On a Subclass of Tilted Starlike Functions with Respect to Conjugate Points

Nur Hazwani Aqilah Abdul Wahid, Daud Mohamad \& Shaharuddin Cik Soh

Department of Mathematics, Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA Malaysia, 40450, Shah Alam Selangor, MALAYSIA email: daud@tmsk.uitm.edu.my

Abstract

We define $S_{c}^{*}(\alpha, \delta, A, B)$ be the class of functions which are analytic and univalent in an open unit disc, $E=\{z:|z|<1\}$ of the form $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots+a_{n} z^{n}+\cdots=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and normalized with $f(0)=0$ and $f^{\prime}(0)-1=0$ and satisfy $\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1$, $z \in E$ where $g(z)=\frac{f(z)+\overline{f(\bar{z})}}{2}, \quad t_{\alpha \delta}=\cos \alpha-\delta, \quad \cos \alpha-\delta>0, \quad 0 \leq \delta<1$ and $|\alpha|<\frac{\pi}{2}$. The aim of this paper is to obtain the upper and lower bounds of $\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}$ and $\operatorname{Im} \frac{z f^{\prime}(z)}{g(z)}$ for this class of functions.

Keywords: univalent functions, starlike functions with respect to conjugate points, subordination principle, bounds of $\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}$ and $\operatorname{Im} \frac{z f^{\prime}(z)}{g(z)}$

INTRODUCTION

Let H be the class of functions ω which are analytic and univalent in the unit disc, $E=\{z:|z|<1\}$ given by

$$
\begin{equation*}
\omega(z)=\sum_{n=1}^{\infty} t_{n} z^{n} \tag{1}
\end{equation*}
$$

and satisfies the conditions $\omega(0)=0,|\omega(z)|<1, z \in E$.
Let $P(A, B)$ be the class of all functions p of the form

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots+p_{n} z^{n}+\cdots=1+\sum_{n=1}^{\infty} p_{n} z^{n} \tag{2}
\end{equation*}
$$

that is analytic in E and satisfying the condition

$$
p(z) \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1
$$

for $z \in E$. Then this function is called a Janowski function. Hence, by using the definition of subordination it can be written that $p \in P(A, B)$ if and only if

$$
p(z)=\frac{1+A \omega(z)}{1+B \omega(z)},-1 \leq B<A \leq 1, \omega \in H .
$$

Let S be the class of functions f which are analytic and univalent in E and of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{3}
\end{equation*}
$$

and normalized with $f(0)=0$ and $f^{\prime}(0)-1=0$.
Let two functions $F(z)$ and $G(z)$ be analytic in E. If there exists a functions $\omega \in H$ which is analytic in E with $\omega(0)=0$ and $|\omega(z)|<1$ such that $F(z)=G(\omega(z))$ for every $z \in E$, then we say that $F(z)$ is subordinate to $G(z)$ and it can be written as $F(z) \prec G(z)$. We also note that if $G(z)$ is univalent in E, then the subordination is equivalent to $F(0)=G(0)$ and $F(E) \subset G(E)$.

Moreover, we introduce $S_{c}^{*}(\alpha, \delta)$ as the class of functions f which are analytic and univalent in E and of the form (3) and normalized with $f(0)=0$ and $f^{\prime}(0)-1=0$ and satisfy

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}\right)>\delta \tag{4}
\end{equation*}
$$

where $g(z)=\frac{f(z)+\overline{f(\bar{z})}}{2}, \cos \alpha-\delta>0, \quad 0 \leq \delta<1$ and $|\alpha|<\frac{\pi}{2}$. We shall first relate the class $P(A, B)$ with the class $S_{c}^{*}(\alpha, \delta, A, B)$ so that we are able to obtain the bounds of $\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}$ and $\operatorname{Im} \frac{z f^{\prime}(z)}{g(z)}$ for the class $S_{c}^{*}(\alpha, \delta, A, B)$.

Theorem 1.1

If $f \in S$. Then $f \in S_{c}^{*}(\alpha, \delta, A, B)$ if and only if

$$
\begin{equation*}
\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}} \in P(A, B) \tag{5}
\end{equation*}
$$

where $g(z)=\frac{f(z)+\overline{f(\bar{z})}}{2}$ and $t_{\alpha \delta}=\cos \alpha-\delta$.
Proof.
Let $f \in S_{c}^{*}(\alpha, \delta, A, B)$. From the fact that $\frac{z f^{\prime}(z)}{g(z)}=p(z)$ where $g(z)=\frac{f(z)+\overline{f(\bar{z})}}{2}$ and g is starlike (Ravichandran , 2004), it follows that

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{g(z)}=1+\sum_{n=1}^{\infty} b_{n} z^{n} . \tag{6}
\end{equation*}
$$

Thus, from (4) we have

$$
\begin{gather*}
e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta=e^{i \alpha}\left(1+\sum_{n=1}^{\infty} b_{n} z^{n}\right)-\delta, \\
e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta=(\cos \alpha+i \sin \alpha)+e^{i \alpha} \sum_{n=1}^{\infty} b_{n} z^{n}-\delta, \\
e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha=t_{\alpha \delta}+e^{i \alpha} \sum_{n=1}^{\infty} b_{n} z^{n} \tag{7}
\end{gather*}
$$

where $t_{\alpha \delta}=\cos \alpha-\delta$.
Rearranging (7), we get

$$
\begin{aligned}
& e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha=t_{\alpha \delta}\left(1+\frac{e^{i \alpha}}{t_{\alpha \delta}} \sum_{n=1}^{\infty} b_{n} z^{n}\right), \\
& \left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}}=1+\frac{e^{i \alpha}}{t_{\alpha \delta}} \sum_{n=1}^{\infty} b_{n} z^{n} .
\end{aligned}
$$

Hence,

$$
\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}}=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

where $p_{n}=\frac{e^{i \alpha} b_{n}}{t_{\alpha \delta}}$.
Thus, for any $f \in S$, let

$$
\begin{equation*}
\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}}=p(z), z \in E \tag{8}
\end{equation*}
$$

so that $f \in S_{c}^{*}(\alpha, \delta, A, B)$ if and only if $p \in P(A, B)$.
Remark 1.2: We note that $t_{\alpha \delta}=\cos \alpha-\delta$ must always be positive so that (8) is valid. Therefore, we have to consider the condition of $\cos \alpha>\delta$ in the definition of the class $S_{c}^{*}(\alpha, \delta, A, B)$.

We now in the position to represent our class of functions in terms of subordination.

Definition 1.3

$f \in S_{c}^{*}(\alpha, \delta, A, B)$ if and only if

$$
\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}} \prec \frac{1+A z}{1+B z}, z \in E .
$$

(9)

By definition of subordination, it follows that $f \in S_{c}^{*}(\alpha, \delta, A, B)$ if and only if

$$
\begin{equation*}
\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}}=\frac{1+A \omega(z)}{1+B \omega(z)}=p(z), \omega \in H \tag{10}
\end{equation*}
$$

The following lemma due to Dixit and Pal (1995) is required to prove the later results.

Lemma 1.4

Let p be analytic in E. Then,

$$
p(z) \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1
$$

if and only if

$$
\begin{equation*}
\left|p(z)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}},|z|=r . \tag{11}
\end{equation*}
$$

Further, if p satisfies the inequality (11), then for $|z|=r<1$

$$
\frac{1-A r}{1-B r} \leq \operatorname{Re} p(z) \leq \frac{1+A r}{1+B r}
$$

MAIN RESULTS

Theorem 2.1

If $f \in S_{c}^{*}(\alpha, \delta, A, B)$, then for $|z|=r<1$ we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{g(z)}-\left(\frac{1-B^{2} r^{2}-B r^{2} e^{-i \alpha} T}{1-B^{2} r^{2}}\right)\right| \leq \frac{T r}{1-B^{2} r^{2}} \tag{12}
\end{equation*}
$$

which gives the centre, $c(r)$ and radius, $d(r)$ for functions in the class $S_{c}^{*}(\alpha, \delta, A, B)$ as
$c(r)=\frac{1-B^{2} r^{2}-B r^{2} e^{-i \alpha} T}{1-B^{2} r^{2}}$ and $d(r)=\frac{T r}{1-B^{2} r^{2}}$ for which $g(z)=\frac{f(z)+\overline{f(\bar{z})}}{2}, T=(A-B) t_{\alpha \delta}$ and $t_{\alpha \delta}=\cos \alpha-\delta$.

Proof.

Using (10), the transformation maps $|\omega(z)| \leq r$ onto the circle

$$
\begin{equation*}
\left|p(z)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}},|z|=r \tag{13}
\end{equation*}
$$

and also

$$
\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}}=p(z)
$$

where $t_{\alpha \delta}=\cos \alpha-\delta$.
Thus from (13), we get

$$
\begin{equation*}
\left|\frac{1}{t_{\alpha \delta}}\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}},|z|=r . \tag{14}
\end{equation*}
$$

Then, rearranging (14), we obtain

$$
\left|e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\left\{\frac{(i \sin \alpha+\delta)\left(1-B^{2} r^{2}\right)+\left(1-A B r^{2}\right) t}{1-B^{2} r^{2}}\right\}\right| \leq \frac{T r}{1-B^{2} r^{2}}
$$

where $T=(A-B) t_{\alpha \delta}$ and $t_{\alpha \delta}=\cos \alpha-\delta$,

$$
\left|e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\left(\frac{i \sin \alpha-B^{2} r^{2} i \sin \alpha+\delta-\delta B^{2} r^{2}+t_{\alpha \delta}-A B r^{2} \cos \alpha+\delta A B r^{2}}{1-B^{2} r^{2}}\right)\right| \leq \frac{T r}{1-B^{2} r^{2}},
$$

$$
\begin{gathered}
\left|e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\left(\frac{e^{i \alpha}-B^{2} r^{2}(i \sin \alpha+\delta)-A B r^{2} t_{\alpha \delta}}{1-B^{2} r^{2}}\right)\right| \leq \frac{T r}{1-B^{2} r^{2}}, \\
\left|e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\left(\frac{e^{i \alpha}-B^{2} r^{2}(i \sin \alpha+\delta)-A B r^{2} t_{\alpha \delta}+B^{2} r^{2} t_{\alpha \delta}-B^{2} r^{2} t_{\alpha \delta}}{1-B^{2} r^{2}}\right)\right| \leq \frac{T r}{1-B^{2} r^{2}}, \\
\left.\left|e^{i \alpha}\right| \frac{z f^{\prime}(z)}{g(z)}-\left(\frac{1-B^{2} r^{2}-B r^{2} e^{-i \alpha} T}{1-B^{2} r^{2}}\right) \right\rvert\, \leq \frac{T r}{1-B^{2} r^{2}} .
\end{gathered}
$$

Since $\left|e^{i \alpha}\right|=1$, we obtain

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{g(z)}-\left(\frac{1-B^{2} r^{2}-B r^{2} e^{-i \alpha} T}{1-B^{2} r^{2}}\right)\right| \leq \frac{T r}{1-B^{2} r^{2}} \tag{15}
\end{equation*}
$$

which yields the center, $c(r)$ and radius, $d(r)$ where

$$
c(r)=\frac{1-B^{2} r^{2}-B r^{2} e^{-i \alpha} T}{1-B^{2} r^{2}}
$$

and

$$
d(r)=\frac{T r}{1-B^{2} r^{2}}
$$

Remark 2.2: The result now follows from the subordination principle. From Lemma 1.4 and Theorem 2.1, it follows that,
Let p be analytic in E. Then

$$
\left(e^{i \alpha} \frac{z f^{\prime}(z)}{g(z)}-\delta-i \sin \alpha\right) \frac{1}{t_{\alpha \delta}}=\frac{1+A \omega(z)}{1+B \omega(z)} \prec \frac{1+A z}{1+B z},-1 \leq B<A \leq 1
$$

if and only if

$$
\left|\frac{z f^{\prime}(z)}{g(z)}-\left(\frac{1-B^{2} r^{2}-B r^{2} e^{-i \alpha} T}{1-B^{2} r^{2}}\right)\right| \leq \frac{T r}{1-B^{2} r^{2}}
$$

where $T=(A-B) t_{\alpha \delta}$ and $t_{\alpha \delta}=\cos \alpha-\delta$.
Thus, we can conclude that the Definition 1.3 holds.
Theorem 2.1 enables us to determine the upper and lower bounds of $\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}$ and $\operatorname{Im} \frac{z f^{\prime}(z)}{g(z)}$ as in the following theorem.

Theorem 2.3

If $f \in S_{c}^{*}(\alpha, \delta, A, B)$, then for $|z|=r, 0<r<1$

$$
\begin{equation*}
\frac{1-\operatorname{Tr}-B r^{2}(B+T \cos \alpha)}{1-B^{2} r^{2}} \leq \operatorname{Re} \frac{z f^{\prime}(z)}{g(z)} \leq \frac{1+\operatorname{Tr}-B r^{2}(B+T \cos \alpha)}{1-B^{2} r^{2}} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1-\operatorname{Tr}-B r^{2}(B-T \sin \alpha)}{1-B^{2} r^{2}} \leq \operatorname{Im} \frac{z f^{\prime}(z)}{g(z)} \leq \frac{1+T r-B r^{2}(B-T \sin \alpha)}{1-B^{2} r^{2}} \tag{17}
\end{equation*}
$$

for which $g(z)=\frac{f(z)+\overline{f(\bar{z})}}{2}, T=(A-B) t_{\alpha \delta}$ and $t_{\alpha \delta}=\cos \alpha-\delta$.

Proof.

From Theorem 2.1, we have

$$
\left|\frac{z f^{\prime}(z)}{g(z)}-\left(\frac{1-B^{2} r^{2}-B r^{2} e^{-i \alpha} T}{1-B^{2} r^{2}}\right)\right| \leq \frac{T r}{1-B^{2} r^{2}}
$$

which implies

$$
\frac{1-T r-B r^{2}(B+T \cos \alpha)}{1-B^{2} r^{2}} \leq \operatorname{Re} \frac{z f^{\prime}(z)}{g(z)} \leq \frac{1+\operatorname{Tr}-B r^{2}(B+T \cos \alpha)}{1-B^{2} r^{2}}
$$

and

$$
\frac{1-T r-B r^{2}(B-T \sin \alpha)}{1-B^{2} r^{2}} \leq \operatorname{Im} \frac{z f^{\prime}(z)}{g(z)} \leq \frac{1+T r-B r^{2}(B-T \sin \alpha)}{1-B^{2} r^{2}} .
$$

This completes the proof.
Remark 2.4: By putting $A=1$ and $B=-1$ in Theorem 2.3, we obtain the result for the class $S_{c}^{*}(\alpha, \delta, 1,-1)$ which is introduced earlier as in (4) where

$$
\frac{1-2 r t_{\alpha \delta}-r^{2}\left(1-2 t_{\alpha \delta} \cos \alpha\right)}{1-r^{2}} \leq \operatorname{Re} \frac{z f^{\prime}(z)}{g(z)} \leq \frac{1+2 r t_{\alpha \delta}-r^{2}\left(1-2 t_{\alpha \delta} \cos \alpha\right)}{1-r^{2}}
$$

and

$$
\frac{1-2 r t_{\alpha \delta}-r^{2}\left(1+2 t_{\alpha \delta} \sin \alpha\right)}{1-r^{2}} \leq \operatorname{Im} \frac{z f^{\prime}(z)}{g(z)} \leq \frac{1+2 r t_{\alpha \delta}-r^{2}\left(1+2 t_{\alpha \delta} \sin \alpha\right)}{1-r^{2}} .
$$

The results obtained can also be reduced to the results for some subclasses such as $S_{c}^{*}(0,0,1,-1)$, $S_{c}^{*}(0, \delta, 1,-1)$ and $S_{c}^{*}(0,0, A, B)$ which are introduced by El-Ashwah and Thomas (1987), Abdul Halim (1991) and Mad Dahhar and Janteng (2009) respectively.

REFERENCES

Abdul Halim, S. (1991). Functions starlike with respect to other points. Journal of Mathematics and Mathematical Sciences, 14(3): 451-456.
Dixit, K. K., and Pal, S. K. (1995). On a class of univalent functions related to complex order. Journal of Inequalities in Pure and Applied Mathematics, 26(9): 889-896.
Mad Dahhar, S. A. F. and Janteng, A. (2009). A subclass of starlike functions with respect to conjugate points. International Mathematical Forum, 4(28) : 1373-1377.
Ravichandran, V. (2004). Starlike and convex functions with respect to conjugate points. Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 20: 31-37.

