The Quantum Marginal Problem, Entanglement Polytopes and Pauli's Principle

Matthias Christandl
Institute for theoretical physics
ETH Zurich

joint work with
Michael Walter, Christian Schilling
Brent Doran, David Gross

The Quantum Marginal Problem

Fix subsets of the particles $S_{i} \subseteq\{1, \ldots, N\}$

For each subset, given a density matrix $\rho_{S_{i}}$
Are these compatible? $\exists \rho_{[N]}: \operatorname{tr}_{[N] \backslash S_{i}} \rho_{[N]}=\rho_{S_{i}}$?

The Quantum Marginal Problem

- studied since beginnings of quantum theory
- computionally difficult QMA-complete (Liu, 2006) \Rightarrow NP-hard
- fermionic version, N -representability problem quantum chemistry
QMA-complete (Liu, Ch.\& Verstraete, 2007)
- partial understanding Pauli principle
 Entropy inequalities

$$
S\left(\rho_{12}\right)+S\left(\rho_{23}\right) \geq S\left(\rho_{2}\right)+S\left(\rho_{123}\right)
$$

(Lieb\& Ruskai I973, Pippenger 2003)

Collection of subsets of a set of particles (overlapping)

Collection of subsets of a set of particles (non-overlapping)

Fix subsets of the particles

For each subset, given a density matrix

$$
S_{i} \cap S_{j}=\emptyset
$$

what if required to be pure?

Are these compatible? $\exists \rho_{[N]}: \operatorname{tr}_{[N] \backslash S_{i}} \rho_{[N]}=\rho_{S_{i}}$?

One-Body Quantum Marginal Problem

compatible: $\quad \operatorname{tr}_{[N] \backslash i}|\psi\rangle\langle\psi|=\rho_{i}$
Then $\quad \tilde{\rho}_{i}:=u_{i} \rho_{i} u_{i}^{\dagger}$ compatible: $\quad \operatorname{tr}_{[N] \backslash i}|\tilde{\psi}\rangle\langle\tilde{\psi}|=\tilde{\rho}_{i}$

$$
\left(\widehat{\psi \psi\rangle}:=u_{1} \otimes \cdots \otimes u_{N}|\psi\rangle\right.
$$

\Rightarrow compatibility constraints

$$
\lambda^{(i)}=\left(\lambda_{1}^{\left.\lambda_{1}^{(i)} \geq \lambda_{2}^{(i)} \geq \ldots \geq \lambda_{d}^{(i)}, \ldots, \lambda_{d}^{(i)}\right) \in \mathbb{R}^{d-1}}\right.
$$

Shape of set of admissible $\quad \lambda=\left(\lambda^{(1)}, \cdots, \lambda^{(N)}\right) \in \mathbb{R}^{m}$?

Eigenvalue Polytopes

Eigenvalue Polytopes

$$
\begin{aligned}
U\left(d_{A}\right) \times U\left(d_{B}\right) \times U\left(d_{C}\right) & \rightarrow U\left(d_{A} d_{B} d_{C}\right) \\
\left(u_{A}, u_{B}, u_{C}\right) & \mapsto u_{A} \otimes u_{B} \otimes u_{C} \\
\mathfrak{u}\left(d_{A}\right) \times \mathfrak{u}\left(d_{B}\right) \times \mathfrak{u}\left(d_{C}\right) & \rightarrow \mathfrak{u}\left(d_{A} d_{B} d_{C}\right)
\end{aligned}
$$

Image of coadjoint orbit restricted to positive Weyl chamber is convex polytope

$$
\left(\lambda_{A}, \lambda_{B}, \lambda_{C}\right) \hookleftarrow\left(\rho_{A}, \rho_{B}, \rho_{C}\right) \leftarrow|\psi\rangle\left\langle\left.\psi\right|_{A B C}\right.
$$

$$
N=2
$$

$$
|\psi\rangle_{A B}=\sum_{j} s_{j}\left|e_{j}\right\rangle_{A}\left|f_{j}\right\rangle_{B}
$$

$$
\left.\Rightarrow \quad \lambda_{j}^{A}=s_{j}^{2}=\lambda_{j}^{B} \xrightarrow\left[{\left.\frac{1}{\sqrt{2}} \right\rvert\, 00+11}\right\rangle\right]{\substack{|00\rangle}} \begin{aligned}
& d=2 \\
& \lambda_{1}^{A} \geq \lambda_{2}^{A} \\
& \lambda_{1}^{A}
\end{aligned}
$$

$N=3 d=2 \quad$ Higuchi, Sudbery\& Szulc 2003

$\lambda_{1}^{A}+\lambda_{1}^{B} \leq 1+\lambda_{1}^{C} \quad$ and cyclic

3 fermions in 6 modes $\mathcal{H}=\Lambda^{3}\left(\mathbf{C}^{6}\right)$
e.g. electrons hopping on 3 sites
$\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{6}$ one-particle eigenvalues $\sum_{i} \lambda_{i}=3$

Pauli 1924

$\lambda_{1} \leq 1$

```
occupation
``` numbers in natural orbitals

Dennis \& Borland 1970
\(\lambda_{1}+\lambda_{6}=1\)
\(\lambda_{2}+\lambda_{5}=1\)
\(\lambda_{3}+\lambda_{4}=1\)
\(\lambda_{5}+\lambda_{6} \geq \lambda_{4}\)

\section*{Entanglement}
state transformations
\[
\psi_{A B C} \mapsto \psi_{A B C}^{\prime}
\]

LOCC: local operations and classical communication
- well-motivated
- complicated definition
- two parties solved (Nielsen majorisation)
- three or more parties: unsolved (MREGS?)

SLOCC: stochastic LOCC
- positive success probability (length doesn't matter)
- easy characterisation
\[
\psi _ { A B C } \mapsto \psi _ { A B C } ^ { \prime } = g _ { a } \longdiv { \otimes g _ { b } \overparen { g _ { c } \psi _ { A B C } } }
\]

\section*{Entanglement}
entanglement class: set of states \(\psi_{A B C} \leftrightarrow \psi_{A B C}^{\prime}\)
entanglement class \(=\) orbit of \(\operatorname{SL}\left(d_{A}\right) \times \operatorname{SL}\left(d_{B}\right) \times \operatorname{SL}\left(d_{C}\right)\)
3 qubits, 6 orbits: fully separable \(|000\rangle\)
\[
\begin{array}{ll}
\text { biseparable } & \frac{1}{\sqrt{2}}|00+11\rangle|0\rangle \\
\text { and permutations }
\end{array}, \begin{aligned}
& \frac{1}{\sqrt{2}}|000+111\rangle \\
& \mathrm{GHZ} \\
& \mathrm{~W}
\end{aligned} \frac{\frac{1}{\sqrt{3}}(|001+010+100\rangle)}{}
\]

4 qubits, infinite number of orbits
n qubits/fermions, \(\exp (\mathrm{O}(\mathrm{n}))\) many parameters intractable!

\section*{Entanglement Polytopes state \(\quad \psi \mapsto \lambda\) local} eigenvalues

convex polytope: entanglement polytope
Brion convexity theorem for moment map
Walter, Doran, Gross, Ch. 2012
subpolytope of quantum marginal polytope
computation using representation theory (difficult)
Entanglement criterion: local eigenvalues not in polytope, implies state is not in corresponding entanglement class

\title{
Entanglement Polytopes
} local state \(\quad \psi \mapsto \lambda\) eigenvalues

Entanglement criterion: local eigenvalues not in polytope, implies state is not in corresponding entanglement class
uses local information only
finite number of polytopes
robust against experimental noise

\section*{Entanglement Polytopes: 3 qubits}

\[
\frac{1}{\sqrt{2}}|000+111\rangle
\]
\[
\frac{1}{\sqrt{3}}|001+010+100\rangle
\]
\[
\begin{aligned}
& \frac{1}{\sqrt{2}}|0\rangle|00+11\rangle \\
& \quad \frac{1}{\sqrt{2}}|00+11\rangle|0\rangle
\end{aligned}
\]
\[
|000\rangle
\]

\section*{Entanglement Polytopes: 3 qubits}

(a)

Entanglement criterion point is not in W polytope (and not in fully or biseparable ones) cannot be in W-class (and not in fully or biseparable ones) must be entangled of GHZ type

\section*{Entanglement Polytopes: 4 qubits}

polytope explorer @ http://polytopes.leetspeak.org/

\section*{Entanglement Polytopes: 3 fermions in 6 modes}

\section*{Summary}
- The Quantum Marginal Problem computationally difficult

- One-Body Quantum Marginal Problem eigenvalue inequalities

- Entanglement Polytopes (arxiv: I 208.0365, Walter et al.)
- Pinning of Fermionic Occupation Numbers (arxiv. 12 I 0.553 I, to appear in PRL, Schilling et al.)

talk to me about relation to entropy inequalities representation theory P vs NP problem
```

