoid the sudden reduction.)

No viable model of non-contextual hidden-
variables in any dimensions of Hilbert
space.
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