
"But our present QM formalism is not purely epistemological; it is a peculiar mixture describing in part realities of Nature, in part incomplete human information about Nature --- all scrambled up by Heisenberg and Bohr into an omelette that nobody has seen how to unscramble. Yet we think that the unscrambling is a prerequisite for any further advance in basic physical theory. For, if we cannot separate the subjective and objective aspects of the formalism, we cannot know what we are talking about; it is just that simple."
--E.T. Jaynes

Formulating Quantum Theory as a

 Causally Neutralt eory of Bayesian Inference

Where I'm coming from...

Classical statistical theory
$+$
fundamental restriction on statistical distributions
\Downarrow
A large part of quantum theory

In the resulting model
quantum states are states of incomplete knowledge

Epistemically Restricted Liouville mechanics

A Liouville distribution $\mu(q, p)$, can describe an agent's knowledge only if it satisfies:

The classical uncertainty principle:

$$
\Delta^{2} q \Delta^{2} p-C_{q, p}^{2} \geq(\hbar / 2)^{2}
$$

The max-ent condition: the entropy of $\mu(\mathrm{q}, \mathrm{p})$,

$$
S(\mu)=-\int \mu(q, p) \log \mu(q, p) \mathrm{d} q \mathrm{~d} p
$$

is maximal for a given set of second-order moments.

(This can be generalized to n systems)

The limit of perfect knowledge for some variables
An observer can only jointly know the values of a set of variables if they commute relative to the Poisson bracket.

$$
\text { know } Q \quad \text { know } P \quad \text { know } Q_{A}-Q_{B} \text { and } P_{A}+P_{B}
$$

$$
P(q, p) \propto \delta(q-a)
$$

$P(q, p) \propto \delta(p-b)$

$$
\begin{aligned}
& P\left(q_{A}, p_{A}, q_{B}, p_{B}\right) \\
& \quad \propto \delta\left(q_{A}-q_{B}\right) \delta\left(p_{A}+p_{B}\right)
\end{aligned}
$$

corresponds to EPR state

Valid transformations

Valid measurements

Theorem: Epistemically restricted Liouville mechanics is empirically equivalent to Gaussian quantum mechanics

Bartlett, Rudolph and Spekkens, arXiv:1111:5057

EPR effect in Epistemically Restricted Liouville mechanics

EPR effect in Epistemically Restricted Liouville mechanics

$$
\begin{gathered}
\text { (A }--\sqrt{\mathbf{B}} \\
P_{\mathrm{EPR}}\left(q_{A}, p_{A}, q_{B}, p_{B}\right) \propto \delta\left(q_{A}-q_{B}\right) \delta\left(p_{A}+p_{B}\right) \\
Q_{B}-Q_{A}=0 \\
P_{B}+P_{A}=0
\end{gathered}
$$

EPR effect in Epistemically Restricted Liouville mechanics

EPR effect in Epistemically Restricted Liouville mechanics

Collapse Rule in Epistemically Restricted Liouville mechanics

Collapse Rule in Epistemically Restricted Liouville mechanics

Measure Q_{B} find q

But this would violate the epistemic restriction!

Collapse Rule in Epistemically Restricted Liouville mechanics

Collapse Rule in Epistemically Restricted Liouville mechanics

Collapse Rule in Epistemically Restricted Liouville mechanics

Categorizing quantum phenomena

Those arising in a restricted statistical classical theory

Noncommutativity
Entanglement
Collapse
Wave-particle duality
Teleportation
No cloning
Interference
Key distribution
Improvements in metrology
Quantum eraser
Coherent superposition
Pre and post-selection effects Others...

Those not arising in a restricted statistical classical theory

Bell inequality violations
Computational speed-up (if it exists)
Noncontextuality inequality violations
Certain aspects of items on the left Others...

Quantum theory as a theory of Bayesian inference

Classical

$P(R)$ Probability distribution over phase-space coordinates R
$P(R=r)$ probability that $R=r$

Quantum
ρ_{A} Operator on Hilbert space of A

No analogue (yet)

State of knowledge
Normalization

Joint state
Marginalization

Classical

$P(S)=\sum_{R} P(R, S)$ $P(S \mid R)$

Quantum
$P(R)$
ρ_{A}

$$
\operatorname{Tr}_{A} \rho_{A}=1
$$

$\rho_{A B}$
$\rho_{B}=\operatorname{Tr}_{A} \rho_{A B}$
????

Conditional probability

$$
P(S \mid R)
$$

Normalization condition

$$
\sum_{S} P(S \mid R)=1
$$

Conditional state

$$
\rho_{B \mid A}
$$

Normalization condition

$$
\operatorname{Tr}_{B}\left(\rho_{B \mid A}\right)=I_{A}
$$

Conditional probability

$$
P(S \mid R)
$$

Normalization condition

$$
\sum_{S} P(S \mid R)=1
$$

Relation of conditional to joint

$$
P(S \mid R)=\frac{P(R, S)}{P(R)}
$$

Conditional state

$$
\rho_{B \mid A}
$$

Normalization condition

$$
\operatorname{Tr}_{B}\left(\rho_{B \mid A}\right)=I_{A}
$$

Relation of conditional to joint

$$
\rho_{B \mid A}=\left(\rho_{A}^{-1 / 2} \otimes I_{B}\right) \rho_{A B}\left(\rho_{A}^{-1 / 2} \otimes I_{B}\right)
$$

Conditional probability

$$
P(S \mid R)
$$

Normalization condition

$$
\sum_{S} P(S \mid R)=1
$$

Relation of conditional to joint

$$
P(S \mid R)=\frac{P(R, S)}{P(R)}
$$

Conditional state

$$
\rho_{B \mid A}
$$

Normalization condition

$$
\operatorname{Tr}_{B}\left(\rho_{B \mid A}\right)=I_{A}
$$

Relation of conditional to joint

$$
\rho_{B \mid A}=\rho_{A}^{-1 / 2} \rho_{A B} \rho_{A}^{-1 / 2}
$$

See: Leifer, PRA 74, 042310 (2006)

Conditional probability

$$
P(S \mid R)
$$

Normalization condition

$$
\sum_{S} P(S \mid R)=1
$$

Relation of conditional to joint

$$
\begin{gathered}
P(S \mid R)=\frac{P(R, S)}{P(R)} \\
P(R, S)=P(S \mid R) P(R)
\end{gathered}
$$

Conditional state

$$
\rho_{B \mid A}
$$

Normalization condition

$$
\operatorname{Tr}_{B}\left(\rho_{B \mid A}\right)=I_{A}
$$

Relation of conditional to joint

$$
\begin{aligned}
\rho_{B \mid A} & =\rho_{A}^{-1 / 2} \rho_{A B} \rho_{A}^{-1 / 2} \\
\rho_{A B} & =\rho_{A}^{1 / 2} \rho_{B \mid A} \rho_{A}^{1 / 2}
\end{aligned}
$$

Conditional probability

$$
P(S \mid R)
$$

Normalization condition

$$
\sum_{S} P(S \mid R)=1
$$

Relation of conditional to joint

$$
\begin{gathered}
P(S \mid R)=\frac{P(R, S)}{P(R)} \\
P(R, S)=P(S \mid R) P(R)
\end{gathered}
$$

Classical belief propagation

$$
P(S)=\sum_{R} P(S \mid R) P(R)
$$

Conditional state

$$
\rho_{B \mid A}
$$

Normalization condition

$$
\operatorname{Tr}_{B}\left(\rho_{B \mid A}\right)=I_{A}
$$

Relation of conditional to joint

$$
\begin{aligned}
\rho_{B \mid A} & =\rho_{A}^{-1 / 2} \rho_{A B} \rho_{A}^{-1 / 2} \\
\rho_{A B} & =\rho_{A}^{1 / 2} \rho_{B \mid A} \rho_{A}^{1 / 2}
\end{aligned}
$$

Quantum belief propagation

$$
\rho_{B}=\operatorname{Tr}_{A}\left(\rho_{B \mid A} \rho_{A}\right)
$$

Two formulas for the joint probability

$$
\begin{aligned}
P(R, S) & =P(S \mid R) P(R) \\
& =P(R \mid S) P(S)
\end{aligned}
$$

Classical Bayes' theorem

$$
P(S \mid R)=\frac{P(R \mid S) P(S)}{P(R)}
$$

Classical
Bayesian conditioning

$$
\begin{gathered}
P(S) \rightarrow P(S \mid X=x) \\
P(S \mid X=x)=\sum_{X} P(S \mid X) \delta_{X, x}
\end{gathered}
$$

Two formulas for the joint state

$$
\begin{aligned}
\rho_{B A} & =\rho_{A}^{1 / 2} \rho_{B \mid A} \rho_{A}^{1 / 2} \\
& =\rho_{B}^{1 / 2} \rho_{A \mid B} \rho_{B}^{1 / 2}
\end{aligned}
$$

Quantum Bayes' theorem

$$
\rho_{B \mid A}=\rho_{A}^{-1 / 2} \rho_{B}^{1 / 2} \rho_{A \mid B} \rho_{B}^{1 / 2} \rho_{A}^{-1 / 2}
$$

Quantum

Bayesian conditioning

$$
\begin{gathered}
\rho_{B} \rightarrow \rho_{B \mid X=x} \\
\rho_{B \mid X=x} \equiv \operatorname{Tr}_{X}\left(\rho_{B \mid X}|x\rangle\left\langle\left. x\right|_{X}\right)\right.
\end{gathered}
$$

Causal Neutrality

$$
\begin{array}{r}
\mathbf{R} \quad P(R, S) \\
P(S \mid R)=P(R, S) / P(R) \\
P(S)=\sum_{R} P(S \mid R) P(R) \\
P(S)=\Gamma_{R \rightarrow S}[P(R)]
\end{array}
$$

$$
\text { (A)---B } \rho_{A B}
$$

????

$$
? ? ? ?
$$

$$
? ? ? ?
$$

$$
\begin{array}{r}
\boxed{\mathbf{R}}-\mathbf{s} \quad P(R, S) \\
P(S \mid R)=P(R, S) / P(R) \\
P(S)=\sum_{R} P(S \mid R) P(R) \\
P(S)=\Gamma_{R \rightarrow S}[P(R)]
\end{array}
$$

(A)--(B) $\rho_{A B}$

$$
\rho_{B \mid A}=\rho_{A}^{-1 / 2} \rho_{A B} \rho_{A}^{-1 / 2}
$$

$$
\rho_{B}=\operatorname{Tr}_{A}\left(\rho_{B \mid A} \rho_{A}\right)
$$

$$
\rho_{B}=\mathfrak{E}_{A \rightarrow B}\left(\rho_{A}\right)
$$

$$
\begin{array}{r}
\boxed{\mathbf{R}}-\mathbf{\mathbf { s }} \quad P(R, S) \\
P(S \mid R)=P(R, S) / P(R) \\
P(S)=\sum_{R} P(S \mid R) P(R) \\
P(S)=\Gamma_{R \rightarrow S}[P(R)]
\end{array}
$$

(A)--(B) $\rho_{A B}$

$$
\rho_{B \mid A}=\rho_{A}^{-1 / 2} \rho_{A B} \rho_{A}^{-1 / 2}
$$

$$
\rho_{B}=\operatorname{Tr}_{A}\left(\rho_{B \mid A} \rho_{A}\right)
$$

$$
\rho_{B}=\mathfrak{E}_{A \rightarrow B}\left(\rho_{A}\right)
$$

$P(R, S)$

$P(R, S)$	
$\mathbf{~}$	
\mathbf{R}	$P(S \mid R)=P(R, S) / P(R)$
\mathbf{R}	$P(S)=\sum_{R} P(S \mid R) P(R)$

$$
P(S)=\Gamma_{R \rightarrow S}[P(R)]
$$

$$
\begin{aligned}
& \mathbf{R}-\mathbf{s} \quad P(R, S) \\
& P(S \mid R)=P(R, S) / P(R) \\
& P(S)=\sum_{R} P(S \mid R) P(R) \\
& P(S)=\Gamma_{R \rightarrow S}[P(R)] \\
& \text { (A)-- B } \rho_{A B} \\
& \rho_{B \mid A}=\rho_{A}^{-1 / 2} \rho_{A B} \rho_{A}^{-1 / 2} \\
& \rho_{B}=\operatorname{Tr}_{A}\left(\rho_{B \mid A} \rho_{A}\right) \\
& \rho_{B}=\mathfrak{E}_{A \rightarrow B}\left(\rho_{A}\right) \\
& \rho_{B \mid A} \geq 0 \\
& \mathfrak{E}_{A \rightarrow B} \circ T_{A} \text { is CP } \\
& P(R, S) \\
& P(S)=\Gamma_{R \rightarrow S}[P(R)] \\
& \begin{aligned}
\varrho_{B \mid A} & =\varrho_{A}^{-1 / 2} \varrho_{A B} \rho_{A}^{-1 / 2} \\
\text { A } \quad \rho_{B} & =\operatorname{Tr}_{A}\left(\varrho_{B \mid A} \rho_{A}\right)
\end{aligned} \\
& \rho_{B}=\mathcal{E}_{A \rightarrow B}\left(\rho_{A}\right) \\
& \varrho_{B \mid A}^{T_{A}} \geq 0 \\
& \mathcal{E}_{A \rightarrow B} \text { is CP }
\end{aligned}
$$

$$
\begin{aligned}
\boxed{\mathbf{R}}-\mathbf{s} \quad & P(R, S) \\
& P(S \mid R)=P(R, S) / P(R) \\
& P(S)=\sum_{R} P(S \mid R) P(R)
\end{aligned}
$$

$$
\rho_{B \mid A}=\rho_{A}^{-1 / 2} \rho_{A B} \rho_{A}^{-1 / 2}
$$

$$
\rho_{B}=\operatorname{Tr}_{A}\left(\rho_{B \mid A} \rho_{A}\right)
$$

$$
\rho_{B \mid A} \geq 0
$$

$P(R, S)$
$\begin{array}{cc}\mathbf{5} & P(R, S) \\ \mathbf{1} & P(S \mid R)=P(R, S) / P(R) \\ \mathbf{R} & P(S)=\sum_{R} P(S \mid R) P(R)\end{array}$

$$
\varrho_{B \mid A}^{T_{A}} \geq 0
$$

Comparing causal and acausal correlations in Quantum Mechanics

	$\widehat{\boldsymbol{Q}}_{A}, \widehat{\boldsymbol{Q}}_{B}$	$\widehat{\boldsymbol{P}}_{A}, \widehat{\boldsymbol{P}}_{\boldsymbol{B}}$
$\|\mathrm{EPR}\rangle$	C	A
$\left(\mathrm{I} \otimes \mathrm{U}_{\text {inv }}\right)\|\mathrm{EPR}\rangle$	A	C

	$\widehat{\boldsymbol{Q}}_{A}, \widehat{\boldsymbol{Q}}_{\boldsymbol{B}}$	$\widehat{\boldsymbol{P}}_{A}, \widehat{\boldsymbol{P}}_{\boldsymbol{B}}$
id	C	C
inv	A	A

Comparing causal and acausal correlations in Epistemically Restricted Liouville mechanics

$$
\begin{aligned}
& P_{\mathrm{id}}\left(q_{B}, p_{B} \mid q_{A}, p_{A}\right) \\
& \propto \delta\left(q_{A}-q_{B}\right) \delta\left(p_{A}-p_{B}\right)
\end{aligned}
$$

$$
\begin{aligned}
& Q_{B}=Q_{A} \\
& P_{B}=P_{A}
\end{aligned}
$$

$P_{\mathrm{EPR}}\left(q_{A}, p_{A}, q_{B}, p_{B}\right) \propto \delta\left(q_{A}-q_{B}\right) \delta\left(p_{A}+p_{B}\right)$

$$
\begin{aligned}
& Q_{B}-Q_{A}=0 \\
& P_{B}+P_{A}=0
\end{aligned}
$$

	Q_{A}, Q_{B}	$P_{A}, P B$
$\mathrm{P}_{\mathrm{EPR}}$	C	A
$\mathrm{P}_{\mathrm{EPR} \text {-inv }}$	A	C

	$Q_{A}, Q B$	$P_{A}, P B$
$\mathrm{P}_{\text {id }}$	C	C
$\mathrm{P}_{\text {inv }}$	A	A

Comparing causal and acausal correlations in Epistemically Restricted Liouville mechanics

$$
\begin{aligned}
& P_{\mathrm{EPR}}\left(q_{B}, p_{B} \mid q_{A}, p_{A}\right) \\
& \quad \propto \delta\left(q_{A}-q_{B}\right) \delta\left(p_{A}+p_{B}\right)
\end{aligned}
$$

$$
\begin{gathered}
Q_{B}=Q_{A} \\
P_{B}=-P_{A}
\end{gathered}
$$

Not allowed!

$$
\begin{array}{r}
P_{\mathrm{id}}\left(q_{B}, p_{B} \mid q_{A}, p_{A}\right) \propto \delta\left(q_{A}-q_{B}\right) \delta\left(p_{A}-p_{B}\right) \\
Q_{B}-Q_{A}=0 \quad \text { Not allowed! } \\
P_{B}-P_{A}=0 \quad
\end{array}
$$

	Q_{A}, Q_{B}	$P_{A}, P B$
$\mathrm{P}_{\mathrm{EPR}}$	C	A
$\mathrm{P}_{\mathrm{EPR} \text {-inv }}$	A	C

	$Q_{A}, Q B$	$P_{A}, P B$
$\mathrm{P}_{\text {id }}$	C	C
$\mathrm{P}_{\text {inv }}$	A	A

$$
\begin{aligned}
& \mathbf{R}-\mathbf{s} \quad P(R, S) \\
& P(S \mid R)=P(R, S) / P(R) \\
& P(S)=\sum_{R} P(S \mid R) P(R) \\
& \text { (A)-- (B) } \rho_{A B} \\
& \rho_{B \mid A}=\rho_{A}^{-1 / 2} \rho_{A B} \rho_{A}^{-1 / 2} \\
& \rho_{B}=\operatorname{Tr}_{A}\left(\rho_{B \mid A} \rho_{A}\right) \\
& P(S \mid R) \in L_{\text {restricted }} \\
& P(R, S) \\
& P(S \mid R)=P(R, S) / P(R) \\
& P(S)=\sum_{R} P(S \mid R) P(R) \\
& \begin{aligned}
& \varrho_{B \mid A}=\varrho_{A}^{-1 / 2} \varrho_{A B} \rho_{A}^{-1 / 2} \\
& \text { A } \rho_{B} \\
&=\operatorname{Tr}_{A}\left(\varrho_{B \mid A} \rho_{A}\right)
\end{aligned} \\
& P(S \mid R) \in \Lambda_{R}\left(L_{\text {restricted }}\right) \\
& \varrho_{B \mid A}^{T_{A}} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\boxed{\mathbf{R}}- & P(R, S) \\
& P(S \mid R)=P(R, S) / P(R) \\
& P(S)=\sum_{R} P(S \mid R) P(R) \\
& P(S \mid R) \in L_{\text {restricted }}
\end{aligned}
$$

$$
\tau_{B \mid A}=\tau_{A}^{-1 / 2} \tau_{A B} \tau_{A}^{-1 / 2}
$$

$$
\tau_{B}=\operatorname{Tr}_{A}\left(\tau_{B \mid A} \tau_{A}\right)
$$

$P(R, S)$

$\mathbf{5}$	
$\mathbf{1}$	$P(S \mid R)=P(R, S) / P(R)$
\mathbf{R}	$P(S)=\sum_{R} P(S \mid R) P(R)$

$$
P(S \mid R) \in \Lambda_{R}\left(L_{\text {restricted }}\right)
$$

Quantum steering and quantum collapse in the conditional states formalism

Quantum steering

Measure:

Fuchs, quant-ph/0205039

Quantum collapse

Measure:
$\rho_{X \mid B} \leftrightarrow\left\{E_{x}^{B}\right\}$
Learn: $X=x$

Collapse rule:

$$
\rho_{B} \rightarrow \frac{\left(E_{x}^{B}\right)^{1 / 2} \rho_{B}\left(E_{x}^{B}\right)^{1 / 2}}{\operatorname{Tr}_{B}\left(E_{x}^{B} \rho_{B}\right)}
$$

Pure Bayesian conditioning:

$$
\rho_{B} \rightarrow \frac{\rho_{B}^{1 / 2} E_{x}^{B} \rho_{B}^{1 / 2}}{\operatorname{Tr}_{B}\left(E_{x}^{B} \rho_{B}\right)}
$$

Quantum collapse

Measure:

Given:

$$
\varrho_{A^{\prime} B^{\prime} \mid A B} \leftrightarrow U_{A B \rightarrow A^{\prime} B^{\prime}}
$$

A^{\prime} gets info about B
(i.e. mmt is informative)
B^{\prime} gets info about A
(B to B^{\prime} is not identity channel)
no information gain without disturbance

Quantum collapse

Measure:

Quantum collapse

Measure:

Quantum collapse

Measure:

$\underset{\rho_{B} \rightarrow \rho_{B^{\prime} \mid X=x}}{\text { Collapse rule }}=\left\{\begin{array}{r}\text { Quantum belief pron } \\ \text { (disturban } \\ \rho_{B} \rightarrow \rho_{B^{\prime}} \\ +\end{array}\right.$
Quantum Bayesian conditioning

$$
\rho_{B^{\prime}} \rightarrow \rho_{B^{\prime} \mid X=x}
$$

No local explanation of Bell inequality violations

Satisfies all Bell inequalities

Can violate Bell inequalities

Further work

- Conditional independence, sufficient statistics
- Retrodiction, Pre and post selection, General inference
- State compatibility and state pooling

References

- Bartlett, Rudolph and Spekkens, Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epistemic restriction, arXiv:1111:5057
- Leifer, Quantum Dynamics as an anolog of conditional probability, PRA 74, 042310 (2006)
- Leifer and Spekkens, Formulating Quantum Theory as a Causally Neutral Theory of Bayesian Inference, arXiv:1107.5849
- Wood and Spekkens, The lesson of causal discovery algorithms for quantum correlations, arXiv:1208.4119

Conventional expression

Born's rule

$$
\forall y: P(Y=y)=\operatorname{Tr}_{A}\left(E_{y}^{A} \rho_{A}\right)
$$

$$
\rho_{Y}=\operatorname{Tr}_{A}\left(\rho_{Y \mid A} \rho_{A}\right)
$$

Ensemble averaging

$$
\rho_{A}=\sum_{x} P(X=x) \rho_{x}^{A} \quad \rho_{A}=\operatorname{Tr}_{X}\left(\rho_{A \mid X} \rho_{X}\right)
$$

Action of quantum channel

$$
\rho_{B}=\mathcal{E}^{A \rightarrow B}\left(\rho_{A}\right) \quad \rho_{B}=\operatorname{Tr}_{A}\left(\varrho_{B \mid A} \rho_{A}\right)
$$

Composition of channels

$$
\mathcal{E}^{A \rightarrow C}=\mathcal{E}^{B \rightarrow C} \circ \mathcal{E}^{A \rightarrow B} \quad \varrho_{C \mid A}=\operatorname{Tr}_{B}\left(\varrho_{C \mid B} \varrho_{B \mid A}\right)
$$

State update

$$
\forall y: P(Y=y) \rho_{y}^{B}=\mathcal{E}_{y}^{A \rightarrow B}\left(\rho_{A}\right)
$$

$$
\rho_{Y B}=\operatorname{Tr}_{A}\left(\varrho_{Y B \mid A} \rho_{A}\right)
$$ rule

An idea for achieving realism in quantum theory

Quantum retrodiction

Given: $\varrho_{A \mid B} \leftrightarrow \mathcal{E}_{B \rightarrow A}$ ρ_{B}

Infer: $\rho_{B} \rightarrow \rho_{B \mid X=x}$

$$
\rho_{B \mid X}=\operatorname{Tr}_{A}\left(\varrho_{B \mid A} \rho_{A \mid X}\right)
$$

$$
\varrho_{B \mid A}=\varrho_{A \mid B} *\left(\rho_{B} \rho_{A}^{-1}\right)
$$

$$
\rho_{A \mid X}=\rho_{X \mid A} *\left(\rho_{A} \rho_{X}^{-1}\right)
$$

$$
\rho_{B \mid X=x}=\frac{\rho_{B}^{1 / 2} \mathcal{E}^{\dagger}{ }_{A \rightarrow B}\left(E_{x}^{A}\right) \rho_{B}^{1 / 2}}{\operatorname{Tr}_{A}\left(E_{x}^{A} \mathcal{E}_{B \rightarrow A}\left(\rho_{B}\right)\right)}
$$

Generalizes Barnett, Pegg \& Jeffers,
J. Mod. Opt. 47:1779 (2000).

Time symmetry:

$$
\begin{aligned}
& \text { Set of possible } \\
& \text { predictive inferences }
\end{aligned}=\quad \begin{gathered}
\text { Set of possible } \\
\text { retrodictive inferences }
\end{gathered}
$$

The Jamiolkowski isomorphism

$$
\tau_{B \mid A}=\left(\Phi_{A^{\prime} \rightarrow B} \otimes \operatorname{id}_{A}\right)\left(\sum_{j, k}|j\rangle\left\langle\left. k\right|_{A^{\prime}} \otimes \mid k\right\rangle\left\langle\left. j\right|_{A}\right)\right.
$$

$$
\Phi_{A^{\prime} \rightarrow B} \text { is trace-preserving } \leftrightarrow \operatorname{Tr}_{B} \tau_{B \mid A}=I_{A}
$$

This implies: $\quad \Phi_{A \rightarrow B}\left(\rho_{A}\right)=\operatorname{Tr}_{A}\left(\tau_{B \mid A} \rho_{A}\right)$

Proof: $\operatorname{Tr}_{A}\left(\tau_{B \mid A} \rho_{A}\right)=\Phi_{A^{\prime} \rightarrow B}\left(\sum_{j, k}|j\rangle\left\langle\left. k\right|_{A^{\prime}}\langle j| \rho_{A} \mid k\right\rangle\right)$

$$
\begin{aligned}
& =\Phi_{A \rightarrow B}\left(\sum_{j, k}|j\rangle\left\langle\left. j\right|_{A} \rho_{A} \mid k\right\rangle\left\langle\left. k\right|_{A}\right)\right. \\
& =\Phi_{A \rightarrow B}\left(\rho_{A}\right) \text { QED }
\end{aligned}
$$

The Jamiolkowski isomorphism

$$
\tau_{B \mid A}=\left(\Phi_{A^{\prime} \rightarrow B} \otimes \operatorname{id}_{A}\right)\left(\sum_{j, k}|j\rangle\left\langle\left. k\right|_{A^{\prime}} \otimes \mid k\right\rangle\left\langle\left. j\right|_{A}\right)\right.
$$

$$
\Phi_{A^{\prime} \rightarrow B} \text { is trace-preserving } \leftrightarrow \operatorname{Tr}_{B} \tau_{B \mid A}=I_{A}
$$

This implies: $\quad \Phi_{A \rightarrow B}\left(\rho_{A}\right)=\operatorname{Tr}_{A}\left(\tau_{B \mid A} \rho_{A}\right)$

$$
\begin{aligned}
\tau_{B \mid A} & =\left(\Phi_{A^{\prime} \rightarrow B} \otimes \operatorname{id}_{A}\right)\left(\sum_{j, k}|j\rangle\left\langle\left. k\right|_{A^{\prime}} \otimes \mid j\right\rangle\left\langle\left. k\right|_{A}\right)^{T_{A}}\right. \\
& =\left(\Phi_{A^{\prime} \rightarrow B} \otimes \operatorname{id}_{A}\right)\left(d_{A}\left|\Psi^{+}\right\rangle_{A^{\prime} A}\left\langle\Psi^{+}\right|\right)^{T_{A}}
\end{aligned}
$$

$$
\Phi_{A \rightarrow B} \text { is } \mathrm{CP} \leftrightarrow \tau_{B \mid A}^{T_{A}} \geq 0
$$

$$
\tau_{B \mid A}=\left(\left[\Phi_{A^{\prime} \rightarrow B} \circ T_{A^{\prime}}\right] \otimes \operatorname{id}_{A}\right)\left(d_{A}\left|\Psi^{+}\right\rangle_{A^{\prime} A}\left\langle\Psi^{+}\right|\right)
$$

$$
\Phi_{A \rightarrow B} \circ T_{A} \text { is } \mathrm{CP} \leftrightarrow \tau_{B \mid A} \geq 0
$$

