
“But our present QM formalism is not purely 

epistemological; it is a peculiar mixture 

describing in part realities of Nature, in part 

incomplete human information about Nature 

--- all scrambled up by Heisenberg and Bohr 

into an omelette that nobody has seen how 

to unscramble. Yet we think that the 

unscrambling is a prerequisite for any further 

advance in basic physical theory. For, if we 

cannot separate the subjective and objective 

aspects of the formalism, we cannot know 

what we are talking about; it is just that 

simple.”

--E.T. Jaynes
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Where I’m coming from…



Classical statistical theory

+

fundamental restriction on statistical distributions

⇓

A large part of quantum theory

'ψ

ψ

In the resulting model

quantum states are states of incomplete knowledge



Epistemically Restricted Liouville mechanics

A Liouville distribution µ(q,p), can describe an agent’s 
knowledge only if it satisfies:

The classical uncertainty principle:

The max-ent condition:  the entropy of µ(q,p),

is maximal for a given set of second-order moments.

∆2q∆2p− C2q,p ≥ (h̄/2)
2

(This can be generalized to n systems)



P (q, p) ∝ δ(q − a) P (q, p) ∝ δ(p− b) P (qA, pA, qB , pB)

∝ δ(qA − qB)δ(pA + pB)

corresponds to EPR state

The limit of perfect knowledge for some variables

An observer can only jointly know the values of a set of variables if 
they commute relative to the Poisson bracket.



Theorem: Epistemically restricted Liouville mechanics is 

empirically equivalent to Gaussian quantum mechanics

Valid transformations

Valid measurements

Bartlett, Rudolph and Spekkens, arXiv:1111:5057



acausal connection

EPR effect in Epistemically Restricted Liouville mechanics

A B



PEPR(qA, pA, qB , pB)

QB −QA = 0

PB + PA = 0

A B

∝ δ(qA − qB)δ(pA + pB)

EPR effect in Epistemically Restricted Liouville mechanics



A B

→Measure QA find q

EPR effect in Epistemically Restricted Liouville mechanics



A B

→Measure PA find p

EPR effect in Epistemically Restricted Liouville mechanics



B

B’Q

causal connection

Collapse Rule in Epistemically Restricted Liouville mechanics



B

B’Q

Measure QB find q

But this would violate the 
epistemic restriction!

Collapse Rule in Epistemically Restricted Liouville mechanics



B

B’

Q

A

Measure QA′

A’

Collapse Rule in Epistemically Restricted Liouville mechanics



B

B’

Q

Measure QA′ find q

A

A’

Collapse Rule in Epistemically Restricted Liouville mechanics



B

B’Q

→

→

→

Collapse rule

=

Belief propagation 
(unknown disturbance)

Bayesian conditioning

+

Collapse Rule in Epistemically Restricted Liouville mechanics



Noncommutativity
Entanglement

Collapse
Wave-particle duality

Teleportation
No cloning

Interference
Key distribution

Improvements in metrology
Quantum eraser

Coherent superposition
Pre and post-selection effects

Others…

Bell inequality violations
Computational speed-up (if it exists)
Noncontextuality inequality violations
Certain aspects of items on the left

Others…

Categorizing quantum phenomena

Those not arising in a restricted 
statistical classical theory

Those arising in a restricted 
statistical classical theory



Quantum theory

as a theory of Bayesian inference



P (R) Probability distribution 

over phase-space 

coordinates R

P (R = r) probability that R=r

ρA Operator on Hilbert 

space of A

No analogue (yet)

Classical Quantum



State of knowledge

Marginalization

P (R)

P (S) =
∑

R P (R,S)

Joint state P (R, S)

Classical Quantum

ρA

ρAB

ρB = TrAρAB

Normalization
∑

R P (R) = 1 TrAρA = 1

Conditional state P (S|R) ????



Normalization condition 

Conditional state

∑
S P (S|R) = 1 TrB(ρB|A) = IA

Conditional probability

P (S|R) ρB|A

Normalization condition 



Normalization condition 

Conditional state

∑
S P (S|R) = 1 TrB(ρB|A) = IA

Conditional probability

P (S|R) ρB|A

Relation of conditional to joint

P (S|R) = P (R,S)
P (R)

ρB|A = (ρ
−1/2
A ⊗ IB)ρAB(ρ

−1/2
A ⊗ IB)

Normalization condition 

Relation of conditional to joint



Normalization condition 

Conditional state

∑
S P (S|R) = 1 TrB(ρB|A) = IA

Conditional probability

P (S|R) ρB|A

P (S|R) = P (R,S)
P (R)

Normalization condition 

Relation of conditional to joint Relation of conditional to joint

ρB|A = ρ
−1/2
A ρABρ

−1/2
A

See: Leifer, PRA 74, 042310 (2006)



Normalization condition 

Conditional state

∑
S P (S|R) = 1 TrB(ρB|A) = IA

Conditional probability

P (S|R) ρB|A

P (S|R) = P (R,S)
P (R)

Normalization condition 

P (R,S) = P (S|R)P (R) ρAB = ρ
1/2
A ρB|Aρ

1/2
A

ρB|A = ρ
−1/2
A ρABρ

−1/2
A

Relation of conditional to joint Relation of conditional to joint



Normalization condition 

Conditional state

∑
S P (S|R) = 1 TrB(ρB|A) = IA

Conditional probability

P (S|R) ρB|A

P (S|R) = P (R,S)
P (R)

Normalization condition 

P (R,S) = P (S|R)P (R)

Classical belief propagation

P (S) =
∑

R P (S|R)P (R) ρB = TrA(ρB|AρA)

Quantum belief propagation

Relation of conditional to joint Relation of conditional to joint

ρAB = ρ
1/2
A ρB|Aρ

1/2
A

ρB|A = ρ
−1/2
A ρABρ

−1/2
A



P (R,S) = P (S|R)P (R)

= P (R|S)P (S)

P (S|R) = P (R|S)P (S)
P (R)

Classical Bayes’ theorem

Two formulas for the 

joint probability

Quantum Bayes’ theorem

Two formulas for the 

joint state

ρBA = ρ
1/2
A ρB|Aρ

1/2
A

= ρ
1/2
B ρA|Bρ

1/2
B

ρB|A = ρ
−1/2
A ρ

1/2
B ρA|Bρ

1/2
B ρ

−1/2
A

P (S)→ P (S|X = x) ρB → ρB|X=x

Classical 

Bayesian conditioning

Quantum 

Bayesian conditioning

P (S|X = x) =
∑

X P (S|X)δX,x ρB|X=x ≡ TrX(ρB|X |x〉〈x|X)



Causal Neutrality



A B

A

B

R S

R

S

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) = ΓR→S [P (R)]

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) = ΓR→S [P (R)] ρB = EA→B(ρA)

ρAB

????

????

????

????

????

????



A B

A

B

R S

R

S

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) = ΓR→S [P (R)]

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) = ΓR→S [P (R)]

ρB|A = ρ
−1/2
A ρABρ

−1/2
A

ρB = TrA(ρB|AρA)

ρB = EA→B(ρA)

ρB = EA→B(ρA)

ρAB

????

????

????



A B

A

B

R S

R

S

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) = ΓR→S [P (R)]

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) = ΓR→S [P (R)]

ρB|A = ρ
−1/2
A ρABρ

−1/2
A

ρB = TrA(ρB|AρA)

ρB = EA→B(ρA)

ρB = EA→B(ρA)

ρB = TrA(̺B|AρA)

ρAB

̺B|A = ρ
−1/2
A ̺ABρ

−1/2
A

̺AB



A B

A

B

R S

R

S

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) = ΓR→S [P (R)]

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) = ΓR→S [P (R)]

ρB|A = ρ
−1/2
A ρABρ

−1/2
A

ρB = TrA(ρB|AρA)

ρB = EA→B(ρA)

EA→B ◦ TA is CP

ρB = EA→B(ρA)

EA→B is CP

ρB = TrA(̺B|AρA)

ρAB

̺B|A = ̺
−1/2
A ̺ABρ

−1/2
A

̺AB

̺TAB|A ≥ 0

ρB|A ≥ 0



A B

A

B

R S

R

S

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

ρB|A = ρ
−1/2
A ρABρ

−1/2
A

ρB = TrA(ρB|AρA)

ρB = TrA(̺B|AρA)

ρAB

̺B|A = ̺
−1/2
A ̺ABρ

−1/2
A

̺AB

̺TAB|A ≥ 0

ρB|A ≥ 0
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(IƒUinv)|EPRÒ A C
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inv A A

A B A

B

Comparing causal and acausal correlations

in Quantum Mechanics



QQQQAAAA ,Q,Q,Q,QBBBB PPPPAAAA				,PB,PB,PB,PB

PPPPEPREPREPREPR C A

PPPPEPREPREPREPR----invinvinvinv
A C

QQQQAAAA				,QB,QB,QB,QB PPPPAAAA				,PB,PB,PB,PB

PPPPidididid C C

PPPPinvinvinvinv A A

A B A

B

Comparing causal and acausal correlations

in Epistemically Restricted Liouville mechanics

QB = QA
PB = PA

QB −QA = 0

PB + PA = 0

Pid(qB , pB|qA, pA)

∝ δ(qA − qB)δ(pA − pB)

PEPR(qA, pA, qB, pB) ∝ δ(qA − qB)δ(pA + pB)



A B A

B

Comparing causal and acausal correlations

in Epistemically Restricted Liouville mechanics

QB = QA
PB = −PA

Not allowed!

QB −QA = 0

PB − PA = 0
Not allowed!

QQQQAAAA ,Q,Q,Q,QBBBB PPPPAAAA				,PB,PB,PB,PB

PPPPEPREPREPREPR C A

PPPPEPREPREPREPR----invinvinvinv
A C

QQQQAAAA				,QB,QB,QB,QB PPPPAAAA				,PB,PB,PB,PB

PPPPidididid C C

PPPPinvinvinvinv A A

PEPR(qB , pB|qA, pA)

∝ δ(qA − qB)δ(pA + pB)

Pid(qB , pB|qA, pA) ∝ δ(qA − qB)δ(pA − pB)



A B

A

B

R S

R

S

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

ρB|A = ρ
−1/2
A ρABρ

−1/2
A

ρB = TrA(ρB|AρA)

ρB = TrA(̺B|AρA)

ρAB

̺B|A = ̺
−1/2
A ̺ABρ

−1/2
A

̺AB

̺TAB|A ≥ 0

ρB|A ≥ 0P (S|R) ∈ Lrestricted

P (S|R) ∈ ΛR(Lrestricted)

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)



A B

A

B

R S

R

S

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)

τB|A = τ
−1/2
A τABτ

−1/2
A

τB = TrA(τB|AτA)

τAB

τB|A = τ
−1/2
A τABτ

−1/2
A

τB = TrA(τB|AτA)

τAB

P (S|R) ∈ Lrestricted

P (S|R) ∈ ΛR(Lrestricted)

τB|A ∈ Orestricted

τB|A ∈ TA(Orestricted)

P (S) =
∑

R P (S|R)P (R)

P (R, S)

P (S|R) = P (R,S)/P (R)



Quantum steering 

and quantum collapse 

in the conditional states formalism



Quantum steering

A B

Given: ρAB

ρX|A ↔ {EAx }

Learn: X = x

Infer:

ρX|B = TrA(ρX|AρA|B)

ρB|X=x =
ρ
1/2
B EB

x ρ
1/2
B

TrB(EB
x ρB)

ρB → ρB|X=x

Measure:

where

EBx = E
†
A→B(EAx )where

X

Fuchs, quant-ph/0205039  

ρA|B = ρ
−1/2
B ρABρ

−1/2
B

ρB|X = ρ
−1/2
X ρ

1/2
B ρX|Bρ

1/2
B ρ

−1/2
X



X

B

B’

Pure Bayesian conditioning:

ρB →
ρ
1/2
B EB

x ρ
1/2
B

TrB(EB
x ρB)

ρX|B ↔ {EBx }

Learn: X = x

Measure: Collapse rule:

ρB →
(EB

x )
1/2ρB(E

B
x )

1/2

TrB(EB
x ρB)

Quantum collapse



B

Given:

Learn: X = x

Measure:

̺A′B′|AB ↔ UAB→A′B′

ρX|A′ ↔ {ΠA′

x }
X

A

B’A’

A’ gets info about B

(i.e. mmt is informative)

B’ gets info about A

(B to B’ is not identity channel)
→

no information gain without disturbance

Quantum collapse



B

Measure:

ρX|A′ ↔ {ΠA′

x }
X

A

B’A’
ρB′ =

∑
x P (X = x)

(EB
x )

1/2ρB(E
B
x )

1/2

TrB(EB
x ρB)

ρB

Quantum collapse



B

Learn:

Measure:

ρX|A′ ↔ {ΠA′

x }

X = x
X

A

B’A’

Quantum collapse

ρB′|X=x =
(EB

x )
1/2ρB(E

B
x )

1/2

TrB(EB
x ρB)

ρB



ρB → ρB′|X=x

Collapse rule =

Quantum belief propagation 

(disturbance)

Quantum Bayesian conditioning

+

ρB → ρB′

ρB′ → ρB′|X=x

X

B

B’

ρX|B ↔ {EBx }

Learn: X = x

Measure:

Quantum collapse



No local explanation of Bell inequality violations

X Y

S T
A B

Satisfies all Bell inequalities

X Y

S T

P (XY |ST ) =
∑
λAλB

P (X|λAS)P (Y |λBT)P (λAλB)

A B

Can violate Bell inequalities
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• Conditional independence, sufficient statistics

• Retrodiction, Pre and post selection, General inference

• State compatibility and state pooling



ρA =
∑

x P (X = x)ρAx ρA = TrX(ρA|XρX)

ρY = TrA(ρY |AρA)

ρY B = TrA(̺Y B|AρA)

Ensemble 

averaging

Born’s rule

State update 

rule

∀y : P (Y = y) = TrA(EAy ρA)

∀y : P (Y = y)ρBy = EA→B
y (ρA)

Conventional 

expression

In terms of 

conditional states

Action of quantum 

channel
ρB = TrA(̺B|AρA)ρB = EA→B(ρA)

EA→C = EB→C ◦ EA→B ̺C|A = TrB(̺C|B̺B|A)
Composition of 

channels



Some modification of 
our classical theory 

of reality

Some modification of 
our classical theory 

of Bayesian inference

An idea for achieving realism in quantum theory



Quantum retrodiction

Given:

ρX|A ↔ {EAx }

Learn: X = x

Infer: ρB → ρB|X=x
Measure:

B

A

X

̺A|B ↔ EB→A

ρB

ρB|X = TrA(̺B|AρA|X)

ρB|X=x =
ρ
1/2

B
E†A→B(E

A
x )ρ

1/2

B

TrA(EA
x EB→A(ρB))

̺B|A = ̺A|B ∗ (ρBρ
−1
A )

ρA|X = ρX|A ∗ (ρAρ
−1
X )

Generalizes Barnett, Pegg & Jeffers, 

J. Mod. Opt. 47:1779 (2000).

Set of possible 

predictive inferences

Set of possible 

retrodictive inferences
=

Time symmetry:



τB|A = (ΦA′→B ⊗ idA)(
∑

j,k |j〉〈k|A′ ⊗ |k〉〈j|A)

ΦA′→B is trace-preserving ↔ TrBτB|A = IA

The Jamiolkowski isomorphism

This implies: ΦA→B(ρA) = TrA(τB|AρA)

Proof: TrA(τB|AρA) = ΦA′→B(
∑

j,k |j〉〈k|A′〈j|ρA|k〉)

= ΦA→B(
∑

j,k |j〉〈j|AρA|k〉〈k|A)

= ΦA→B(ρA) QED



τB|A = (ΦA′→B ⊗ idA)(
∑

j,k |j〉〈k|A′ ⊗ |k〉〈j|A)

ΦA′→B is trace-preserving ↔ TrBτB|A = IA

The Jamiolkowski isomorphism

ΦA→B is CP ↔ τTAB|A ≥ 0

τB|A = (ΦA′→B ⊗ idA)(
∑

j,k |j〉〈k|A′ ⊗ |j〉〈k|A)TA

= (ΦA′→B ⊗ idA)(dA|Ψ
+〉A′A〈Ψ

+|)TA

τB|A = ( [ΦA′→B ◦ TA′ ] ⊗ idA)(dA|Ψ
+〉A′A〈Ψ

+|)

ΦA→B ◦ TA is CP ↔ τB|A ≥ 0

This implies: ΦA→B(ρA) = TrA(τB|AρA)


