Menemui Matematik (Discovering Mathematics) Vol. 37, No. 1: 1-6 (2015)

On a Subclass of Tilted Starlike Functions with Respect to Conjugate Points

Nur Hazwani Aqilah Abdul Wahid, Daud Mohamad & Shaharuddin Cik Soh

Department of Mathematics, Faculty of Computer and Mathematical Sciences Universiti Teknologi MARA Malaysia, 40450, Shah Alam Selangor, MALAYSIA email: daud@tmsk.uitm.edu.my

ABSTRACT

We define $S_c^*(\alpha, \delta, A, B)$ be the class of functions which are analytic and univalent in an open unit disc, $E = \{z : |z| < 1\}$ of the form $f(z) = z + a_2 z^2 + a_3 z^3 + \dots + a_n z^n + \dots = z + \sum_{n=2}^{\infty} a_n z^n$ and normalized with f(0) = 0and f'(0) - 1 = 0 and satisfy $\left(e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta - i\sin\alpha\right) \frac{1}{t_{\alpha\delta}} \prec \frac{1 + Az}{1 + Bz}, -1 \le B < A \le 1,$ $z \in E$ where $g(z) = \frac{f(z) + \overline{f(\overline{z})}}{2}, t_{\alpha\delta} = \cos\alpha - \delta, \cos\alpha - \delta > 0, 0 \le \delta < 1$ and $|\alpha| < \frac{\pi}{2}$. The aim of this paper is to obtain the upper and lower bounds of $\operatorname{Re} \frac{zf'(z)}{g(z)}$ and $\operatorname{Im} \frac{zf'(z)}{g(z)}$ for this class of functions.

Keywords: univalent functions, starlike functions with respect to conjugate points, subordination principle, bounds of $\operatorname{Re} \frac{zf'(z)}{g(z)}$ and $\operatorname{Im} \frac{zf'(z)}{g(z)}$

INTRODUCTION

Let *H* be the class of functions ω which are analytic and univalent in the unit disc, $E = \{z : |z| < 1\}$ given by

$$\omega(z) = \sum_{n=1}^{\infty} t_n z^n \tag{1}$$

and satisfies the conditions $\omega(0) = 0$, $|\omega(z)| < 1$, $z \in E$.

Let P(A, B) be the class of all functions p of the form

$$p(z) = 1 + p_1 z + p_2 z^2 + \dots + p_n z^n + \dots = 1 + \sum_{n=1}^{\infty} p_n z^n$$
(2)

that is analytic in E and satisfying the condition

$$p(z) \prec \frac{1 + Az}{1 + Bz}, -1 \le B < A \le 1$$

for $z \in E$. Then this function is called a Janowski function. Hence, by using the definition of subordination it can be written that $p \in P(A, B)$ if and only if

$$p(z) = \frac{1 + A\omega(z)}{1 + B\omega(z)}, -1 \le B < A \le 1, \omega \in H.$$

Let S be the class of functions f which are analytic and univalent in E and of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
(3)

and normalized with f(0) = 0 and f'(0) - 1 = 0.

Let two functions F(z) and G(z) be analytic in E. If there exists a functions $\omega \in H$ which is analytic in E with $\omega(0) = 0$ and $|\omega(z)| < 1$ such that $F(z) = G(\omega(z))$ for every $z \in E$, then we say that F(z) is subordinate to G(z) and it can be written as $F(z) \prec G(z)$. We also note that if G(z) is univalent in E, then the subordination is equivalent to F(0) = G(0) and $F(E) \subset G(E)$.

Moreover, we introduce $S_c^*(\alpha, \delta)$ as the class of functions f which are analytic and univalent in E and of the form (3) and normalized with f(0) = 0 and f'(0) - 1 = 0 and satisfy

$$\operatorname{Re}\left(e^{i\alpha} \frac{zf'(z)}{g(z)}\right) > \delta \tag{4}$$

where $g(z) = \frac{f(z) + \overline{f(\overline{z})}}{2}$, $\cos \alpha - \delta > 0$, $0 \le \delta < 1$ and $|\alpha| < \frac{\pi}{2}$. We shall first relate the class

P(A,B) with the class $S_c^*(\alpha,\delta,A,B)$ so that we are able to obtain the bounds of $\operatorname{Re}\frac{zf'(z)}{g(z)}$ and

Im
$$\frac{zf'(z)}{g(z)}$$
 for the class $S_c^*(\alpha, \delta, A, B)$

Theorem 1.1

If $f \in S$. Then $f \in S_c^*(\alpha, \delta, A, B)$ if and only if

$$\left(e^{i\alpha}\frac{zf'(z)}{g(z)} - \delta - i\sin\alpha\right)\frac{1}{t_{\alpha\delta}} \in P(A,B)$$
(5)

where $g(z) = \frac{f(z) + \overline{f(\overline{z})}}{2}$ and $t_{\alpha\delta} = \cos \alpha - \delta$.

Proof.

Let $f \in S_c^*(\alpha, \delta, A, B)$. From the fact that $\frac{zf'(z)}{g(z)} = p(z)$ where $g(z) = \frac{f(z) + \overline{f(\overline{z})}}{2}$ and g is starlike (Ravichandran, 2004), it follows that

$$\frac{zf'(z)}{g(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n.$$
 (6)

Thus, from (4) we have

Menemui Matematik Vol. 37(1) 2015

2

On a Subclass of Tilted Starlike Functions with Respect to Conjugate Points

$$e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta = e^{i\alpha} \left(1 + \sum_{n=1}^{\infty} b_n z^n \right) - \delta,$$

$$e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta = \left(\cos \alpha + i \sin \alpha \right) + e^{i\alpha} \sum_{n=1}^{\infty} b_n z^n - \delta,$$

$$e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta - i \sin \alpha = t_{\alpha\delta} + e^{i\alpha} \sum_{n=1}^{\infty} b_n z^n$$
(7)

where $t_{\alpha\delta} = \cos \alpha - \delta$. Rearranging (7), we get

$$e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta - i\sin\alpha = t_{\alpha\delta} \left(1 + \frac{e^{i\alpha}}{t_{\alpha\delta}} \sum_{n=1}^{\infty} b_n z^n \right),$$
$$\left(e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta - i\sin\alpha \right) \frac{1}{t_{\alpha\delta}} = 1 + \frac{e^{i\alpha}}{t_{\alpha\delta}} \sum_{n=1}^{\infty} b_n z^n.$$

Hence,

$$\left(e^{i\alpha}\frac{zf'(z)}{g(z)}-\delta-i\sin\alpha\right)\frac{1}{t_{\alpha\delta}}=1+\sum_{n=1}^{\infty}p_nz^n$$

where $p_n = \frac{e^{i\alpha}b_n}{t_{\alpha\delta}}$.

Thus, for any $f \in S$, let

$$\left(e^{i\alpha}\frac{zf'(z)}{g(z)} - \delta - i\sin\alpha\right)\frac{1}{t_{\alpha\delta}} = p(z), z \in E$$
(8)

so that $f \in S_c^*(\alpha, \delta, A, B)$ if and only if $p \in P(A, B)$.

Remark 1.2: We note that $t_{\alpha\delta} = \cos \alpha - \delta$ must always be positive so that (8) is valid. Therefore, we have to consider the condition of $\cos \alpha > \delta$ in the definition of the class $S_c^*(\alpha, \delta, A, B)$.

We now in the position to represent our class of functions in terms of subordination. **Definition 1.3**

 $f \in S_c^*(\alpha, \delta, A, B)$ if and only if

$$\left(e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta - i\sin\alpha\right) \frac{1}{t_{\alpha\delta}} \prec \frac{1 + Az}{1 + Bz}, z \in E.$$

(9)

By definition of subordination, it follows that $f \in S_c^*(\alpha, \delta, A, B)$ if and only if

$$\left(e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta - i\sin\alpha\right) \frac{1}{t_{\alpha\delta}} = \frac{1 + A\omega(z)}{1 + B\omega(z)} = p(z), \omega \in H$$
(10)

The following lemma due to Dixit and Pal (1995) is required to prove the later results.

Lemma 1.4

Let *p* be analytic in E. Then,

$$p(z) \prec \frac{1 + Az}{1 + Bz}, -1 \le B < A \le 1$$

Menemui Matematik Vol. 37(1) 2015

3

if and only if

$$\left| p(z) - \frac{1 - ABr^2}{1 - B^2 r^2} \right| \le \frac{(A - B)r}{1 - B^2 r^2}, |z| = r.$$
(11)

Further, if p satisfies the inequality (11), then for |z| = r < 1 $\frac{1 - Ar}{1 - Br} \le \operatorname{Re} p(z) \le \frac{1 + Ar}{1 + Br}.$

MAIN RESULTS

Theorem 2.1

If $f \in S_{c}^{*}(\alpha, \delta, A, B)$, then for |z| = r < 1 we have $\left| \frac{zf'(z)}{g(z)} - \left(\frac{1 - B^{2}r^{2} - Br^{2}e^{-i\alpha}T}{1 - B^{2}r^{2}} \right) \right| \le \frac{Tr}{1 - B^{2}r^{2}}$ (12)

which gives the centre, c(r) and radius, d(r) for functions in the class $S_c^*(\alpha, \delta, A, B)$ as

$$c(r) = \frac{1 - B^2 r^2 - Br^2 e^{-i\alpha} T}{1 - B^2 r^2} \quad and \quad d(r) = \frac{Tr}{1 - B^2 r^2} \quad for \quad which \quad g(z) = \frac{f(z) + f(\bar{z})}{2}, \ T = (A - B)t_{\alpha\delta}$$

and $t_{\alpha\delta} = \cos \alpha - \delta$.

Proof.

Using (10), the transformation maps $|\omega(z)| \le r$ onto the circle

$$\left| p(z) - \frac{1 - ABr^2}{1 - B^2 r^2} \right| \le \frac{(A - B)r}{1 - B^2 r^2}, |z| = r$$
(13)

and also

$$\left(e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta - i\sin\alpha\right) \frac{1}{t_{\alpha\delta}} = p(z)$$

where $t_{\alpha\delta} = \cos \alpha - \delta$.

Thus from (13), we get

$$\left|\frac{1}{t_{\alpha\delta}}\left(e^{i\alpha}\frac{zf'(z)}{g(z)} - \delta - i\sin\alpha\right) - \frac{1 - ABr^2}{1 - B^2r^2}\right| \le \frac{(A - B)r}{1 - B^2r^2}, |z| = r.$$
(14)

Then, rearranging (14), we obtain

$$\left| e^{i\alpha} \frac{zf'(z)}{g(z)} - \left\{ \frac{(i\sin\alpha + \delta)(1 - B^2r^2) + (1 - ABr^2)t_{\alpha\delta}}{1 - B^2r^2} \right\} \right| \le \frac{Tr}{1 - B^2r^2}$$

where $T = (A - B)t_{\alpha\delta}$ and $t_{\alpha\delta} = \cos\alpha - \delta$, $\left| e^{i\alpha} \frac{zf'(z)}{g(z)} - \left(\frac{i\sin\alpha - B^2 r^2 i\sin\alpha + \delta - \delta B^2 r^2 + t_{\alpha\delta} - ABr^2 \cos\alpha + \delta ABr^2}{1 - B^2 r^2} \right) \right| \le \frac{Tr}{1 - B^2 r^2},$

Menemui Matematik Vol. 37(1) 2015

On a Subclass of Tilted Starlike Functions with Respect to Conjugate Points

$$\begin{vmatrix} e^{i\alpha} \frac{zf'(z)}{g(z)} - \left(\frac{e^{i\alpha} - B^2 r^2 (i\sin\alpha + \delta) - ABr^2 t_{a\delta}}{1 - B^2 r^2}\right) \end{vmatrix} \le \frac{Tr}{1 - B^2 r^2}, \\ \begin{vmatrix} e^{i\alpha} \frac{zf'(z)}{g(z)} - \left(\frac{e^{i\alpha} - B^2 r^2 (i\sin\alpha + \delta) - ABr^2 t_{a\delta} + B^2 r^2 t_{a\delta} - B^2 r^2 t_{a\delta}}{1 - B^2 r^2}\right) \end{vmatrix} \le \frac{Tr}{1 - B^2 r^2}, \\ \begin{vmatrix} e^{i\alpha} \left| \frac{zf'(z)}{g(z)} - \left(\frac{1 - B^2 r^2 - Br^2 e^{-i\alpha} T}{1 - B^2 r^2}\right) \right| \le \frac{Tr}{1 - B^2 r^2}. \end{aligned}$$

Since $|e^{i\alpha}| = 1$, we obtain

$$\left|\frac{zf'(z)}{g(z)} - \left(\frac{1 - B^2 r^2 - Br^2 e^{-i\alpha}T}{1 - B^2 r^2}\right)\right| \le \frac{Tr}{1 - B^2 r^2}$$
(15)

which yields the center, c(r) and radius, d(r) where

$$c(r) = \frac{1 - B^2 r^2 - Br^2 e^{-i\alpha}T}{1 - B^2 r^2}$$

and

$$d(r) = \frac{Tr}{1 - B^2 r^2}.$$

Remark 2.2: The result now follows from the subordination principle. From Lemma 1.4 and Theorem 2.1, it follows that,

Let p be analytic in E. Then

$$e^{i\alpha} \frac{zf'(z)}{g(z)} - \delta - i\sin\alpha \left(\frac{1}{t_{\alpha\delta}}\right) = \frac{1 + A\omega(z)}{1 + B\omega(z)} \prec \frac{1 + Az}{1 + Bz}, -1 \le B < A \le 1$$

if and only if

$$\left|\frac{zf'(z)}{g(z)} - \left(\frac{1 - B^2 r^2 - Br^2 e^{-i\alpha}T}{1 - B^2 r^2}\right)\right| \le \frac{Tr}{1 - B^2 r^2}$$

where $T = (A - B)t_{\alpha\delta}$ and $t_{\alpha\delta} = \cos \alpha - \delta$.

Thus, we can conclude that the Definition 1.3 holds.

Theorem 2.1 enables us to determine the upper and lower bounds of $\operatorname{Re} \frac{zf'(z)}{g(z)}$ and $\operatorname{Im} \frac{zf'(z)}{g(z)}$ as in the following theorem.

Theorem 2.3

If
$$f \in S_{c}^{*}(\alpha, \delta, A, B)$$
, then for $|z| = r, 0 < r < 1$
$$\frac{1 - Tr - Br^{2}(B + T\cos\alpha)}{1 - B^{2}r^{2}} \le \operatorname{Re}\frac{zf'(z)}{g(z)} \le \frac{1 + Tr - Br^{2}(B + T\cos\alpha)}{1 - B^{2}r^{2}}$$
(16)

and

$$\frac{1 - Tr - Br^2 (B - T\sin\alpha)}{1 - B^2 r^2} \le \operatorname{Im} \frac{zf'(z)}{g(z)} \le \frac{1 + Tr - Br^2 (B - T\sin\alpha)}{1 - B^2 r^2}$$
(17)

Menemui Matematik Vol. 37(1) 2015

5

Nur Hazwani Aqilah Abdul Wahid, Daud Mohamad & Shaharuddin Cik Soh

for which
$$g(z) = \frac{f(z) + \overline{f(\overline{z})}}{2}$$
, $T = (A - B)t_{\alpha\delta}$ and $t_{\alpha\delta} = \cos \alpha - \delta$.

Proof.

From Theorem 2.1, we have

$$\left|\frac{zf'(z)}{g(z)} - \left(\frac{1 - B^2 r^2 - Br^2 e^{-i\alpha}T}{1 - B^2 r^2}\right)\right| \le \frac{Tr}{1 - B^2 r^2}$$

which implies

$$\frac{1 - Tr - Br^2(B + T\cos\alpha)}{1 - B^2r^2} \le \operatorname{Re}\frac{zf'(z)}{g(z)} \le \frac{1 + Tr - Br^2(B + T\cos\alpha)}{1 - B^2r^2}$$

and

$$\frac{1 - Tr - Br^2(B - T\sin\alpha)}{1 - B^2r^2} \le \operatorname{Im}\frac{zf'(z)}{g(z)} \le \frac{1 + Tr - Br^2(B - T\sin\alpha)}{1 - B^2r^2}.$$

This completes the proof.

Remark 2.4: By putting A = 1 and B = -1 in Theorem 2.3, we obtain the result for the class $S_c^*(\alpha, \delta, 1, -1)$ which is introduced earlier as in (4) where

$$\frac{1-2rt_{\alpha\delta}-r^2(1-2t_{\alpha\delta}\cos\alpha)}{1-r^2} \le \operatorname{Re}\frac{zf'(z)}{g(z)} \le \frac{1+2rt_{\alpha\delta}-r^2(1-2t_{\alpha\delta}\cos\alpha)}{1-r^2}$$

and

$$\frac{1-2rt_{\alpha\delta}-r^2(1+2t_{\alpha\delta}\sin\alpha)}{1-r^2} \le \operatorname{Im}\frac{zf'(z)}{g(z)} \le \frac{1+2rt_{\alpha\delta}-r^2(1+2t_{\alpha\delta}\sin\alpha)}{1-r^2}.$$

The results obtained can also be reduced to the results for some subclasses such as $S_c^*(0,0,1,-1)$, $S_c^*(0,\delta,1,-1)$ and $S_c^*(0,0,A,B)$ which are introduced by El-Ashwah and Thomas (1987), Abdul Halim (1991) and Mad Dahhar and Janteng (2009) respectively.

REFERENCES

- Abdul Halim, S. (1991). Functions starlike with respect to other points. *Journal of Mathematics and Mathematical Sciences*, 14(3): 451-456.
- Dixit, K. K., and Pal, S. K. (1995). On a class of univalent functions related to complex order. *Journal of Inequalities in Pure and Applied Mathematics*, **26(9)**: 889-896.
- Mad Dahhar, S. A. F. and Janteng, A. (2009). A subclass of starlike functions with respect to conjugate points. *International Mathematical Forum*, **4**(**28**) : 1373-1377.
- Ravichandran, V. (2004). Starlike and convex functions with respect to conjugate points. *Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis*, **20**: 31-37.