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Introduction



A Historical Note

Brackstone (1987)

11th century England and 17th century Canada

Based on census or administrative records

Recent three decades

Increasing demand for small area statistics, due to growing use
in formulating policies and programs in the allocation of
government funds and in regional planning



What is a Small Area or Domain?

A subpopulation of interest with meager or no survey data.

Examples:

In a nationwide survey, cells obtained by finer classification of
age-group, race, gender even at the national level (small
domains).

In NHANSE III, a majority of US states do not have sample
(small area).

Even for a very large scale sample survey (e.g., American
Community Survey), we can easily cite examples of small
domains or areas (e.g., small counties or school districts).

Number of job vacancies by industry x state



Direct Estimation

A direct small area estimator uses y, the variable of interest,
only from the sampled units in the small area using the
primary source of information.

The estimator may or may not use auxiliary variable(s).

If the estimator uses auxiliary variable(s), it may or may not
use auxiliary information from other domains.

Estimators are typically p-unbiased or approximately
p-unbiased with respect to the randomization that generates
survey data.

Direct estimators are usually design-consistent for large
domain sample size. In small area estimation domain sample
sizes are typically small and thus design-consistency property
does not have much appeal.

Ref: Cochran (1977), Lohr (1999), Särndal et al. (1992).



Two Simple SAE Settings: Planned Domains

Planned domains are domains for which samples have been
planned. Thus we can take such domains as strata.

U : a finite population with m strata Ui (i = 1, · · · ,m).

yij : value of the jth unit in the ith stratum
(i = 1, · · · ,m; j = 1, · · · , Ni).

Parameter of interest: Ȳi = N−1
i

∑Ni
j=1 yij , (i = 1, · · · ,m),

where Ni’s are known and NT =
∑m

i=1Ni.

nT : total sample size allocated to these strata using an
allocation scheme.

ni: fixed sample size for the ith area (i = 1, · · · ,m). Thus,
nT =

∑m
j=1 ni.

Although the total sample size nT is typically large in a
sample survey, ni could be small for some or all of the areas.



A Planned Domain Example: SRS within Each Domain

Ai: sample of units from the ith domain (stratum)
(i = 1, · · · ,m).
The usual Horvitz-Thompson (HT) estimator of Ȳi:

ȳi =
1

ni

∑
j∈Ai

yij .

True design-based variance: Vp(ȳi) = (1− fi)
S2
i
ni
, where

S2
i = (Ni − 1)−1

∑Ni
j=1(yij − Ȳi)2 and fi = ni

Ni
.

The magnitude of the variance depends on three factors:
fi, S

2
i , and ni.

We have a small area situation in the area i if Vp(ȳi) is larger
than the specified requirement. When can we have a small
area situation?
If ni > 1, we can estimate Vp(ȳi) by vi = (1− fi)

s2i
ni
, where

s2
i = (ni − 1)−1

∑
j∈Ai

(yij − ȳi)2. Is vi design-unbiased?
What can you say about Vp(vi)?
Write down the formulae for binary data.



Two Simple SAE Settings: Unplanned Domains

Unplanned domains are domains that were not identified at the
design stage so sample sizes cannot be controlled. Consider a SRS
of size nT from U .

Are ni are fixed or random?

Is ȳi an unbiased estimator of Ȳi? What can be said for a
general sample design?

A variance estimator:

ṽi ≈ (1− f)
s2
i

ni;exp
,

where f = nT /NT , and ni;exp = nT
Ni
NT
, the expected sample

size for area i. What can be said about this variance
estimator?

An alternative variance estimator: vi. What can be said about
this variance estimator?



An Implicit Working Superpopulation Model

E[yij ] = θi, V [yij ] = σ2
i , Cov[yij , yi′j′ ] = 0,

for (i, i′ = 1, · · · ,m; j, j′ = 1, · · · , Ni, j 6= j′). Under the above
superpopulation model, we can show that

ȳi is model-unbiased with prediction variance

V (ȳi − Ȳi) = (1− fi)
σ2
i
ni
.

A model-unbiased estimator of the prediction variance is vi.

Under normality of yij , we have
(ni−1)s2i

σ2
i
∼ χ2

ni−1 and thus

V (vi) = (1− fi)2 2σ4
i

n2
i (ni − 1)

.

Thus, ni being small, we expect V (vi) to be large unless fi is
close to 1 and/or σ4

i is small. Find the design variance of vi.



A Frequently Asked Question

Question:

Standard survey-weighted estimators are commonly used by
survey organizations.

When do we decide to switch to SAE?



How do we respond to such an apparently simple question?

Two Possible Natural Answers:

Go for SAE methods if estimates of CVs or standard errors of
standard survey-weighted estimates are high.

Go for design-consistent model-based estimates for all
situations.

One can argue against each of the above answers



How Repeated Survey Data May Help?

Poverty mapping: the Chilean Case

High poverty rates can work favorably to a Chilean
municipality in terms of securing more funds from the Chilean
central government.

Consider the following situation. For a given small
municipality, poverty rate for the current year turns out to be
high by standard design-based method.

How do we convince the mayor of that municipality to go for
a statistically efficient SAE method that yields lower poverty
rate?

Can repeated survey data help?



Plots of Survey-Weighted Poverty Rates and SAE for
Selected Comunas (drawn by Carolina Casas-Cordero)
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Example: Small Area Income and Poverty Estimates
(SAIPE)

The primary source of the data for this problem is the
American Community Survey (ACS).
The direct survey estimate of poverty rate is a weighted
average of poverty status of the sampled respondents for the
group and year of interest.
The weight for a sampled respondent can be viewed as the
number of population units the sampled respondent
represents.
The official Small Area Income and Poverty Estimates
(SAIPE) that the U.S. Census Bureau routinely produces uses
model-based method that combine ACS with various
administrative data.
Next few figures compare direct survey estimates and their
standard errors with the official estimates over different years
for one big county (Los Angeles county, CA) and two small
counties (Keya Paha county, NE and Lincoln county, SD).



Plots of Survey-Weighted Poverty Rates and SAE for a
Small County (drawn by Sam Hawala)



Plots of Survey-Weighted Poverty Rates and SAE for a
Small County (drawn by Sam Hawala)



Plots of Survey-Weighted Poverty Rates and SAE for a
Small County (drawn by Sam Hawala)



Plots of Survey-Weighted Poverty Rates and SAE for a
Small County (drawn by Sam Hawala)



Plots of Estimated SE Survey-Weighted Poverty Rates and
SAE for a Small County (drawn by Sam Hawala)



Simulation from the Australian Beef Farm Data

Finite population: N = 431 farms

Variable: income from beef

Simulate several samples of size n from the finite population.

For a given variable, sample means from several simulated
samples are displayed in the box plots and compared with the
corresponding true value for n = 10, 50.

Sample means and the associated variance estimates, though
unbiased, exhibit high variability for n = 10. Variability
decreases as we increase n.



Box Plots of Estimates: Income from Beef
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Box Plots of Variance Estimates: Income from Beef
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Poverty Mapping in Chile

The poverty rate (also known as head count Index) is the proportion
of households with income below the poverty threshold or poverty line.

The per-capita income is the ratio of the total household income and
the household size. National and regional estimates of per-capita
income are produced using the CASEN survey and standard
design-based methods.

The official national-level poverty rate estimates are published every
two or three years following the release of each CASEN data.

Partha Lahiri (UMD)
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A few illustrative examples

Example: Estimation of proportion

Consider the problem of estimating finite population proportion of some
attribute using a SRS.

Suppose we have just one sample and value is 1. The standard direct
unbiased estimate is then 1 with a direct standard error estimate 0.

Suppose you now have a sample of size 2 and both observations are
1. In this case also the direct unbiased estimate is 1 with a direct
standard error estimate 0.

Suppose we have a sample of size 2 – one observation is 1 and the
other is 0. Then the direct unbiased estimate is 0.5. In this case the
direct standard error estimate, margin of error and confidence
intervals are approximately 0.35, 0.7, and (−0.2, 1.2), respectively.

Partha Lahiri (UMD)



Example: Paper submission

Ref: Carlin, B. and Louis, T.A. (2009), Bayesian Methods for Data
Analysis, A Chapman & Hall Book.

Your first paper submitted to a journal with a historical acceptance rate of
30% is accepted.

What is the chance that your second paper of similar quality will be
accepted in the same journal?

Partha Lahiri (UMD)



Example: Missing data

89 92 99
100 * 110
109 105 108

The above table provides an array of death rates per 10,000 persons,
perhaps arranged geographically or cross-tabulated by clinic and
age-group.

Without any direct information on the missing value *, does an
estimate 200 seem reasonable?

How do we incorporate the following information?

We collect data in the missing cell and we get 2 deaths in a population
of 100 so that a direct estimate is 200 = 10000× 2/100.
We collect more data and we have 20 deaths in a population of 1000.

Partha Lahiri (UMD)



Addressing SAE Issues at the Design Stage

In general, it helps small area estimation if this is considered as one
of the several factors before collecting data.

References: Singh, Gambino and Mantel (1994), Marker (2001).

Design Issues

Large surveys usually do not consider desired precision at
small domain levels at the design stage.

“...handling of this growing challenge...at the estimation stage
should be viewed as a last resort.” Singh et al. (1994)

Need to meet SAE needs in planning, sample design and
estimation stages.

Planning depends on how well the small areas are identified in
advance so that they can be treated as planned domains. But,
The client will always require more than is specified at the
design stage. (Fuller, 1999, p. 344).



Design Options: Stratification

We can control sample sizes for planned domains by treating
them design strata.

If there are a large number of planned domains, it may not be
possible to consider all planned domains as strata. One may
apply some grouping idea in such cases.

Use a large number of smaller strata. But, this increases the
costs and so one needs to have some balance between costs
and efficiency of the estimators.

Given a fixed budget, a large number of strata will reduce
sample sizes per stratum. But this strategy should help
unplanned domain estimation since the number of unplanned
areas with some samples is likely to increase.



Design Options: Degree of Clustering

Minimize clustering whenever possible.

Large surveys often use multi-stage design and are often
highly clustered.

Unplanned small domains may not have been sampled.

Important factors: choice of frame, size of strata.



Design Options: Sample Allocation

Compromise Allocation (Singh et al., 1994)

Reallocate sample from larger planned domains to smaller
planned domains.

Small reduction in sample size for large domains usually has
little effect.

Small increases in small domains may have a large effect on
reliability.

Canadian Labor Force Survey Two-Step Allocation: 42,000
Households for national and province level estimates, 17,000
for Unemployment Insurance (UI) region level estimates.
Effects of Reallocation on Areas:
UI region (worst case): CV decreased from 17.7 to 9.4
Provincial Level (Ontario): CV increased from 2.8 to 3.4



Design Options: Sample Allocation

Minimize a weighted sum of sampling variances of direct small
area estimators subject to fixed overall sample size. Ref:
Longford (2006)

Costa et al. (2004): a convex combination of proportional
allocation and equal allocation.

Choudhry, Rao and Hidiroglou (2010) used a non-linear
programming (NLP) method to derive the “optimal” sample
size allocation that minimizes the total sample size subject to
specified tolerances on the coefficients of variation of the
domain estimators and the associated aggregate estimator.



Other Design Options

Integration of surveys [e.g, European Community Household
Panel Survey (ECHP)]

Multiple frame surveys Hartley (1974) [e.g., Canadian
Community Health Survey (CCHS)]

Repeated surveys [e.g., American Community Survey (ACS)],



Use of Auxiliary Variables

Two uses:

Survey design

Estimation

An Example:

SRS within each small area and one auxiliary variable x for
which we know both the sample mean and population mean
for every area.

Ratio estimator:

ˆ̄Yi;R =
ȳi
x̄i
X̄i, i = 1, · · · ,m,

where ȳi, x̄i and X̄i are the samples means of y and x and
population mean of x for area i, respectively.

For large ni,
ˆ̄Yi;R is approximately design-unbiased.

The order of bias is O(n−1
i ).



Use of Auxiliary Variables

The approximate true design-variance is given by:

Vp(
ˆ̄Yi;R) ≈ (1− fi)

S2
i;E

ni
,

where S2
i;E = (Ni − 1)−1

∑Ni
j=1(Eij − Ēi)2, the finite

population variance of the residuals:
Eij = yij −Rixij , (i = 1, · · · ,m; j = 1, · · · , Ni), and
Ri = Ȳi/X̄i, Ȳi and X̄i being the finite population means of y
and x, respectively.

For a biased estimator, design-based mean squared error
(MSE) could be a reasonable uncertainty measure since it
incorporates both variance and bias:
MSE = Variance + (Bias)2.

Note that variance contributes more to MSE than the bias
does (why?).



Use of Auxiliary Variables

For large ni, we can reduce the variance at the expense of
slight increase of bias if a line passing through the origin fits
the entire finite population well. However, for small ni, both
bias and variance could be substantial. HW: Device a
simulation study using the beef data.

An design-based estimator of Vp(
ˆ̄Yi;R) is given by

vp(
ˆ̄Yi;R) = (1− fi)

s2
i;e

ni
,

where s2
i;e = (ni − 1)−1

∑ni
j=1(eij − ēi)2, the sample variance

of the observed residuals:
eij = yij − R̂ixij , (i = 1, · · · ,m; j = 1, · · · , ni), and
R̂i = ȳi/x̄i, respectively.
An implicit model that could justify the above ratio estimator
is:

yij = βixij + εij , (i = 1, · · · ,m; j = 1, · · · , Ni),

where βi is fixed area specific slope and εij ∼ (0, σ2
i ).



Borrowing Strength

Relevant Source of Information

Census data

Administrative records

Related surveys

Method of Combining Information

Choices of good small area models

Use of a good statistical methodology



Big Data
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Problem 1: BIGDATA from Administrative Records

Estimation of income and poverty statistics for the administration of
federal programs and the allocation of federal funds to local jurisdictions.

Internal Revenue Service Data

Supplemental Nutrition Assistance Program (SNAP) data

Partha Lahiri (UMD)



Problem 2: Remote Sensing BIGDATA

Estimation of crop acreage, crop production, crop yield for the purpose of
local agricultural decision making, payments to farmers if crop yields are
below certain levels.

Can earth resources satellite data provide useful ancillary data source
for county estimates of crop acreage?

Satellite information is recorded for pixels (a term for picture
elements). A pixel is about .45 hectares;

Based on satellite readings in early Fall, it is possible to classify the
crop cover all pixels. This generates big data.

Partha Lahiri (UMD)



A Quote from Bellow et al.

The polar-orbiting Landsat satellites contain a multi-spectral
scanner (MSS) that measures reflected energy in four bands of
the electromagnetic spectrum for an area of just under one acre.
The spectral bands were selected to be responsive to vegetation
characteristics. In addition to the MSS sensor, Landsats IV and
V have a Thematic Mapper (TM) sensor which measures seven
energy bands and has increased spatial resolution. The large area
(185 by 170 km) and repeat (16 day per satellite) coverage of
these satellites opened new areas of remote sensing research:
large area crop inventories, crop yields, land cover mapping, area
frame stratification, and small area crop cover estimation.

Partha Lahiri (UMD)



Courtesy of Carol Crawford, NASS-USDA (4 slides)

2 

Cropland Data Layer 

~ 9 billion pixels! 

Agriculture by crop type and location 

A sample: 

Partha Lahiri (UMD)



2014 Cropland Data Layer Inputs 
Satellite Imagery – Landsat 8  

2011 NLCD & Derivative products Farm Service Agency: Common Land Unit 

Washington 

Satellite Imagery – Deimos & UK2  

Partha Lahiri (UMD)



2014 Deimos-1/UK2 Satellite Tasking 

Along track 
maximum 16 tiles 

(1280 Km) 

Windowing: 
Multiple 

acquisitions per 
orbit 

Full Swath maximum 
image  size : 600 by 

600 Km 

Funding through mid-August 
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September 
17 States Classified 

9 Crops Estimated 

Imagery from April - August 

Partha Lahiri (UMD)



Problem 3: Vehicle Probe Project (VPP) BIGDATA

Estimation of transportation related variables such as purpose of the trip
(work, shopping, social, etc.), means of transportation (car, walk, bus,
subway, etc.), travel time of trip to assist transportation planners and
policy makers who need comprehensive data on travel and transportation
patterns.

Currently, the VPP contractually reports traffic conditions on over
7,000 miles of freeways and 32,000 miles of arterials.
Original goal: to enable a wide-variety of transportation operations
and planning applications that require a high-quality data source.
Data contains travel time, speed, historic speed, etc. for different
road segments called Traffic Message Channels (TMC).
Applications include congestion management systems, traveler
information systems, travel-time on changeable message signs.
If data for a whole year, for all 12,295 TMC segments in Maryland
were to be downloaded, the estimated number of records is 6.46
billion. The physical disk size of this data is estimated to be 375GB.

Partha Lahiri (UMD)



FIGURE: Location of NJ11-0009 segment in New Jersey, near Philadelphia.
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Communication from GPS (FHWA, 1998) [Ref: Kartika, C.S.D (2015)

Partha Lahiri (UMD)
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Table 3: County-wise Number of TMC Segments

County Number of TMC Segments

ALLEGANY 114
ANNE ARUNDEL 1,128

BALTIMORE 3,666
BALTIMORE CITY 8

BALTIMORE COUNTY 64
CALVERT 52
CAROLINE 120
CARROLL 305

CECIL 299
CHARLES 263

DORCHESTER 78
FREDERICK 617
GARRETT 86
HARFORD 491
HOWARD 634

KENT 22
MONTGOMERY 1,905

PRINCE GEORGE’S 1,694
QUEEN ANNE’S 148

SOMERSET 30
ST. MARY’S 66

TALBOT 30
WASHINGTON 261

WICOMICO 107
WORCESTER 107

Total 12,295

8
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Some features of BIGDATA

May not contain the variable(s) of interest

Missing-data

Errors due to measurement, classification, self selection, etc.

Massive complex data for local area

Computational issue

Partha Lahiri (UMD)



How do we correct Big Data?

Look for existing sample survey data or conduct a new survey

Some features of sample surveys

Finite populations

Representativeness

Large samples for large areas, but small or no sample for small areas

Variable(s) of interest can be included

Chance selection: equal/epsem

Stratification to improve precision and administrative control

Ref: Cochran (1977); Kalton (1983); Lohr (2010)

Partha Lahiri (UMD)



Sample Survey Data

Problem 1: ACS

Problem 2: June Enumerative Survey

Problem 3: National Household Travel Survey (NHTS) and
American Community Survey (ACS)

Partha Lahiri (UMD)



How do we combine Big Data with Sample Survey Data?

Data Fusion

Sample Survey Data
National Household Travel Survey (NHTS)
American Community Survey (ACS)

Aggregated Administrative Data
Supplemental Nutrition Assistance Program (SNAP) data (county
level)
Internal Revenue Service Aggregate data (state level)

BIGDATA
Vehicle Probe Project (VPP)
National Performance Management Research Data Set (NPMRDS)

Partha Lahiri (UMD)



A Proof of Data Fusion Concept
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Synthetic Estimation



Introduction

Small areas have the same characteristics as the large area
(e.g., unemployment rate for a given demographic group
remains the same across different states)

implicit or fixed effects explicit modeling

Simple and intuitive.

Applies to any sampling design.

Provides estimates for areas with no sample from the sample
survey.



Explicit Modeling: Example 1

Ref: Hansen et al. (1953)

Estimate the median number of radio stations heard during the day
for over 500 counties of the USA (small areas).

Two different survey data used:

Mail Survey

large sample (1000 families/county) from an incomplete list
frame

response rate was low (about 20%)

estimates xi are biased due to non-response and incomplete
coverage



Explicit Modeling: Example 1

Personal Interview Survey: stratified multi-stage area frame

Nonresponse and coverage error properties were better than
the mail survey

reliable estimates yi for the 85 sampled counties were
available, but no estimate can be produced for the remaining
415 counties

Using (yi, xi) for the 85 sampled counties, the following fitted
line was obtained:

ŷi = 0.52 + 0.74xi

Use yi for the 85 sampled counties and ŷi for the rest.



Explicit Modeling: Example 1



Explicit Modeling: Example 1



Explicit Modeling: Example 2

Stasny et al. (1991) considered the problem of county level farm
production in the state of Kansas.

County estimates of farm production are often used in local
decision making and companies selling fertilizers, pesticides,
crop insurance and farm equipment.

Non-probability sample

yij : wheat production of the jth farm in the ith county
(i = 1, · · · ,m; j = 1, · · · , Ni).

xijk: value of kth auxiliary variable for the jth farm in the ith
county (i = 1, · · · ,m; j = 1, · · · , Ni; k = 1, · · · , p).

Auxiliary variables chosen have known area totals
Xik =

∑
j∈Ui

xijk and include size of farm to reduce selection
bias.



Explicit Modeling: Example 2

Estimation: Consider the following multiple linear regression model:

yij = β0 + β1xij1 + · · ·+ βpxijp + εij

= xTijβ + εij ,

where εij
iid∼ (0, σ2).

Estimate β by the ordinary least squares (OLS) estimator β̂.

Obtain the fitted values

ŷij = β̂0 + β̂1xij1 + · · ·+ β̂pxijp = xTijβ̂,

for (i = 1, · · · ,m; j = 1, · · · , Ni).



Explicit Modeling: Example 2

Regression synthetic estimator of the ith county total
Yi =

∑
j∈Ui

yij is given by

ỸiS =
∑
j∈Ui

xTijβ̂

=
∑
j∈Ui

[β̂0 + β̂1xij1 + · · ·+ β̂pxijp]

= Niβ̂0 +Xi1β̂1 + · · ·+Xipβ̂p

= XT
i β̂

Questions:

Do you need values of the auxiliary variables for the
unobserved units of the population?
Do their county regression-synthetic estimates add up to the
state direct estimate?
If the sample fractions fi = ni/Ni, can you propose an
alternate estimator? Ref: Holt et al. (1979).



Implicit Modeling

Ref: Heuser et al. (1984)

Nig= Female population size for the gth race x age-group for
the ith state. We consider the state of Pennsylvania and the
data are obtained from the hospital registration system.

p.g= national level direct estimate of the proportion of
jaundiced infants whose mother is in the gth group. The data
is obtained from the 1980 National Natality Survey.



Implicit Model

Subgroup Nig p.g Nigp.g
White Under 20 16382 0.216 3539

20-24 44100 0.214 9437
25-29 46421 0.222 10305
30-34 22400 0.224 5018
35+ 5896 0.244 1439

All Other Under 20 5493 0.173 950
20-24 7657 0.167 1279
25-29 5063 0.19 962
30+ 3387 0.266 901

156799 33830

A synthetic estimate of the percentage of jaundiced infants in
Pennsylvania: psi = 33830

156799 ∗ 100 = 21.6%.

Estimate of total number of jaundiced infants in
Pennsylvania=Ni.p

s
i = 33, 830.



Other Applications

In 1968, the National Center for Health (NCHS) used
synthetic method to estimate state long term and short term
disabilities from the National Health Interview (NHIS) survey
data.

US Census Bureau used synthetic method to estimate
unemployment rates for counties, Gonzalez and Hoza (1978).

Reweigting Methods: Schirm and Zaslavsky (1997)



Mean Squared Error (MSE) of Synthetic Estimators

MSE( ˆ̄YiS)

= E( ˆ̄YiS − Ȳi)2

= E( ˆ̄YiS − ˆ̄Yi + ˆ̄Yi − Ȳi)2

= E( ˆ̄YiS − ˆ̄Yi)
2 + E( ˆ̄Yi − Ȳi)2 + 2E( ˆ̄YiS − ˆ̄Yi)(

ˆ̄Yi − Ȳi),

E( ˆ̄YiS − ˆ̄Yi)(
ˆ̄Yi − Ȳi)

= E[( ˆ̄YiS − E( ˆ̄YiS)) + (E( ˆ̄YiS)− Ȳi) + (Ȳi − ˆ̄Yi)](
ˆ̄Yi − Ȳi)

= Cov( ˆ̄YiS ,
ˆ̄Yi) + E{[E( ˆ̄YiS − Ȳi)][ ˆ̄Yi − Ȳi]} − V ar( ˆ̄Yi) ≈ −V ar( ˆ̄Yi),

since Cov( ˆ̄YiS ,
ˆ̄Yi) ≈ 0 and E( ˆ̄Yi) ≈ Ȳi. Therefore

MSE( ˆ̄YiS) ≈ E( ˆ̄YiS − ˆ̄Yi)
2 − V ( ˆ̄Yi).



Mean Squared Error (MSE) of Synthetic Estimators

I. Estimate MSE( ˆ̄YiS)

mse( ˆ̄YiS) = ( ˆ̄YiS − ˆ̄Yi)
2 − v( ˆ̄Yi) (unstable), where v( ˆ̄Yi) is a

design-unbiased estimator of V ( ˆ̄Yi)

II. Estimate average MSE( ˆ̄YiS)(Gonzalez, 1973.)
1
m

∑m
i=1( ˆ̄YiS − ˆ̄Yi)

2 − 1
m

∑m
i=1 v( ˆ̄Yi)

III. Marker (1995) MSE( ˆ̄YiS) = V ( ˆ̄YiS) + Bias2
i (

ˆ̄YiS).

mseM ( ˆ̄YiS) = v( ˆ̄YiS) +
̂

1

m

m∑
i=1

Bias2
i

̂1
m

∑m
i=1 Bias2

i = 1
m

∑
( ˆ̄YiS − ˆ̄Yi)

2 − 1
m

∑
v( ˆ̄Yi)− 1

m

∑
v( ˆ̄YiS)



True Percent and Estimated RRMSE for Direct and
Synthetic Estimates

Char. True Dir Dir Est Syn Syn
State Pct. Est RRMSE Est Est RRMSE

Low birth
Penn 6.5 6.8 22 6.5 0
Tenn 8.0 8.5 23 7.2 10
Mont 5.6 9.2 71 6.3 13

PN Care
Penn 3.9 4.3 21 4.3 10
Tenn 5.4 4.7 26 5.0 7
Mont 3.7 3.0 62 4.3 16
Apgar
Penn 7.9 7.7 14 9.4 19
Tenn 9.6 7.3 18 9.7 1
Mont 11.6 12.9 40 9.4 19



Estimation of Sampling Variance of Direct Estimator

Consider the SRS case. As pointed out earlier, estimation of
the sampling variance of the direct estimator Vp(ȳi) is
challenging since this involves estimation of the finite
population variance S2

i . This is indeed another (possibly more
difficult) small area estimation problem.

The direct estimator s2
i of S2

i is unreliable due to small sample
size and does not even exist when area sample size is 1.

A synthetic variance estimator can be obtained as

vS(ȳi) = (1− fi)
s2

ni
,

where s2 = (n− 1)−1
∑

j∈A(yj − ȳ)2, the pooled sample

variance, and ȳ = n−1
∑

j∈A yj , overall sample mean.

The variance of this synthetic variance estimator is expected
to be small at the expense of increased bias.



Estimation of Sampling Variance of Direct Estimator

We can also propose the following synthetic estimator of

Vp(
ˆ̄Yi;R):

vS( ˆ̄Yi;R) = (1− fi)
s2
e

ni
,

where s2
e = (n− 1)−1

∑
j∈A(ej − ē)2, the pooled sample

variance of the residuals, and ē = n−1
∑

j∈A ej , overall
sample mean of the residuals.

For a complex survey design, a possible synthetic estimator of
sampling variance of the direct survey-weighted estimator is
given by

vS(ȳiw) = vS(ȳi)× deffi,

where deffi is an approximation of design effect. Often time
design effect for a large area that covers small area is used for
deffi.



Extension of the Generalized Variance Function (GVF)
Method

Fit a model relating standard variance estimates vi to the
estimates ȳiw and auxiliary variables xi based on relatively
larger area data. Let the fitted model be g(ȳiw, xi; φ̂), where
φ̂ is a vector of model parameters.

A synthetic estimator of the sampling variance of ȳiw is then
given by

vS(ȳiw) = g( ˆ̄Yi;S , xi; φ̂),

where ˆ̄Yi;S is a synthetic estimator of Ȳi.

Fay and Herriot (1979) used:

g(ȳiw, xi; φ̂) =
9

Ni
ȳ2
iw,

where xi = Ni is population size in area i and φ̂ = 9.



Extension of the GVF Method

Using data from relatively large areas, Liu (2009) fitted the
following logistic model:

logit(piw) = x′iβ + εi,

where piw is the direct survey-weighted proportion; xi is a vector
of auxiliary variables; β is the unknown vector of regression
coefficients; the random errors εi are assumed to follow a
distribution with zero mean and variance σ2. Then synthetic
estimate of all small area proportions are obtained as:

p̃i;S =
exp(x′iβ̂)

1 + exp(x′iβ̂)
,

where β̂ is an estimator of β. The synthetic estimator of the
sampling variance of piw is then obtained as:

vi;S(piw) =
p̃i;S(1− p̃i;S)

ni
deffi,

where ni is the number of respondents and deffi is an
approximation to the design effect.



Composite Estimation



Introduction

Aim: To balance the potential bias of the synthetic estimator
against the instability of the design-based direct estimator.

Ŷic = (1−Bi)Ŷi +BiŶiS ,

where

Ŷi : direct estimate for ith small-area

ŶiS : synthetic estimate for ith small-area

Bi : suitably chosen weight, 0 ≤ Bi ≤ 1.



Sample Size Dependent (SD) estimator

Bi =

{
0 if N̂i ≥ δNi

1− N̂i/(δNi) otherwise,

where δ is subjectively chosen.

δ ∈ [2/3, 3/2] for most practical situations. δ = 2/3 for Canadian
LFS (Ghosh & Rao 1994, Drew, Singh and Choudhry 1982).

Remark:
Consider a SRS of size n from a population of N units and δ = 1.
Then, N̂i = (N/n)ni, where ni is the sample size for the ith small
area.

In this case, N̂i ≥ Ni ⇒ ni ≥ E(ni) = n(Ni/N). The method
assigns the same weight no matter what variable we consider.



Optimal Bi (COM)

Minimize MSEp(Ŷic) w.r.t. Bi assuming

Corrp(Ŷi, ŶiS) ≈ 0.

MSEp(Ŷic)

= Ep{(1−Bi)Ŷi +BiŶiS − Yi}2

= Ep{(1−Bi)(Ŷi − Yi) +Bi(ŶiS − Yi)}2

≈ (1−Bi)2Vp(Ŷi) +B2
iMSEp(ŶiS)

= f(Bi), ( say),

since

Ep(Ŷi − Yi)(ŶiS − Yi)
= Ep(Ŷi − Yi){(ŶiS − EpŶiS) + (EpŶiS − Yi)}
= Covp(Ŷi, ŶiS) + (EpŶiS − Yi)Ep(Ŷi − Yi)
≈ 0.



We used
EpŶi ≈ Yi and Covp(Ŷi, ŶiS) ≈ 0.

Thus,

f ′(Bi) = −2(1−Bi)Vp(Ŷi) + 2BiMSEp(ŶiS).

Therefore, the approximately optimal Bi is given by

B∗i =
Vp(Ŷi)

MSEp(ŶiS) + Vp(Ŷi)
=

Fi
1 + Fi

,

where Fi =
Vp(Ŷi)

MSEp(ŶiS)
.



The parameter B*
i can be estimated by

B̂*
i =

v(Ŷi)

(ŶiS − Ŷi)2
.

Remarks:

B̂*
i is very unstable.

B̂*
i could be more than 1.

There are several choices of Ŷi and ŶiS .



The Purcell-Kish Estimator

Minimize m−1
∑m

i=1MSEp(Ŷic) w.r.t. a common weight
Bi = B (i = 1, · · · ,m). The approximately optimal B is given by

B∗ =

∑
i Vp(Ŷi)∑

i[MSEp(ŶiS) + Vp(Ŷi)]
=

F

1 + F
,

where F =
∑

i Vp(Ŷi)∑
iMSEp(ŶiS)

.

The Purcell-Kish estimator is given by:

ŶiPK = (1− B̂∗)Ŷi + B̂∗ŶiS ,

where

B̂∗ =

∑
v(Ŷi)∑

i(ŶiS − Ŷi)2
.



A Simulation Experiment

Falorsi, P. D., Falorsi, S., Russo, A. (1994). Empirical Comparison
of small area estimation methods for the Italian Labor Force
Survey, Survey Methodology, 20, 171-176.

Parameter: unemployment counts for small areas

Small areas: 14 Health Service Areas (HSA) of the Friuli
Region. The small areas are unplanned areas that cut across
design strata.

Performances of direct post-stratified, sample dependent
(SSD) with δ = 1 and optimal composite (φi determined from
the census) small-area estimators were studied by simulating
sample from the 1981 Italian General Population Census.



Samples are drawn following the LFS design (two stages with
stratification of the PSUs). PSU: municipalities, SSU: HH.
There were 39 PSUs and 2,290 SSUs.

400 sample replicates each of identical size (in terms of PSUs
and of SSUs) of the LFS sample.

ARB = 1
14

∑14
i=1 |ARBi|, where

ARBi = 100× 1
400(

∑400
r=1

Ŷi(r)−Yi
Yi

).

RRMSE = 1
14

∑14
i=1RRMSEi,

where RRMSEi = 100×
√
MSEi
Yi

, and

MSEi = 1
400

∑400
r=1(Ŷi(r) − Yi)2.



Results

ARB and RRMSE for Unemployed by Estimator

Estimator ARB RRMSE

POS 1.75 42.08

SYN 8.97 23.80

COM 6.00 23.57

SD 2.39 31.08

ARB

POS presents the smallest bias.
Bias of SYN is larger than that of the other estimators.
Bias of COM is roughly 30% lower than that of SYN.
The bias of POS is only slightly lower than that of SD.

RRMSE

SYN and COM have the smallest RRMSE.
POS has largest RRMSE.
RRMSE of SD is approx. 30% higher than SYN and COM.



Model-Based Methods



Components of Model-Based methods

Identify good auxiliary information, X
-area specific
-element specific
-over space and time

Model selection & Model diagnostics

Choice of model-based method

Benchmarking.

Measurement of uncertainty

Robustness

Evaluation studies



Area Level Models



The Fay-Herriot Model: Fay and Herriot (1979)

Let ˆ̄Yi: direct survey estimate of true area mean Ȳi

Level 1: (Sampling Model) ˆ̄Yi | Ȳi
ind∼ N [Ȳi, ψi];

Level 2: (Linking Model) Ȳi
ind∼ N [x′iβ, A].

The hyper-parameters β and A are unknown,

The sampling variances ψi are assumed to be known.

Linear Mixed Model: ˆ̄Yi = Ȳi + ei = x′iβ + vi + ei, where {ei}
and {vi} are independent with ei ∼ N(0, ψi) and
vi ∼ N(0, A).



Small Area Income and Poverty Estimates (SAIPE)

ˆ̄Yi: ACS survey-weighted proportion of poor school-age
children for the ith state (i = 1, · · · , 51).

ψi: Fay’s successive difference replication sampling variance
estimate from ACS.

Area level Covariates (xi)

The proportion of child exemptions reported by families in
poverty on their tax returns.
The proportion of people under 65 who did not file income tax
returns.
The proportion of people receiving food stamps.
Residual from a linear regression of the proportion of poor
school-age children from the most recent census.



A General Area Level Model

Let ˆ̄Yi: direct survey estimate of true area mean Ȳi

A Two-Level Model
Level 1: (Sampling Model) θ̂i = g( ˆ̄Yi) | θi = g(Ȳi)

ind∼ N [θi, ψi];

Level 2: (Linking Model) h(θi)
ind∼ N [x′iβ, A].

g(·) and h(·) are two specified functions.

The hyper-parameters β and A are unknown,

The sampling variances ψi are assumed to be known.



Baseball Data; Efron and Morris (1975)

The batting average of an extremely good hitter Roberto
Clemente was obtained from New York Times dated April 26,
1970 when he had already batted n = 45 times.

The batting average for a player is just the proportion of hits
among the number of the times he batted.

Seventeen other major league baseball players who had also
batted 45 times from the April 26 and May 2, 1970 issues of
New York times were selected.

Consider the problem of predicting the batting averages of all
the 18 players for the entire 1970 season.



Let P̂i= batting average of player i, i = 1, · · · , 18 (= m). After
n = 45 at bats,

nP̂i
ind∼ Bin(n, Pi), i=1, · · · , 18,

where

Pi : true season batting average

θ̂i =
√
n arcsin(2P̂i − 1)

θi =
√
n arcsin(2Pi − 1)



Table: Batting Average Data

Player P̂ x1 x2 P

Clemente 0.400 0.314 8142 0.352
F.Robins 0.378 0.303 7542 0.306
Johnston 0.333 0.255 1139 0.238

Santo 0.244 0.244 1967 0.233
...

...
...

...
...

Petrocel 0.222 0.234 291 0.225
L.Alvara 0.267 0.118 51 0.224

Alvis 0.156 0.249 3514 0.183



The Efron-Morris Model

For i = 1, · · · ,m,

Level 1: θ̂i|θi
ind∼ N(θi, 1);

Level 2: θi|µ,A
iid∼ N(µ,A).

Remarks:

Level 1 is known as the sampling distribution. We are
interested in estimating the level 1 or high-dimensional
parameters θi.

Level 2 is known as the prior distribution of θi’s. The level 2
parameters µ and A are often called hyperparameters. The
number of hyperparameters are smaller than the number of
Level 1 parameters.



Bayes and Empirical Bayes (Empirical Best Predictor)

The posterior distribution of θi’s:

θi|θ̂i;B
ind∼ N [(1−B)θ̂i +Bµ, 1−B],

i = 1, · · · ,m, where B = 1
1+A .

The marginal distribution of θ̂i’s: θ̂i
iid∼ N(µ, 1 +A).

For the Efron-Morris model, the Bayes estimator of θi is given
by:

θ̂Bi = θ̂Bi (φ) = (1−B)θ̂i +Bµ,

where φ = (µ,B).

An empirical Bayes estimator of θi is then given by

θ̂EBi = θ̂Bi (φ̂) = (1− B̂)θ̂i + B̂µ,

where φ̂ = (µ̂, B̂) is any reasonable estimator of φ.



B̂ = m−3∑m
j=1(θ̂j− ¯̂

θ)2
and

¯̂
θ = 1

m

∑m
j=1 θ̂j .

The shrinkage factor 1−B is the relative contribution of the
level 2 variance (or prior variance) A towards the total
variance 1 +A.

The higher the value of B the higher is our faith on the prior.
Thus, B is a useful indicator of the effectiveness of the
Bayesian model.

B is generally unknown and thus one may consider an
estimator B̂ to understand the utility of the empirical Bayes
estimator for a given data set.

For some data set, Â may be negative in which case it is
usually truncated at 0 yielding an unreasonable estimate of
B = 1.

Efron and Morris (1975) suggested B = m−3
m in case estimate

of A is negative or zero. For strictly positive consistent
estimator of B, see Li and Lahiri (2010).



The Carter-Rolph Model: An Extension of the
Efron-Morris model

Carter and Rolph (1974, JASA)

To estimate the probability that a box-reported alarm signals
a structural fire given the alarm box location.

The data from 1967-69 was used to develop estimates for
1970 box-reported alarms in Bronx, New York, and then the
estimates were compared with the actual 1970 data.

First, 2,500 boxes were grouped into 216 similar (in terms of
alarm characteristics) neighborhoods with a number of
requirements.



ni : the number of box-reported alarms at the ith box;

πi : the true probability of structural fires at the ith box.

π̂i : sample proportion of structural fires at the ith box.

m : the number of boxes in the neighborhood.

Then
niπ̂i|πi

ind∼ Bin(ni, πi), i=1, · · · ,m.

To stabilize variance, take the following transformation:

θ̂i = arcsin(
√
π̂i)



Using the Taylor series approximation, we get

E[θ̂i|θi]− θi ≈ 0,

V [θ̂i|θi]
def
= ψi ≈ ψi,approx,

where

θi = arcsin(
√
πi),

ψi,approx =
1

4ni
.



The Carter-Rolph Model:
For i = 1, · · · ,m,

Level 1 : θ̂i|θi, ψi = ψi,approx
ind∼ N(θi, ψi);

Level 2 : θi|µ,A
iid∼ N(µ,A).

The Bayes estimator of θi is given by:

θ̂Bi = (1−Bi)θ̂i +Biµ,

where

Bi =
i

A+ ψi
,

i = 1, · · · ,m. In the above ψi = ψi,approx, i = 1, · · · ,m.



Example: Estimation of Per-Capita Income of Small Places

See Fay and Herriot (1979, JASA)

Estimation of 1969 per-capita income (PCI) for small places
(≈ 15,000 are for places with population < 500 in 1970.)

Income data was collected on the basis of about 20% sample
in the 1970 census.
ˆ̄Yi= survey-weighted direct estimator

N̂i=
∑

j∈si wi=weighted sample count

CV( ˆ̄Yi)≈ 3√
N̂i

CV: about 13% (population ≈ 500)
about 30% (population ≈ 100)



Standard deviation increases in direct proportion to the expected
value.
Let θ̂i = ln( ˆ̄Yi) and ψ̂i = 9/N̂i

Following supplementary information is available:

(1) PCI for the county

(2) value of housing for the place

(3) value of housing for the county

(4) IRS-adjusted gross income per exemption for the place

(5) IRS-adjusted gross income per exemption for the county



The Fay-Herriot Model:
For i = 1, · · · ,m,

(i) θ̂i|θi, ψi = D̂i
ind∼ N(θi, ψi);

(ii) Apriori, θi
ind∼ N(xTi β, A).

Fay and Herriot assumed ψi = ψ̂i, i = 1, · · · ,m. Under the
Bayesian Model, the Bayes estimator is given by:

θ̂Bi = θ̂Bi (φ) = (1−Bi)θ̂i +Bix
T
i β,

where Bi = ψi

ψi+A
and φ = (β, A)T .



If A is known, β can be estimated by

β̂(A)

=

 m∑
j=1

1

Dj +A
xjx

T
j

−1 m∑
j=1

1

Dj +A
xj θ̂j

 .

Note that when A is known, β̂(A) is the maximum likelihood (also
weighted least square) estimator of β. Replacing β by β̂(A) we
get the following empirical Bayes estimator of θi:

θ̃EBi = θ̂Bi (A) = (1−Bi)θ̂i +Bix
T
i β̂(A).



Fay and Herriot (1979) obtained their estimator of A by solving

m∑
j=1

[θ̂j − xTj β̂(A)]2

A+Dj
= m− p

subject to A ≥ 0. When no positive solution exists, Â is set to
zero. We estimate Bi by B̂i = ψi/(ψi + Â).
When both β and A are unknown, one can get the following
empirical Bayes estimator of θi:

θ̂EBi = θ̂Bi (Â) = (1− B̂i)θ̂i + B̂ix
T
i β̂(Â).



Fay and Herriot (1979) used the following steps in obtaining their
final estimates of per-capita income for small places.

(a) Obtain θ̂EBi .

(b) Consider the following Winsorized EB:

θ̂∗EBi = θ̂EBi if θ̂i − ci ≤ θ̂EBi ≤ θ̂i + ci

= θ̂i − ci if θ̂EBi < θ̂i − ci
= θ̂i + ci if θ̂EBi > θ̂i + ci

where ci =
√
ψi.

(c) A PCI estimator eθ̂
∗EB
i is obtained using a simple back

transformation.

(d) Apply a two-way iterative proportional adjustment (raking).

We denote the final estimator by ˆ̄Y ∗i



Evaluation:
The U.S. Census Bureau conducted complete censuses of a
random sample of places and townships in 1973 and collected
income data for 1972 on a 100% basis.

# of places with population size < 500 : 17.

# of places with population size between 500 and 999: 7.

Estimates for 1972 were obtained by multiplying the estimates by
updating factors fi

Average Percent Difference

N ˆ̄Yi
ˆ̄Y ∗i

ˆ̄Y C
i

< 500 28.6 22.0 31.6

500-999 19.1 15.6 19.3

where ˆ̄Y C
i = County estimate.



Residual Analysis: Baseball Data

Standardized residual:

ei =
θ̂i − ¯̂

θ

s
,

where s2 = 1
m−1

∑m
j=1(θ̂j − ¯̂

θ)2 is the usual sample variance.

Marginally θ̂i
iid∼ N(µ, 1 +A), i = 1, · · · ,m.

Under this marginal model,

E(ei) ≈ 0, and V(ei) ≈ 1 +A, for large m.

If the model is reasonable, a plot of the standardized residuals
versus the players is expected to fluctuate randomly around 0.

If this does not happen, we might suspect the adequacy of the
two-level model.

However, random fluctuation of the residuals may not reveal
certain systematic patterns of the data (Fig 0).



Fig 0: Residuals plot for the Efron-Morris model
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Figure 1. Residual Plot for Efron-Morris Model
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In Figure 1 we note that the residuals, when plotted against
players arranged in increasing order of the previous batting
averages, does reveal a linear regression pattern, a pattern not
apparent when the same residuals were plotted against players
arranged in an arbitrary random order. This is probably
questioning the exchangeability assumption in the
Efron-Morris model, a fact we knew earlier because of the
intentional inclusion of a extremely good hitter.

Let Pi0 be the batting average of player i through the end of
1969 season. Let x1i =

√
n arcsin(2Pi0 − 1), i = 1, · · · ,m.

We plot θ̂i and θi vs x1i in Figures 2 and 3 respectively. This
probably explains the systematic pattern of the residuals
mentioned in the previous paragraph.

There is striking similarity of the two graphs 2 and 3. While
Roberto Clemente seems like an outlier with respect to θ̂, θ,
or x1, player L. Alvarado appears to be an outlier in the sense
that his current batting average is much better than his
previous batting average.



Alvarado influences the regression fit quite a bit. For example,
the BIC for the two-level model reduced from 55 to 44 when
Alvarado was dropped from the model.

Further investigation reveals that this player is a rookie and
batted only 51 times through the end of 1969 season
compared to other players in the data set, making his previous
batting average information not very useful.

The BIC for the Fay-Herriot model with and without the
auxiliary data are almost the same (54.9 and 55.3
respectively), a fact not expected at the beginning of the data
analysis.

In spite of more or less similar BIC values and a presence of an
outlier in the regression, Fig. 4 shows that EMReg did a good
job in predicting the batting averages of Clemente and
Alvarado, two different types of outliers.



Fig 2: Plot of θ̂ vs x1
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Fig 3: Plot of θ vs x1
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Fig 4: Plot of different estimates and true values for the baseball
data
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MSE Estimator: Delta Method

Ref: Lahiri and Rao (1995)

mseTi = g1i(Â) + g2i(Â) + 2g3i(Â)−
2
i

(Â+ ψi)2
bias(Â),

where

g1i(A) =
Aψi
A+ ψi

,

g2i(A) =
2
i

(A+ ψi)2
x′i(X

′Σ−1X)−1xi,

g3i(A) =
2
i

(A+ ψi)3

2

tr(Σ−2)

Σ = diag(A+D1, · · · , A+Dm).



Other MSE Estimators

Jackknife Method: Jiang, Lahiri and Wan (JLW, 2002)

mseJi = g1i(Â)− m− 1

m

m∑
j=1

{g1i(Â(−j))− g1i(Â)}

+
m− 1

m

m∑
j=1

{θ̂EBi;(−j) − θ̂
EB
i }2

where Â(−j) and θ̂EBi;(−j) are obtained after deleting the jth
area data



MSE Estimators

The JLW jackknife method is quite general and applies to a
general class of mixed models. Lohr and Rao (2004) discussed
a area specific jackknife method to estimate the order O(1)
term for a specific small area model.

Parametric Bootstrap: Butar (1997), Butar and Lahiri
(2003), Pffermann and Glickmann (2004), Hall and Maiti
(2006)

Computation: SAS Proc Mixed can do a few computations.

Ref: Rao (2003) and Jiang and Lahiri (2006)



Some Comments on Modeling

The model is simple and does not require the knowledge of
detailed design Information (e.g., PSU identifiers), which may
not be available in a public-use file.

The rationale behind the transformation may rest on the
Taylor series argument and may be used primarily to stabilize
the variance. A direct modelling of the direct estimates is
possible, but this is likely to lead to a non-linear non-normal
mixed model.

For unspecified non-normality of the sampling and random
effects, one can use EBLUP [Lahiri and Rao, 1995] or linear
EB [Ghosh and Lahiri, 1987] method.

A generalized variance function (GVF) type method is
generally used to estimate the sampling variances ψi. The
method usually does not incorporate small area effects and
the uncertainty in estimating the sampling variances.



Some Comments on Estimation

In some situation, standard estimates [REML, ML, ANOVA,
etc.] of the model variance A can be zero. When Â is zero,
EB reduces to the regression synthetic estimate. One way to
avoid the problem is to use the generalized ML estimates
[Morris, 1987; Li and Lahiri, 2007] or mean likelihood
estimate (Bell 1999).

A simple back transformation is often used to obtain the
estimate of Ȳi. Good properties of the EB may be lost by
such a back transformation.

Measuring uncertainty and constructing a reliable confidence
interval under the EB approach are quite challenging and the
theory rests on the higher order asymptotics.

Hierarchical Bayes implementation of the area level model
provides an exact inference at the expense of specification of
priors for the hyperparameters.



Interval Estimation

Definition

The 100(1− α)% confidence interval CIi(θ̂) satisfies

Pr(θi ∈ CIi(θ̂)) = 1− α,

where the probability is with respect to the joint distribution of θ̂
and θ.

Direct Method

CIDi = [θ̂i − zα/2
√

i, θ̂i + zα/2
√
ψi]

where zα/2 is the upper α/2 percent point of N(0, 1).

We have Pr(θi ∈ CIDi ) = 1− α. But the interval is too wide.



Cox Empirical Bayes Confidence Interval

Ref: D.R. Cox (1975)

CICox
i = [θ̂EB

i − zα/2
√
g1i(Â), θ̂EB

i + zα/2

√
g1i(Â)].

P(θi ∈ CICox
i ) = 1− α+O(m−1).

The method neglects the additional errors incurred by the
estimation of β and A.

Note that the distribution of
θi−θ̂EB

i√
g1i(Â)

is not a standard

Normal. It is not appropriate to use the Normal quantile zα/2
as the cut-off points.



Parametric Bootstrap Confidence Interval

Use the distribution of
θ∗i−θ̂EB∗

i√
g1i(Â∗)

to approximate the

distribution of
θi−θ̂EB

i√
g1i(Â)

.

Compute β̂ = (X′Σ̂
−1

X)−1X′Σ̂
−1
Y and Â, where

Σ̂ = diag(Â+ ψ1, · · · , Â+ ψm);

Draw bootstrap sample from the following bootstrap model:

(i) θ̂∗i |θ∗i
ind∼ N(θ∗i , ψi)

(ii)θ∗i
ind∼ N(x′iβ̂, Â)

Compute β̂
∗

and Â∗ from θ̂
∗
. Then we have

θ̂EB∗
i = (1− B̂∗)θ̂∗i + B̂∗x

′
iβ̂
∗
, and g1i(Â

∗) = Â∗ψi

Â∗+ψi
;

Compute (θ∗i − θ̂EB∗
i )/

√
g1i(Â∗).



The cut-off points (t1, t2) satisfy

P∗[θ∗i < θ̂EB∗
i + t1

√
g1i(Â∗)] = α/2

P∗[θ∗i > θ̂EB∗
i + t2

√
g1i(Â∗)] = α/2,

Parametric Bootstrap Confidence Interval

CIPB
i = [θ̂EB

i + t1

√
g1i(Â), θ̂EB

i + t2

√
g1i(Â)].

Theorem

Under regularity conditions Pr(θi ∈ CIPB
i ) = 1− α+O(p3m−3/2),

Ref: Chatterjee, Lahiri and Li (2008)



HB estimation

Model:
For i = 1, · · · ,m,

(i) θ̂i|θi
ind∼ N(θi, ψi), ψi known,

(ii) θi|β, A
ind∼ N(xTi β, A), i = 1, · · · ,m;

(iii) π(β, A) ∝ 1.



HB estimation: A known

θ̃HBi (A) = E(θi|θ̂, A) = θ̃EBi

V (θi|θ̂, A) = g1i(A) + g2i(A)

= MSE(θ̃EBi ) ,

where

g1i(A) = (1−Bi)ψi,

g2i(A) = B2
i V
[
xTi β̂(A)

]
= B2

i x
T
i

 m∑
j=1

1

A+ ψj
xjx

T
j

−1

xi



HB estimation: A unknown

θ̂HBi = E{E(θi|θ̂, A)|θ̂}

=

∫
E(θi|θ̂, A)f(A|θ̂)dA.

The measure of uncertainty of the HB estimator θ̂HBi is given by

V (θi|θ̂)

= E{V (θi|θ̂, A)|θ̂}+ V {E(θi|θ̂, A)|θ̂}
= E{(g1i(A) + g2i(A)|θ̂}+ V {θ̃hetaHBi (A)|θ̂}.

Note that unlike the EB,

θ̂HBi 6= θ̃HBi (Â),

for an arbitrary estimator of A.



Implementation: Gibbs Sampling (MCMC)

Need the following full conditionals:

(a) θi|β, A, θ̂
ind∼ N

[
θ̂Bi , ψi(1−Bi)

]
, i = 1, · · · ,m

(b) β|θ, A, θ̂ ∼ N
[
(XTX)−1XTθ, A(XTX)−1

]
(c) A|β,θ, θ̂ ∼ IG

[
m−2

2 ; 1
2

∑
(θi − xTi β)2

]



Gibbs Sampling Algorithm

(i) Draw θ
(1)
i , i = 1, · · · ,m, from (a), using β(0) & A(0) as

starting values.

(ii) Draw β(1) from (b) using θ(1) & A(0).

(iii) Draw A(1) from (c), using θ(1) & β(1).

The steps (i)-(iii) complete one cycle. Perform a large number of
cycles. The simulated samples after deleting the first t “burn-in”
samples, i.e. {

β(t+r), A(t+r),θ(t+r), r = 1, · · · , R
}

are considered as R simulated samples from [β, A,θ|θ̂].



Gibbs Sampling Algorithm

In small area estimation, our main interest is in θ. The posterior
density of θ, i.e. [θ|θ̂], is approximated using{

θ(t+r), r = 1, · · · , R
}
.

In particular, we can approximate the posterior means and
variances as follows:

θ̂HBi ≈ 1

R

R∑
r=1

θ
(t+r)
i = Ê(θi|θ̂), say

V (θi|θ̂] ≈ 1

R− 1

R∑
r=1

[
θ

(t+r)
i − Ê(θi|θ̂)

]2

= V̂ (θi|θ̂), say

for i = 1, · · · ,m.
By the ergodic theorem for Markov chains, Ê(θi|θ̂) converges to
E(θi|θ̂) = θ̂HBi and V̂ (θi|θ̂) to V (θi|θ̂) as R→∞.



Unit Level Models



Introduction

yij : value of the study variable for the jth unit of the i small
area population (i = 1, · · · ,m; j = 1, · · · , Ni).

g(yij) is a known function of yij

To estimate: θi = N−1
i

∑Ni
j=1 g(yij)

Ex: For the choice g(yij) = yij , θi is the finite population
mean for area i.



Nested Error Regression Model

Ref: Battese, Harter and Fuller (JASA 1988) For
i = 1, · · · ,m; j = 1, · · · , Ni,

yij = x′ijβ + vi + eij ,

where xij is a p× 1 column vector of known auxiliary variables;

{vi} and {eij} are all independent with vi
iid∼ N(0, σ2

v) and

eij
iid∼ N(0, σ2

e).

We can also write the model as a two-level model:

Level 1: yij |vi
ind∼ N(x′ijβ + vi, σ

2
e);

Level 2: vi
iid∼ N(0, σ2

v).



An Example

Estimation of the number of hectares of corn for 12 Iowa counties
based on the 1978 June Enumerative Survey and satellite data.

Notations:

yij : the number of hectares of corn in the jth segment of the
ith county as reported in the June Enumerative Survey.
Segments are about 250 hectares.

x′ij = (1, x1ij , x2ij), where x1ij (x2ij) is the number of pixels
classified as corn (soybean) in the jth segment of the ith
county. A pixel (a term for picture elements) is the unit for
which satellite information is recorded. A pixel is about .45
hectares

X̄ ′ = (1, X̄1i, X̄2i), where X̄1i (X̄2i) is the mean number of
pixels per segment classified as corn (soybean) for county i.
This is the total number of pixels classified as corn divided by
the number of pixels in that county.



86

Fig 2: Plot of Corn Hectares versus Corn Pixels by County 

This plot also reflects the strong relationship between the 
reported hectares of corn and the number of pixels of corn 
for counties separately. But the slopes and/or intercepts 
seem differ by county. 



BP/Bayes, EB and HB

Let yi = (yi,s, yi,ns) with yi,s and yi,ns denote the sampled and
non-sampled parts, respectively. We assume a hierarchical model
for yi, i = 1, · · · ,m (e.g., nested error model on yij or in a
logarithmic scale). Then the Bayes/BP of θi for the general case
can be approximated as follows:

Step 1: Obtain L ”census” files as
y∗i;l = (yi,s, y

∗
i,ns), (l = 1, . . . , L), where y∗i,ns is generated

from the conditional distribution of yi,ns given yi,s with known
hyperparameters.

Step 2: Bayes/BP of θi is approximated by L−1
∑L

l=1 g(y∗i;l).

To obtain, EB or HB change step 1. For EB, y∗i,ns is generated
from the conditional distribution of yi,ns given yi,s with estimated
hyperparameters. For HB. y∗i,ns is generated from the conditional
distribution of yi,ns given yi,s under some prior assumptions on the
hyperparameters.



An Example: Nested Error Regression Model

Estimate Ȳi = N−1
i

∑Ni
j=1 yij or, equivalently,

∑Ni
j=1 yij when Ni is

known.
The Bayes estimator/BP of Ȳi:

Ȳ B
i ≡ Ȳ B

i (β, σ2
e , λ)

= E(Ȳi|ys;β, σ2
e , λ)

= fi
ˆ̄Y Reg
i (β) + (1− fi)

{
[1−Bi(λ)] ˆ̄Y Reg

i (β) +Bi(λ) ˆ̄Y Syn
i (β)

}
,

where

λ =
σ2
v

σ2
e

Bi(λ) =
1

1 + niλ
ˆ̄Y Reg
i (β) = ȳi + (X̄i − x̄i)′β

ˆ̄Y Syn
i (β) = X̄ ′iβ



An Example: Nested Error Regression Model

In an EB setting, one would estimate the hyperparameters
using any classical method. For example, one can estimate β
by the weighted least squares estimator with estimated
variance components σ2

e and REML to estimate the variance
components. One can then use a resampling method or Taylor
series method to estimate the MSE. Confidence interval be
obtained using the parametric bootstrap method of
Chatterjee, Lahiri and Li (2008 AS).
In a HB setting, one would put a prior on the
hyperparameters. Typically, enough data will be available to
estimate β and σe that one can use any reasonable
noninformative prior distribution. For example, one can
assume that apriori β and σe are independent and β and σe
have improper uniform priors in the p-dimensional Euclidean
space and positive pat of the real line, respectively. The prior
on σv is less clear cut. See Gelman (2006). One suggestion is
to put an improper uniform on σe. Apply MCMC.



FGT poverty measures

Ref: Foster, Greer and Thornbecke, 1984

y: a welfare variable (income, expenditure, etc.) of interest.

z threshold under(s) which a unit is under poverty

For SGT poverty measure g(yij) =
(
z−yij
z

)α
I(yij < z)

FGT poverty measure:

Fαi(yi) =
1

Ni

Ni∑
j=1

(
z − yij
z

)α
I(yij < z),

where

I(yij < z) =

{
1 if yij < z ,
0 otherwise,

where α is a measure of the sensitivity of the index to poverty.



Examples

Examples of welfare variable

Brazil: per-capita household expenditure.

U.S. Small Area Income and Poverty Estimates (SAIPE)
program: household income

Examples of threshold

Brazil: IBGE used 20 different thresholds, varying by
geographic region and rural/urban areas.

U.S. SAIPE program: different thresholds are used depending
on the household composition.



Poverty Incidence

Fαi(yi) =
1

Ni

Ni∑
j=1

I(yij < z)

Remarks:

α = 0

proportion of units in that area living below the poverty line

The headcount ratio merely measures the incidence of
poverty, but not its intensity, i.e. measures how many poor
individuals there are and not how poor they are.



Poverty Gap

Fαi(yi) =
1

Ni

Ni∑
j=1

(
z − yij
z

)
I(yij < z)

α = 1

When the parameter is 1, the measure is the relative poverty
gap, an index measuring poverty intensity;

It can be interpreted as the cost of eliminating poverty
(relative to the poverty line), because it shows how much
would have to be transferred to the poor to bring their
incomes up to the poverty line.



Poverty Severity

Fαi(yi) =
1

Ni

Ni∑
j=1

(
z − yij
z

)2

I(yij < z)

α = 2

gives more emphasis to the very poor.



Design-Based Direct Estimation

Note that

Fαi(yi) = N−1
i

Ni∑
j=1

uij ,

where

uij =

(
z − yij
z

)α
I(yij < z).

Let si be the set of units in the sample that belong to area i (size
ni) and wij be the survey weight associated with responding unit
(ij). Then the survey-weighted direct estimator is given by

F̂Dirαi =

∑
j∈si wijuij∑
j∈si wij

Note: The direct estimators are highly unreliable due to small
sample sizes in the areas.



The ELL Method (Elbers, Lanjouw and Lanjouw, 2003)

Assume a linear mixed model on the log-transformed welfare
variable of interest.

Obtain L synthetic census files ỹ∗i;l, (l = 1, . . . , L).

The ELL estimate of F ∗αi(yi) is then obtained as
F̄ ∗αi = L−1

∑L
l=1 Fαi(ỹ

∗
i;l).

The measure of uncertainty of the ELL estimate is given by

1

L− 1

L∑
l=1

(
Fαi(ỹ

∗
i;l)− F̄ ∗αi

)2
.

A correction 1 + 1/L is often applied to capture variation due
to imputation.



Remarks

In the ELL model, area specific auxiliary variables from
different administrative records can be incorporated.
The ELL mixed model attempts to capture different features
of the survey design, but not any small area specific effect.
Just like any other synthetic small area methods, the ELL
method is capable of producing poverty estimates even when
there is no survey data from the area.
In some public policymaking, unlike the EB/HB, the ELL
method may be considered to be fair to all areas irrespective
of the variation of the sample sizes across area.
Basic data requirements: (i)Micro level census data, (ii)Micro
level survey data containing the welfare variable of interest,
(iii) Common auxiliary variables between the survey and the
census
Time gap between the census and the survey
Incomparability of the auxiliary variables between the survey
and the census



Time Series
Cross-Sectional Models



The Rao-Yu Model

Ref: Rao, J.N.K. and Yu, Y (1994)

For i = 1, · · · ,m; t = 1, · · · , T ,

Level 1: : yit = θit + eit;

Level 2: : θit = x′itβ + vi + uit

Level 3: : uit = ρuit−1 + εit (|ρ| < 1)

where

ei = (ei1, · · · , eiT )′’s are independent multivariate normal
with mean vector 0 and covariance matrix Ψi.

An important extension of the Anderson-Hsiao model that
incorporates sampling errors.

Stationary model on the time Component



Datta-Lahiri-Maiti Model

Ref: Datta, Lahiri, Maiti (2002)

For i = 1, · · · ,m; t = 1, · · · , T ,

Level 1: : yit = θit + eit;

Level 2: : θit = x′itβ + vi + uit

Level 3: : uit = uit−1 + εit

where

This is a special case of linear mixed model.

This model is not a special case of the Rao-Yu model

No new theory needed. Just apply well-known results in linear
mixed model.

Ghosh and Nangia (1993) and Ghosh, Nangia and Kim (1996)
also used random walk model for the time component, but
their model does not include area specific random effects.



Estimates of Coefficient of Variations of CPS Direct
estimates of Median Income of 4-person Families in the US
States
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Estimates of Coefficient of Variations of EB estimates of
Median Income of 4-person Families in the US States:
Year 1989
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A Plot of Absolute Residuals From a Simple Linear
Regression

Dep Variable: 1989 Median Income Estimates from 1990 Census
Indep. Variable: CPS or EB Estimates for 1989
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Other Time Series Cross-Sectional Models

For i = 1, · · · ,m; t = 1, · · · , Ti,
Level 1: : yit = θit + eit;

Level 2: : θit = x′itβA(it) + vi + uit

Level 3: : uit = uit−1 + εit or a stationary model

~βA(it) is a fixed effect of a bigger area at time t that covers
small area i.

Pramanik et al. (2014) considered a particular case of the
model to estimate immunization rates for districts (small
areas) in India.

Spatio-temporal models can be tried (e.g., Singh et al. 2005;
Pereira and Coelho 2012; Marhuenda, Molina and Morales
2013). The spatial component of the model may not be very
effective in presence of reasonably good area specific auxiliary
information (Vogt 2011 and work of Wayne Fuller back in the
80’s)



Case Studies



Measuring Quality of Small Area 
Estimators in the U.S. Current 
Employment Statistics Survey

Partha Lahiri,
JPSM, University of Maryland, College Park

joint work with
Julie Gershunskaya, U.S. Bureau of Labor Statistics



Outline

• Overview of CES survey

• Properties of the variance estimator

• Proposed approach

• Empirical results

• Further work



Longitudinal Data Base (LDB)

• based on Quarterly Census of Employment and 
Wages (QCEW, formerly known as ES-202) program 

• contains monthly employment data
for every U.S. business establishment covered by 
Unemployment Insurance (UI) tax laws --

virtually a census

• updated quarterly, on a lagged basis, approximately 
6 to 9 months after the reference period

• provides a sampling frame and the benchmark 
data for the CES survey



CES Survey Overview

• Stratified simple random sample of 
Unemployment Insurance (UI) accounts:

– State | NAICS Supersector | Size Class

UI is cluster of establishments

• Optimal allocation minimizes variances of 
state-level monthly employment change

• Ests (National and for States and Areas) 
produced at various levels of industrial and 
geographical detail 



Estimator for Employment Level

1

ˆ t

t

j jt
s

t
j jt

s

w y
R

w y −

=
∑
∑

where

0 1t t
ˆ ˆ ˆY Y R ...R ,=

Weighted Link Relative (WLR) estimator:



Variance Estimation

• BHS for National Level Estimates
• RGBHS for States and Areas
• Taylor series method



Monte-Carlo Study

• 10,000 samples from Alabama

• 13 industries

• estimation for a fixed month t



Monte-Carlo Study (cont.)
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Industry
Point 

Estimator
Variance
Estimator

1 2.5 152.6
2 1.5 73.3
3 0.5 47.2
4 0.5 48.0
5 1.0 91.3
6 0.6 29.3
7 1.2 195.6
8 1.4 94.4
9 0.7 59.5
10 1.0 193.1
11 0.6 38.6
12 0.8 34.2
13 1.7 46.0

CV of the Point Estimator and 
CV of the Direct Variance Estimator, %



Relative biases of the direct estimators, %

Industry Taylor Series BHS RGBHS
1 -2.2 1 1.3
2 -3 -2.3 -2.3
3 -0.6 0 0.2
4 -1.6 0.7 1.1
5 -1.6 0.4 -0.2
6 -4 -4.4 -3.9
7 -10.2 -7.1 -8.4
8 4.5 7 7.3
9 1.9 3.5 2.8
10 -18.5 -18.1 -17.2
11 -3.2 -3.2 -2.7
12 1.2 1.2 1.9
13 0.5 3.2 1.9



CV of the direct variance estimators, %

Industry Taylor Series BHS RGBHS
1 152.6 173.3 158.3
2 73.3 100.0 75.9
3 47.2 73.4 49.7
4 48.0 73.9 51.3
5 91.2 125.8 93.9
6 29.0 64.7 32.5
7 195.4 221.7 198.7
8 94.3 104.1 97.3
9 59.4 92.6 62.7

10 192.2 202.1 198.7
11 38.5 75.4 42.5
12 34.2 69.0 37.6
13 46.0 89.7 49.6
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• Synthetic estimator reduces variance, introduces 
bias

• Looking for compromise

ˆln( )i iu V=

Composite Method

Take log transformation:

Model 2:

2     [ ]  ;      [ ]d i i d i iE u V uθ γ= =Level 1 :
2   [ ]  ;     [ ]  m i i m iE Vθ μ θ τ= =Level 2 :



Composite Method (cont.)

Model 2 i
ˆ (1 ) ,BLUP
i i i iB u Bθ μ= + −

where
2

2

2
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i

i m i
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τ
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ψ γ

=
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where ˆln[ ]- Assume: ,    S
i ii i x Vxμ β ==

   where est ofˆ ˆ ˆ [ ] [ ]- Est
ˆ ˆ

imate
[ ] 

ˆ ˆ ,   d i d i
d i

i
i

V V V V
V V

V
ψ =

2( , , )i iψ μ τ ′=φEstimation of parameters

2- Estimation of   and  :τ β

2 2
2

where  is the number of industries
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ˆ

)i i
i i

I

u x Iβ τ
ψτ

− = −
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Finally,

EBLUP of :iθ

ˆ ˆ( ; ).BLUP
i i iuθ θ= φ

ˆˆ exp( )C
i iV θ=

Take reverse transformation:
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Relative Root MSE

Industry Direct Synthetic Composite
1 152.6 80.4 69.6
2 73.3 45.3 39.5
3 47.2 33.4 31.4
4 48.0 29.8 34.7
5 91.3 158.6 53.3
6 29.3 43.5 24.5
7 195.6 26.7 67.9
8 94.4 28.8 61.1
9 59.5 194.7 56.3

10 193.1 34.2 57.5
11 38.6 75.5 31.1
12 34.2 36.4 22.9
13 46.0 82.2 36.8



Coverage & Length properties
Industry Direct Synthetic Composite

1 88.4(.073,54.7) 95.4(.108, 12.8) 89.7(0.074, 33.5) 

2 89.0(.046,31.2) 79.0(0.036, 12.1) 84.1(0.041, 17.6) 

3 89.8(.016,21.8) 91.1(0.017, 13.2) 88.1(0.015, 16.0)

4 88.5 (.015,23.3) 87.6 (0.015, 14.4) 86.4 (0.014, 18.0)

5 89.5 (.031,34.8) 98.3 (0.051, 12.8) 91.2 (0.032, 24.7)

6 88.9 (.019,14.8) 93.1 (0.022, 12.0) 88.5 (0.019, 12.6)

7 88.7 (.032,59.0) 91.3 (0.037, 13.3) 86.3 (0.030, 31.9)

8 84.9 (.041,50.8) 88.6 (0.045, 13.9) 84.2 (0.038, 38.5)

9 89.3 (.024,27.5) 99.2 (0.040, 12.5) 91.5 (0.025, 24.0)

10 89.3 (0.025,53.1) 90.7 (0.027, 12.6) 86.9 (0.024, 23.2)

11 89.7 (0.018,18.7) 95.7 (0.023, 12.1) 89.5 (0.018, 15.7)

12 89.9 (.025, 15.5) 82.0 (0.021, 12.3) 87.9 (0.024, 11.1)

13 89.2 (.055, 22.3) 96.2 (0.072, 12.4) 89.7 (0.055, 18.4)



Summary

• Direct variance estimators may be very unstable 
even in domains where point ests are good

• SAE approach improves efficiency of ests of 
variances, with comparable coverage properties

Further research
• Alternative synthetic estimators (e.g., using 

historical data)

• Alternative estimator of Level 1 variance

• Extension to small domains

• Extension to the ests of variances of level ests
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Introduction
• The eradication of poverty has been at the center of various

public policies in Chile and has guided public policy efforts.

• The nationwide survey estimate of the poverty rate has
declined since the early 90´s suggesting some progress towards
this goal. Erratic time series patterns, however, have emerged
for small comunas - the smallest territorial entity in Chile.

• For a handful of extremely small comunas, survey estimates of
poverty rates are unavailable for some or all time points simply
because the survey design, which traditionally focuses on
precise estimates for the nation and large geographical areas,
excludes these comunas for some or all of the time points.
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• Direct survey estimates of poverty rates typically do not meet 

the desired precision for small comunas and thus the 
assessment of implemented policies is not straightforward at 
the comuna level.  

 
• In order to successfully monitor trends, identify influential 

factors, develop effective public policies and eradicate poverty 
at the comuna level, there is a growing need to improve on the 
methodology for estimating poverty rates at this level of 
geography.  

 
 

• The need for socioeconomic data at lower levels of geography 
found its way into the Chilean legislation in 2007 when an 
amendment to the law of the Fondo Común Municipal (FCM) 
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established a new set of indicators for its fund allocation 
algorithm among comunas.  The regulation passed in 2009 
required the Ministry to provide poverty rate estimates for all 
comunas in Chile. 

• Regarding the production of comuna level estimates, an Expert
Commission, appointed by the Ministry of Social Development
(henceforth referred to as the Ministry) in 2010, raised
concerns because of (1) the significant costs associated with
sampling almost all comunas in the country, and (2) the
relatively low precision for some comuna level estimates
making the planned comparison among comunas and/or across
time useless.
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• The Commission recommended to (i) reduce the overall sample
significantly, (ii) stop the production of comuna level direct
estimates, and (iii) search for alternative data sources such as
administrative records or develop a new data collection effort
specifically designed for comuna level representation of social
indicators of interest for various public policies.

• In 2010, the Ministry produced for the first time poverty rate
estimates for all 345 comunas in Chile using both standard
design-based and the Ministry-PNUD synthetic method.
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The Poverty Measure Used in Chile 
 

• In Chile, poverty is measured using the poverty rate, also 
known as Headcount Index, defined as the proportion of 
households with income below the poverty threshold or poverty 
line.  

 
• The first ingredient of the poverty rate is the poverty line. For 

most Latin American countries, the poverty line is the cost of a 
basket of essential food and non-food items. This poverty line 
is expressed in per-capita terms. The methodology for 
estimating Chile´s poverty line was developed by the Comisión 
Económica para América Latina y el Caribe (CEPAL). Data 
from the Chilean expenditure survey Encuesta de Presupuestos 
Familiares 1987-1988 was used to estimate the value of the 



 7 

food basket. Two different poverty lines were derived from the 
food basket ---- one for rural areas and the other for urban 
areas.  

 
• The second ingredient of the poverty rate, the per-capita 

income, is the ratio of the total household income and the 
household size. Households whose per-capita income falls 
below the poverty line are considered in poverty. The poverty 
rate is then the percent of households in each region/comuna 
that are in poverty. 
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The Casen Survey 

• Chile’s official data source for poverty statistics is the National
Socioeconomic Characterization Survey (Casen) - a survey
sponsored every two or three years by the Ministry since 1987
with sample in most of the comunas.

• The Casen survey is a cross-sectional multipurpose household
survey designed to understand the socioeconomic conditions of
the population and the evaluation of social programs. The
survey has been fielded regularly every two or three years since
1987.
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• The 2009 Casen survey collected data from 246,924 persons in
71,460 households, representing a total of 16,607,007 persons
living in private dwellings in Chile in November, 2009. The
sampling design used was as follows:

-The target population was defined to cover 334 out of the
345 comunas in the country.

-Samples were drawn independently from 602 sampling
strata formed by the comuna´s urban/rural subdivisions.

-Using a two-stage sampling design, small geographic
entities, known as secciones, were sampled at the first stage
(Primary Sampling Units, PSUs) and housing units were

            sampled at the second stage (Secondary Sampling Units, 
            SSUs) within each sampling strata. 

-The PSU´s were selected with probability proportional to
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            size, measured in terms of the number of occupied housing  
            units. A variable number of SSU´s were selected with equal 
            probability using a systematic sampling algorithm with a  
            random start within each selected PSU. Within each    
            housing unit interviews were attempted with all households 
            (i.e. no subsampling was implemented beyond the selection 
            of the housing units). 
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Data Preparation 
• Comuna level data derived from Casen 2009

ip  :  direct estimate of poverty rate for the ith comuna;  
1sin ;i iy p−=   in  :  effective sample size 

1 (4 )i iD n= , an approximated sampling variance of iy
• Comuna level administrative data

-average wage for dependent workers
-percentage of rural population
-percentage of illiterate population
-percentage of school attendance
-the average of the comuna-level poverty rates from Casen
2000, 2003 and 2006
-region-level indicators for the 7th, 8th and 9th regions of the
country
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Description of SAE Method Implemented in Chile 
 
Four Guidelines: 
• method must use the Casen survey data directly to the 

extent possible since this is the largest data that collect 
information on most current poverty related variables 

• poverty rate estimates should be close to the survey-
weighted direct estimates for comunas with reasonably 
large samples 

• method must not produce poverty rate estimates that 
considerably deviate from the corresponding direct survey 
estimates even for small comunas 

• poverty count estimates, when aggregated over all the 
comunas in a given region, must produce the official 
survey-weighted count for that region. 
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Modeling 
 

Given ,  '  are independent with ~ ( , );
 

's are independent 

 1 (  ) :

 2 (  )

with ~ ( , ),

:
i i i i i

i i i

Level Sampling Model

Level Linki
y

ng Model
s y N D

N x A

θ θ

θ θ β′

 

• m is the number of comunas in Chile covered by Casen;   
• 1sini iPθ −= ; iP  is the true poverty rate;  

• 0 1( , , )i i isx x x −
′ =   is a 1s×  vector of s known fixed comuna 

specific auxiliary variables with 0 1ix =  ; 0 1( , , )sβ β β −=   is a 
1s×  column vector of unknown regression coefficients where 

0β  denotes the intercept;  
• A is the unknown model variance ( 1, , ).i m=   

 
 



 14 

Empirical Bayes Estimator of iθ  
 

Bayes estimator:  
       ˆ (1 ) ,B

i i i i iB y B xθ β′= − +  where ( ).i i iB D A D= +  
An Empirical Bayes (EB) estimator of iθ :  
      ˆ ˆˆ ˆ(1 ) ,EB

i i i i iB y B xθ β′= − +  where ( )ˆˆ .i i iB D A D= +  
 

• The weight the EB estimator puts on the direct estimator iy  
depends on the ratio ˆ / .iA D  

• The choice of the adjusted maximum profile likelihood 
estimator of A over the usual residual maximum likelihood 
(REML) estimator was intentional and was used to assign more 
weight on the direct estimator since adjusted profile likelihood 
tends to have more upward bias than the REML. 
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• Since the adjusted maximum profile likelihood estimator is 
strictly positive, it avoids the common problem of the full 
shrinkage (i.e., ˆ 1iB = ) that is often encountered with the 
REML-based empirical Bayes estimator of iθ . 

• In theory, EB estimates can go out of the admissible 
range[0, 2]π .   Thus, ˆEB

iθ is truncated to 0 if ˆEB
iθ  is negative and 

to 2π if ˆEB
iθ is greater than 2π . 
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Limited Translation Empirical Bayes Estimator of iθ  
 
 
 

ˆ ˆ ,
ˆ ˆ ,

ˆ ,

EB EB
i i i i i i

LT EB
i i i i i i

EB
i i i i i

if y D y D

y D if y D

y D if y D

θ θ

θ θ

θ

 − ≤ ≤ +
= − ≤ −


+ ≥ +
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Back-transformation and raking 
Back-transform: 2 ˆˆ sin .LT

i iP θ=  
 
For a few comunas with no sample in the Casen 2009 survey, the 
estimates of the poverty rate were computed using the Ministry-
PNUD synthetic method.  
 
Whether a comuna is in the Casen sample or not, the final official 
raked SAE estimates of poverty rates for all the comunas that 
belong to the rth region are given by: 
        ˆ ˆ ,SAE

i i rP P R= ×  
where  
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• 
*

1

ˆrm
regn regn

r r r i i
i

R p N PN
=

= ∑ is the raking factor common to all 

comunas in the region r; *
rm  is the total number of comunas in 

region r; regn
rp  is the direct design-based estimate of the 

regional-level poverty rate using the original regional weights; 
iN  is an estimate of the population projection in comuna i 

belonging to region r; regn
rN  is an estimate of the  population 

projection in region r; 
*

1

.
rm

regn
r i

i
N N

=

=∑  
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Confidence Intervals for the Poverty Rates 
 

Step 1: Generate R independent parametric bootstrap 
samples ( ) ( ){( , ),  1, }r r

i iy i mθ =  , 1, ,r R=   as follows: 
( ) ˆ ˆ~ ( , ),r T
i iN x Aθ β  ( ) ( ) ( )| ~ ( , ),r r r

i i i iy N Dθ θ  1, ,i m=  .  
 
Step 2: Produce estimates ( )ˆ rA , ( )ˆ r

iB  and ( )ˆ rβ by replacing the 
original data with the parametric bootstrap samples generated 
in Step 1. We repeat this step R times.  

 
Step 3: For each bootstrap simple, calculate the following pivotal 

quantity: ( )( ) ( ) ( ) ( )ˆ ˆ(1 )r r EB r r
i i i i it D Bθ θ= − − ,  where 

( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ(1 )EB r r r r r
i i i i iB y B xθ β′= − + .  
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Step 4: For comuna i, obtain 1iq  and 2 ,iq the 100 2α  and 
100(1 2)α− percentiles of ( ){ ,  1, , }r

it r R=   . 
 
Step 5: For comuna i, an approximate100(1 )%α− confidence 

interval for iθ is obtained as: ( , ),i iL U  where 

1
ˆ ˆ(1 )EB

i i i i iL q D Bθ= + −  and 2
ˆ ˆ(1 ).EB

i i i i iU q D Bθ= + −    Note 
that the admissible range for iθ  is [0, 2].π   Thus, iL  is 
truncated to 0 if iL  is negative and  iU  is truncated to 2π  if 

iU is greater than 2π .  The probability that ( , )i iL U is not 
contained in (0, 2)π is expected to be negligible unless 4 in  is 
very small.  The truncated confidence interval for iθ is denoted 
by * *( , )i iL U .   
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Step 6: Finally, the lower and upper limits of the confidence 
interval * *( , )i iL U in Step 5 are back-transformed to yield the 
following approximate100(1 )%α−  confidence interval of the 
poverty rate iP  :( )2 * 2 *sin ,  sini iL U .  Note that the parametric 
bootstrap confidence interval for any one-to-one transformed 
parameter can be easily obtained using the simple back-
transformation.  In our case, the motivation for this back-
transformed confidence interval comes from the fact that for 
any 0 1p< <  and0 2θ π< < , 1sin p− and 2sin θ  are 
monotonically increasing functions of p and θ , respectively.  
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Appendix 
 

Figure 21.1.  

Estimates of national poverty rates in Chile, by year. 

 

  
 

Source: Compiled by the authors based on Casen 1990, 1992, 1994, 1996, 1998, 2000, 2003, 

2006, 2009 and 2011 data. 
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Figure 21.2. 

Descriptive statistics for the original survey weights, cut-off point and total number of original 

comuna weights truncated, by region and zonal group. Casen 2009 data. 

 

Truncation 

Groups 

 

 

Descriptive statistics original comuna weights  Truncation 

point 

 

Number of 

original comuna 

weights 

truncated 

 

Average 

 

Minimum 

 

Maximum 

 

 

1 87.4902 5 501 137.6 748 

2 10.1405 2 34 63.0 0 

3 94.3949 3 692 672.7 32 

4 4.5907 1 27 32.5 0 

5 59.8353 6 1.363 731.7 12 

6 14.3449 4 47 83.4 0 

7 95.7634 7 558 524.6 82 

8 27.3082 4 134 127.6 58 

9 74.0826 5 1.020 112.6 4,117 

10 23.0577 3 100 75.7 105 

11 53.7106 2 637 262.0 229 

12 22.6640 2 110 87.7 171 

13 69.0955 3 405 141.5 1,471 

14 26.0215 4 160 49.8 1,760 

15 66.7037 4 1,095 346.3 105 

16 20.2520 4 203 30.6 2,929 

17 60.0223 4 548 318.7 225 

18 28.2342 6 183 37.2 2,152 

19 70.5936 2 693 118.5 1,547 

20 22.8171 3 461 67.9 673 

21 37.9711 5 183 52.8 497 

22 9.9334 3 34 11.8 328 

23 85.7458 8 544 777.8 0 

24 9.8642 2 41 14.1 67 

25 147.5910 5 4,103 1,445.2 81 

26 38.0404 2 1,147 476.6 18 

27 53.8487 6 520 287.1 86 

28 31.1182 6 237 135.4 54 

29 106.1280 1 475 133.2 268 

30 14.3313 1 57 103.1 0 

Total - - - - 17,815 

Source: Ministerio de Desarrollo Social [42]. 
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Figure 21.3. 

A plot of original weights (x-axis) and trimmed survey weights (y-axis) for all 

observations in Casen 2009. 

 

 
Source: Ministerio de Desarrollo Social [42]. 

 

 

 

 

Figure 21.4. 

Descriptive statistics of number of cases at the Respondent level and the Household level. Casen 2009 data. 

 

Quartiles of comunas 

respondent sample 

Respondent level Sample Household level Sample 

Min Mean Max Min Mean Max 

1 53 491.0 610 20 152.7 198 

2 612 654.9 692 155 195.7 239 

3 693 752.2 864 177 214.1 265 

4 873 1,064.3 1,608 211 294.4 409 

Source: Compiled by authors based on Casen 2009 data. 
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Figure 21.5. 

A plot of direct survey estimates with original survey weights (x-axis) and trimmed survey 

weights (y-axis) for comunas in Chile. Casen 2009 data. 

 

 
Source: Ministerio de Desarrollo Social [42]. 

 

 

Figure 21.6.  

Estimates of the design effect of the direct poverty rate in Chile using trimmed comuna 

weights, by region. Casen 2009 data. 

 

N° 
Region 

Design Effect Estimates 

1 
Tarapacá 

3.280 

2 
Antofagasta 

5.750 

3 
Atacama 

6.477 

4 
Coquimbo 

4.665 

5 
Valparaíso 

3.390 

6 
O´Higgins 

4.307 

7 
Maule 

4.870 

8 
Biobío 

5.506 

9 
Araucanía 

5.618 

10 
Los Lagos 

6.095 

11 
Aysén 

2.843 

12 
Magallanes 

2.323 

13 
Metropolitana 

3.290 

14 
Los Ríos 

8.681 

15 
Arica y Parinacota 

2.864 

Source: Ministerio de Desarrollo Social [42]. 
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Figure 21.7.  

Descriptive statistics of 𝐷𝑖 and 𝐵𝑖  by groups of comunas formed using quartiles of the distribution of the sampling 

variances (𝐷𝑖). Casen 2009 data. 

 

Quartiles of 𝐷𝑖 Descriptive statistics of 𝐷𝑖 Descriptive statistics of 𝐵𝑖 

Mean Minimum Maximum Mean Minimum Maximum 

Group 1 (lowest 25% of 𝐷𝑖) 0.0009047 0.0004453 0.0012006 0.2765 0.1598 0.3390 

Group 2 0.0014632 0.0012023 0.0016854 0.3836 0.3393 0.4186 

Group 3 0.0019475 0.001686 0.0021987 0.4535 0.4186 0.4843 

Group 4 (highest 25% of 𝐷𝑖) 0.0030616 0.0022082 0.0113181 0.5474 0.4854 0.8286 

All 0.0018417 0.0004453 0.0113181 0.4150 0.1598 0.8286 

Source: Ministerio de Desarrollo Social [42]. 

 

 

 
Figure 21.8. 

Comuna-level sample size (y-axis) and comuna-level estimate of variance (x.-axis) of 

the direct estimate of the poverty rates. Casen 2009 data. 

 

 
Source: Ministerio de Desarrollo Social [42]. 

 



18 
 

 
 

Figure 21.9. 

Initial set of auxiliary variables reviewed for their possible inclusion as comuna-level auxiliary variables in the area level model. 

 

Number and Name of the auxiliary variable  

 

Institution responsible for data collection Frequency of publication 

of the data 

#1. Subsidio Familiar Unidad de Prestaciones Monetarias, Ministerio de Desarrollo Social. monthly and yearly 

#2. Subsidio al Pago del Consumo de Agua Potable 

y Servicio de Alcantarillado de Aguas Servidas 

Unidad de Prestaciones Monetarias, Ministerio de Desarrollo Social. monthly and yearly 

#3. Bono Chile Solidario Unidad de Prestaciones Monetarias, Ministerio de Desarrollo Social. monthly and yearly 

#4. Subsidio de Discapacidad Mental Unidad de Prestaciones Monetarias, Ministerio de Desarrollo Social. monthly and yearly 

#5. Pensión Básica Solidaria (vejez e invalidez) Unidad de Prestaciones Monetarias, Ministerio de Desarrollo Social. December  

#6. Aporte Previsional Solidario (vejez e invalidez) Unidad de Prestaciones Monetarias, Ministerio de Desarrollo Social. December 

#7. Bonificación al Ingreso Ético Familiar Unidad de Prestaciones Monetarias, Ministerio de Desarrollo Social. monthly and yearly 

#8. Beca de Apoyo a la Retención Escolar,  BARE Unidad de Prestaciones Monetarias, Ministerio de Desarrollo Social. monthly and yearly 

#9. Afiliados Sistema de Capitalización Individual Superintendencia de Pensiones monthly and yearly 

#10. Matrícula Ministerio de Educación Yearly 

#11. Rendimiento Ministerio de Educación Yearly 

#12. SIMCE Ministerio de Educación Yearly or every two years 

#13. Titulados Educación Superior Ministerio de Educación Yearly 
#14. Índice de Vulnerabilidad del Establecimiento 

(IVE-SINAE) 

Junta Nacional Escolar y Becas (Junaeb) Yearly 

#15. Situación Nutricional estudiantes básica y 

media 

Junta Nacional Escolar y Becas (Junaeb) Yearly 

#16. Población beneficiaria Fonasa Ministerio de Salud Yearly 
#17. Atenciones sector privado Ministerio de Salud Yearly 

#18. Razón de analfabetos respecto a la población de 

10  y más  años en la comuna 

CENSO, INE Every 10 years 

#19. Porcentaje de Población Rural CENSO, INE Every 10 years 

#20. Porcentaje de Asistencia Escolar Comunal SINIM monthly 

#21. Tamaño promedio del hogar CENSO, INE Every 10 years 

#22. Tasa de pobreza histórica CASEN Every 2 or 3 years 

#23. Contribuciones de Vivienda SII (http://www.sii.cl/avaluaciones/estadisticas/estadisticas_bbrr.htm#2) Yearly 

#24. Remuneraciones promedio de los  trabajadores 

dependientes 

 Yearly 

Source: Ministerio de Desarrollo Social [42]. 



19 
 

 
 

Figure 21.10  

QQ plot  of the standardized residuals 

 

 
Source: Ministerio de Desarrollo Social [42]. 

 

Figure 21.11 

Distribution of the standardized residuals (blue line) 

 

 
Source: Ministerio de Desarrollo Social [42]. 

 

Figure 21.12 

Plot of standardized residuals against fitted values 

 

 
Source: Ministerio de Desarrollo Social [42]. 
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Figure 21.13. 

Estimates of Spearman correlation coefficients and p-values for the squared 

standardized residuals of the OLS regression model in Figure 21.14. 

 

Auxiliary Variable 
Sperarman 

Correlation 
P-values 

Average wage of dependent workers  -0.0144 0.8264 

Average of the poverty rate from Casen 2000, 

2003 and 2006   -0.0148 0.8214 

% of population in rural areas -0.0065 0.9214 

% of illiterate population -0.0092 0.8882 

% of population attending school 0.0072 0.9126 

Dummy for region 7  0.0337 0.607 

Dummy for region 8  -0.095 0.1467 

Dummy for region 9 -0.0061 0.9256 

Source: Ministerio de Desarrollo Social [42]. 

 
Figure 21.14. 

Output of regression analysis based on comunas with population more than 10.000 inhabitants 

(dependent variable: arcsine transformed direct survey estimate of the poverty rate with original and 

trimmed weights; independent variables: a set of variables used in the comuna level model with 

arcsine transformation for proportions and logarithmic transformation for the rest). 

 

Independent variables 

Regression coefficient estimate 

(t-statistics): original comuna 

weights 

 Regression coefficient 

estimate (t-statistics): 

trimmed comuna weights 

Average wage of dependent 

workers (log) 

-0.09575646 -0.21927953 

(3.52**) (3.52**) 

Average of the poverty rate from 

Casen 2000, 2003 and 2006  

(arcsin) 

0.49548266 0.48474029 

(7.92**) (7.92**) 

%  of population in rural areas 

(arcsin) 

-0.13409847 -0.39252745 

(4.96**) (4.96**) 

%  of illiterate population (arcsin) 
0.40349163 0.25176513 

(2.57*) (2.57*) 

% of population attending to 

school  

(arcsin) 

-0.21883535 -0.0938032 

(2.23*) (2.23*) 

Dummy for region 7 (=1) 
0.03442978 0.08671043 

(2.11*) (2.11*) 

Dummy for region 8 (=1) 
0.03882056 0.12474226 

(2.67**) (2.67**) 

Dummy for region 9 (=1) 
0.105632 0.28328927 

(6.04**) (6.04**) 

Constant 
1.61477028 -0.00203088 

(4.24**) (0.06) 

Number of observations 235 235 

Adjusted R2 0.67 0.67 

Notes: * statistically significant at the 5% level; ** statistically significant at the 1% level.  

Source: Ministerio de Desarrollo Social [42]. 
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 Figure 21.15 

Limited translation empirical Bayes estimates of the comuna level poverty rates, and the upper and 

lower thresholds. 

 

 
Source: Ministerio de Desarrollo Social [42]. 

 

 

 

Figure 21.16.  

Raking factors used so that the total of the model-based estimates within each region matches the standard 

design-based official estimate for the region, by region. 

 

N° Region Rr 

1 Tarapacá 1.12172 

2 Antofagasta 0.97455 

3 Atacama 1.06685 

4 Coquimbo 1.04309 

5 Valparaíso 1.00387 

6 O´Higgins 1.00430 

7 Maule 1.05292 

8 Biobío 0.99010 

9 Araucanía 1.01628 

10 Los Lagos 1.04088 

11 Aysén 1.06255 

12 Magallanes 0.97368 

13 Metropolitana 0.97765 

14 Los Ríos 1.08572 

15 Arica y Parinacota 0.99486 

Source:  Ministerio de Desarrollo Social [42]. 
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Figure 21.17. 

 Length of the direct and parametric bootstrap confidence intervals of the comuna-level 

poverty rates for comunas sorted by the limited translation empirical Bayes estimates of 

the poverty rate. 

 

 
Note: The three comunas with the largest estimates of the length of the direct confidence 

interval were excluded from the graph. Source: Compiled by authors based on Casen 2009 data 

and Ministerio de Desarrollo Social [43]. 
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Figure 21.18a.  

Histograms of pivots in the parametric bootstrap method with 5,000 bootstrap samples.  

Comuna of Puchucavi 

 
 

Figure 21.18b.  

Histograms of pivots in the parametric bootstrap method with 5,000 bootstrap samples.  

Comuna of Providencia 

 
 

Figure 21.18c.  

Histograms of pivots in the parametric bootstrap method with 5,000 bootstrap samples.  

Comuna of Peumo 

 
Source: Ministerio de Desarrollo Social [42]. 
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Target Population

Individual governments

A government is an organized entity which, in addition to 
having governmental character, has sufficient discretion in 
the management of its own affairs to distinguish it as 
separate from the administrative structure of any other 
governmental unit

Types
o Counties
o Municipalities
o Townships
o Special Districts
o Schools Districts

3



Parameters of Interest
Annual Survey of Employment and Payroll
(ASPEP)

Full-time Employees
Full-time Pay
Part-time Employees
Part-time Pay
Part-time Hours

4



Parameters of Interest (Cont’d)
ASPEP Publication

Statistics on the number of federal, state, and local government 
employees and their gross payrolls

5



Parameters of Interest
Statistical Aggregation

Totals
by (state, function)

Level of government totals
o Local, state, state and local
o Nation

6



Parameters of Interest (Cont’d)
Some Function Codes of ASPEP

 
 
 
002, Space Research & Technology (Federal)  
005, Correction   
006, National Defense and International     Relations 

(Federal)    
012, Elementary and Secondary - Instruction  
112, Elementary and Secondary - Other Total 
014, Postal Service (Federal)   
016, Higher Education - Other   
018, Higher Education - Instructional   
021, Other Education (State) 
022, Social Insurance Administration (State)    
023, Financial Administration 
024, Firefighters 
124, Fire - Other   
025, Judicial & Legal 
029, Other Government Administration 
032, Health
 
 

040, Hospitals

044, Streets & Highways  
050, Housing & Community Development (Local) 
052, Local Libraries
059, Natural Resources 
061, Parks & Recreation 
062, Police Protection - Officers 
162, Police-Other
079, Welfare
080, Sewerage
081, Solid Waste Management  
087, Water Transport & Terminals
089, Other & Unallocable
090, Liquor Stores (State)
091, Water Supply
092, Electric Power
093, Gas Supply
094, Transit

7

040, Hospitals 
 001, Airport 

 



Sample Design

Multistage sample design
PPS sample
o Stratified PPS (state x type) based on Total Pay
Cut-off sampling method in sizable (state, type)

     strata
o Construct a cut-off point to determine small and large 

size units (two strata)
Modified cut-off sampling (a stratified PPS 

    sample method)
o Sub-sampling on small strata

10



Sample
Sampling Frame

                                                              

                               

                              Sample

 
 
         PPS                                                             
                                       
 
 
 
 
 

     Certainties 

          Births 

11

gfŷ
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Small Area Challenge

Designed at (state, type) level, estimated  
at function level 

Estimate the total of employees and payroll 
at state by function level

      

12 

,
gf

gf gfi
i U

Y Y where g state and f function



Small Area Challenge (Cont’d)

Small area: a small geographic area within 
a larger geographic area or a small      
demographic group within a larger group

Most small area estimation methods  
borrow strength from related or similar  
small areas using auxiliary data

13



Other Challenges

Figure 1: Skew data -Not Transform (California)
                (Full-Time Employees, Function) 
                 

14



Other Challenges (Cont’d)
Figure 2: Skew data - Log Transform (CA)
               (Log(Full-Time Employees), Function)

15



Estimators- ASPEP

Direct 

Horvitz-Thompson:  
  

Battese, Harter, Fuller (BHF) Model

Our Proposed Model

ˆ HT
gf gf gfy w y

16



Estimators (Cont’d)
Battese, Harter, Fuller (BHF) Model

     : the number of full-time employees for the jth governmental unit   
       within the ith small area
     : number of full-time employees for the ith small area obtained from 
       the previous census
            :  unknown intercept and slope, respectively;       are small 
        area specific random effects
     : errors in individual observations

0 1ij i i ijy x v

ijy

ix

0 1, and iv

ij

17



Estimators (Cont’d)
Our Proposed Model

where

0 1log( ) log( )ij i i ijy x v

2 2~ (0, ) and ~ (0, )
iid iid

i ijv N N

18



Evaluation
Data

California 2002 & 2007 Census  
ASPEP

government units that overlap between the 
2002 and 2007 Census of Governments 
reporting strictly positive numbers of full-time 
employees.

19



Evaluation- Results
Table 1: Percent Relative Error for Differences Estimates of Full Time Employees  to the 
Truth (California)

20



Evaluation (Cont’d)
Visualization of Table 1
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Evaluation- Results
(For Gas Supply, All States, Average n= 4)

22

Figure 4: 



Evaluation (Cont’d)
Overall- Relative Errors

23

Table 2:  Comparison of Overall Relative Errors (CA)

Overall -  Absolute Relative Errors 

|(HT-True)/True| |(EB-True)/True| 
 

|(EB_benchmarked
-True)/True| 
 

|(BHF-True)/True| 
 

5.26% 1.67% 1.44% 14.35% 

Overall -  Relative Errors 
 

(HT-True)/True (EB-True)/True (EB_benchmarked-
True)/True 

(BHF-True)/True 

3.05% -1.5% -1% -14.35% 



Evaluation (Cont’d)
Raking Log-transformed to HT Base (CA)
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Evaluation (Cont’d)

25

Benchmarking improved 



Evaluation (Cont’d)
Comparison: EB, EB Benchmarked and HT
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Evaluation (Cont’d)
Domain Analysis (Gas Supply, AVG n=4)

EB= log(full-time employees),  Benchmarked-EB= EB benchmarked to HT (one-way raking to nation total) 

27



Evaluation (Cont’d)
Results

24 out of 29 function codes (CA), our 
estimator outperforms the BHF, especially 
in small area (n <= 8)
Benchmark Ratio (BR)
o -HT)/HT|
o Indicating how close the estimate is to the HT  
   when considering large areas

28



Evaluation (Cont’d)
Results

Comparison of Benchmark Ratios (Nation)

29

Size BR for the EB BR for the BHF Number of units 

< 50 1.5 1.6 1086 

 1.1 1.5 212 



Evaluation (Cont’d)
Results- Diagnostic Analysis

Figure 9:  QQ Plot for BHF Model
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Evaluation (Cont’d)
Results- Diagnostic Analysis

Figure 10: QQ Plot for Our Model
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Robust Small Area Estimation Using a 
Mixture Model 
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Parameter of Interest: Small Area Means 
:ijy  value of a characteristic of interest for the jth unit 

in area i ( )ii = 1,...,m;j = 1,...,N  
Parameter of interest: 

1

1
(1 )

iN

i i ij i i i ir
j

Y N y f y f Y−

=

= = + −∑ ,  

1

1

in

i i ij
j

y n y−

=

= ∑ ; i i if n N= ; iN  and in  are the population 

size and sample size for area i 
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Estimator of Small Area Means 

 

ˆ ˆ(1 )i i i i irY f y f Y= + −  

• ˆ
irY   is a model-dependent predictor of the mean of 

the non-sampled part of area i ( 1, , ).i m=    

• If 0if ≈ , ˆ ˆ
i irY Y≈  

• Let 
1

m

i
i

n n
=

=∑ and 
1

.
m

i
i

N N
=

=∑  
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The Nested Error Regression Model  
(Battese, Harter, Fuller, 1988) 
 

iFor i = 1,...,m;j = 1,...,N , 
           

T
ij ij i ijy = x β + v + ε    

 

   ij• x is a vector of known auxiliary  
• β is the corresponding vector of parameters;  
• iv  are random effects 
• ijε  are errors in individual observations  

• 2~ (0, )
iid

iv N τ  and 2~ (0, ),   
iid

ij Nε σ  
• We assume that sampling is non-informative  



 5 

EBLUP  

  
BLUP of irY  :    

ˆ ˆ ˆ ,T
ir ir iY v= +x β  

• 1

1

( ) ,
i

i

N
T T
ir i i ij

j n

N n −

= +

= − ∑x x   

• β̂ is the BLUE of β,  
• 2 2 2 1 ˆˆ ( ) ( ).T

i i i iv n yτ σ τ −= + − x β is the BLUP of iv    
 
• EBLUP of irY  after plugging in estimates of 2σ and 

2τ . 
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A Robust Unit-Level Model:  An 
Extension of the BHF Model 

,iFor j = 1,...,N ;i = 1,...,m  
,T

ij ij i ijy v ε= + +x β  

2 ~ (0, )
iid

iv N τ•  ,  
2 2
1 2|  ~  (1 ) (0, ) (0, ),

iid

ij ij ij ijz z N z Nε σ σ− +   

       | ~ (1; ),
iid

ijz Binπ π•    

• π : probability of belonging to mixture 
part 2. 

• 2 2
1 2σ σ≤    
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Empirical Best Predictor (EBP) of iY  
ˆ ˆ ˆT
ir ir iY v= +x β  

1 1 1 1

2 2
1 2

12

2
1

ˆ ˆ ( ) ,

ˆˆ ˆˆ ˆ ˆ (1 ) ,   | , ,

ˆ ˆˆ ˆˆ ( ),   
ˆ

i i

i

n nm m
T T

ij ij ij i ij ij ij
i j i j

ij ij ij ij ij ij

n
T

i i i i ij
ji

w y v w

w z z z E z y

v y D w
D

σ σ

τ
τ

= = = =

− −

−

=

• = −

 • = − + =  

 
• = − =  +  

∑∑ ∑∑

∑

β x x x

x θ

x β

   

1 1

1 1 1 1

ˆ ˆ ,     
i i i in n n n

T
i ij ij ij i ij ij ij

j j j j
y w w y w w

− −

= = = =

   
• = =      

   
∑ ∑ ∑ ∑x x  
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    ,         

 
Overall Bias-corrected REB 

1

1 1

ˆ ˆ ,
i REBnm

ijREB OBC REB REB
ir ir b REB

i j

e
Y Y n s

s
φ+ −

= =

 
= +  

 
∑∑   

REBs : a robust measure of scale for the set of residuals 
{ }; 1,..., , 1,...,REB

ij ie j n i m= = ,  
e.g., ( ) 0.6745REB REB REB

ij ijs med e med e= −   
bφ : a bounded Huber’s function with the tuning 

parameter b = 5. 
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Estimation of Crop Indication 
 

• USDA-NASS has been publishing county level crop 
and livestock estimates since   1917 

• County indications of crops such as harvested yield 
are needed to assist farmers, agribusinesses and 
government agencies in local agricultural decision 
making.   

• Most NASS Field Offices conduct a separate 
County Estimates Survey every year.   Data from 
multiple sample surveys are used to estimate 
harvested yield for various crops at the county 
level.  
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Estimators Compared 
 
For seven mid-western states in the year 2007, we 
compared the following estimates, treating the 2007 
agriculture census as the gold standard.   
 
• EBLUP under the BHF model 
• EBP under NER Mixture Model [N2]  
• Kott-Busselberg Model-Based Direct [KB]  
• USDA-NASS official estimates  
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Criteria for Evaluation 
• AAD: the mean of absolute deviations between 

county estimates and corresponding 2007 census 
(PC) values  

• ASD: the mean of squared deviations between 
estimates and PC values 

• AARD: the mean of ratios between absolute 
deviations and PC values 

• ASRD: the mean of squared ratios between 
absolute deviations and PC values 

• PBC: the proportion of counties with estimate less 
than the corresponding PC value.  
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Results 
 
• The BHF and N2  estimates are clearly superior to 

the direct estimates for all the states considered.   
 
• EBPs are also better than the official estimates in 

all but one state (Minnesota.)  
 
• The OBC* correction to N2 provides similar 

results for most of the seven states.  However, it 
provides slightly better results for Iowa, but 
slightly worse results for Minnesota.   
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Level 2 Regression for Harvested Yield:  Minnesota 
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Table: Estimation Accuracy Measures for Harvested Yield*  
 

 

    State    Estimator                              Metric 
AAD ASD AARD ASRD PBC 

   Illinois EBLUP 1.34 2.85  0.036  0.002 0.32 
KB   2.7 12.6    0.07  0.009 0.85 
N2 1.33  2.8  0.036   0.002 0.33 
N2+OBC* 1.33 2.8 0.036 0.002 0.32 
Official   1.82 5.18  0.048  0.004 0.42 

  Iowa EBLUP  1.10 1.81  0.022  0.001 0.69 
KB   2.7 13.5  0.055  0.006 0.82  
N2  1.24 2.15  0.025  0.001 0.83 
N2+OBC* 0.95 1.48 0.019 0.001 0.72 
Official   2.12 5.94  0.043  0.002 0.08 

Minnesota EBLUP  1.32 3.92  0.037  0.004 0.31 
KB  3.46 26.0  0.095  0.022 0.85 
N2  1.23 4.04  0.036  0.004 0.36 
N2+OBC* 1.38 4.58 0.040 0.005 0.28 
Official   1.32  2.67  0.034  0.002 0.19 
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Residual Plots for BHF model for Soybeans yield:  Minnesota 
 
 



 15 

 

Residual Plots for BHF model for Soybeans yield:  Indiana 
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 18 

Future Research: 
 
• Develop refined area level covariates using NDVI  
• Incorporate non-response model 
• Use robust methods to estimate for harvested 

acreage to deal with outliers in the size variable 
• Develop a unified benchmarked method that 

produces estimates of all crop indications 
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David Salsburg, ASA Connect Discussion

”...D.J. Finney once wrote about the statistician whose
client comes in and says, ”Here is my mountain of trash.
Find the gems that lie therein.” Finney’s advice was to
not throw him out of the office but to attempt to find out
what he considers ”gems”. After all, if the trained
statistician does not help, he will find some one who
will....”

Partha Lahiri (UMD) BIGData May 11, 2016 95 / 98



Workshop on Statistical Data Integration
Singapore, 5th - 8th August, 2019.

• Topics:

• Record Linkage

• Statistical Matching

• Small Area Estimation

• Statistical Disclosure Avoidance

• Synthetic Population

• Big Data

• Combining Multiple Surveys

• Organisers: Sanjay Chaudhuri (chair), Partha Lahiri, Pedro Luis
do Nascimento Silva, Danny Pfeffermann.

• Sponsor: Institute for Mathematical Sciences, National University of
Singapore.

• More Information:

https://ims.nus.edu.sg/events/2019/data/index.php.



Conference on Current Trends in Survey Statistics
Singapore, August 13-16, 2019.

• Topics:

• Statistical Data Integration with Complex
Survey Data

• Statistical Methods for Non-sampling Errors

• Mixed Mode Mixed Frame Surveys

• Resampling Methods with Survey Data

• Informative Sampling

• Empirical Likelihood for Survey Data

• Bayesian Methods for Survey Data

• Non-probability Sampling

• Others

• The conference is partly sponsored by the Institute
for Mathematical Sciences, National University of
Singapore and endorsed by the International
Association of Survey Statisticians (IASS).

• Scientific Advisory Board:
• Raymond Chambers, University of Wollongong
• Malay Ghosh, University of Florida
• Graham Kalton, Westat
• Partha Lahiri, (Chair), University of Maryland
• Danny Pfeffermann, National Statistician of Israel and

University of Southampton,
• J. N. K. Rao, Carleton University,
• Pedro Luis do Nascimento Silva, IBGE, Brazil.

• Tentative Scientific Programme Committee:
• Sanjay Chaudhuri (Chair), NUS

• William Bell, US Census Bureau

• Yang Cheng, US Census Bureau

• Cinzia Cirillo, University of Maryland, College Park

• Jiming Jiang, University of California, Davis

• Ralph Munnich, University of Trier, Germany

• Santanu Pramanik, Delhi Centre of National Data Innovation, India,

• Jan Van Barkel, University of Maastricht

• Rebecca Steort, Duke University

• Dongchu Sun, University of Missouri

• Jiraphan Suntornchost, Chulalongkorn University,Thailand

• Nikos Tzavidis, University of Southampton

• Li-Chun Zhang, University of Southampton, Oslo, Stat Norway



THANK YOU!

Partha Lahiri (UMD) BIGData
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