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ABSTRACT 
In this article we look at how the convergence and divergence of real sequences are defined. We will 
discuss how an informal definition of convergence evolves into the formal definition. The aim here is 
to provide a gentle introduction and the motivation behind the definition of convergence of real 
sequences. 
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INTRODUCTION 

When a student comes across the topic of sequences for the first time in Calculus or Real 
Analysis courses, the concept of convergence is introduced informally followed by the formal 
definition. It is the formal definition, expressed in the language of mathematical logic, that seems 
non intuitive. It shocks the student of the harsh nature of abstract mathematics. 
 
The concept of functions is familiar to any mathematics students. A function  is a rule that 
assigns to every element  in the domain  a unique element  in the co-domain. It is expressed 
as 

: →  where the functional value of  is ( ). 
 
A (infinite) sequence  is also a function. It is distinguished from any general function by its 
domain. The domain of a sequence is the set of natural number ℕ and the co-domain is the set of 
real numbers ℝ. 
 

For example a function : (0, ∞) → ℝ is defined by ( ) = . A sequence : ℕ → ℝ is defined 

by ( ) = . 

 
For sequences, the notation { }  is used. If it is desired that the rule is expressed then the 

notation is, for example , a function : ℕ → ℝ . For brevity we drop the indices and use 

the notation  instead. 
 
It is assumed that the reader is familiar with the triangle inequalities and the technique of proving 
by contradiction. A good discussion can be found in (Fitzpatrick, 1996) and (Haggarty, 1989). A 
bit of logic is involved in negating mathematical statements, (Devlin, 2003) has excellent 
explanations.  
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CONVERGENCE 

What is of interest with sequences is the concept of convergence, the behaviour of the terms 
when  gets larger and larger. 
 

For the sequence , the terms are 1, , ,…, ,…It appears that the terms are getting closer 

and closer to 0 as  gets larger and larger. Here we say the sequence converges to 0. (Figure 1) 
 

 
Figure 1: =  gets closer to 0 as  gets very large 

 

The notation used is lim → = 0. 

 
As for the sequence { } the terms get larger and larger as  get larger and larger. Here we say 
the sequence converges to ∞ as  tends to ∞, that is lim → =  ∞. 
 
Similarly the terms of the sequence {− } get larger and larger in the negative sense. Here the 
sequence tends to −∞ as  tends to ∞. 
 
For the sequence {(−1) }, the terms are −1, 1, −1, …Here the terms of the sequence alternate 
between −1 and 1 and does not approach a unique number. The sequence 
1, 2, 3, 2, 5, 2, 7, 2, 9,…also do not approach a unique number. The terms oscillate between 2 and 
progressively larger odd numbers as  gets larger and larger. In cases like these, we say the 
sequences diverge. 
 
Therefore there are four cases with regard to convergence of a sequence. The sequence 
converges to some real number , to ∞, to −∞ or diverges. 
 
Some literature referred to sequences converging to ± ∞ as properly divergent sequences. 
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CONVERGENCE TO SOME REAL NUMBER 

The informal definition of convergence of a sequence to some real number  is: as  gets larger 
and larger, the terms of the sequence  gets closer and closer to . 
 
Now the formal definition for the convergence of a sequence to some number  is: there is an 

 ∈  ℝ , such that for every > 0 there is an ∈  ℕ (which depends on ) such that for all 
∈ ℕ , if  ≥  then | − |  <  . In symbolic logic 

 
 ∃ ∈  ℝ, ∀  > 0, ∃  ∈ ℕ , ∀  ∈ ℕ ,  ≥ →  | − | < . (1) 
 
That is, for large enough  the terms of the sequence stay in the −  band. (Figure 2) 
 

 
Figure 2: For all ≥ ,   lies in ( − , + ) 

 
For those trying to understand the formal definition, a few questions may come to mind. What is 

 > 0, and how it enters into the definition? Why take the difference −  and bound it by ? 
Why require the existence of some natural number  which depends on ? 
 
It is this formal definition that the student is having difficulty understanding. There is a gap in 
going from intuitive notion of convergence to the precise concept of convergence. Most literature 
jump from informal definition to formal definition. In the end the novice student becomes none 
the wiser. 
 
In (Bartle, Sherbert, 2011), one way of looking at the convergence is to play the −  game. 
The game involves the connection between  and . “Player  asserts that a certain number  is 
the limit of the sequences ( ). Player  challenges this assertion by giving Player  a specific 
value for  > 0. Player  must respond to the challenge by coming up with a value of  such 
that | − | <  for all >  . If Player A can always find a value of  that works, then he wins, 
and the sequence is convergent. However, if Player  can give a specific value of > 0 for 
which Player A cannot respond adequately, then Player B wins, and we conclude that the 
sequence does not converge to .” 
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How by playing this −  game leads to the understanding the formal definition of 
convergence? The key lie in the following theorem, which bridges the gap between the informal 
definition and formal definition. 
 
Theorem. Let a be a real number. If for every > 0, 0 ≤  <  then = 0. 
 
One way of looking at this statement is if all the people in the world possess more money than 
you, whether they are very poor or extremely rich, then you have nothing. 
 
Proof. The proof that we use is proof by contradiction. The reader may consult (Devlin, 2003). 

Suppose that for every > 0, we have 0 ≤  <  but ≠ 0. Now if we take = , then 

> 0 and the hypothesis must also hold with , that is 0 ≤ < = . But this is clearly 

false.  
 
The assumption that  ≠ 0 leads to a contradiction, therefore = 0. 

□ 
 
From the Theorem if we can show | − | <  for every  > 0 then we are forced to conclude 

− = 0 or  is essentially  for large . Here we use the word “essentially” since  is not 
equal to  but very close indeed to  by a distance .  
 
Now the argument goes like this 
 

Player A: I claim the the sequence converges to . 
Player B: You do? Let's see…I give you > 0. 
 
Player A: Let see, yes, take . You can check that for >   all the terms of 

sequence is such that | − | <   
Player B: You are right. Let me make it harder for you. Let me choose > 0 a 

much smaller than > 0. Can you respond to that? 
 
Player A: OK… Hmmm, yes there is such an  but it is much bigger than . But 

for all >  we have| − | <   
Player B: Let me check with my fast computer…You are correct 

⋮ 
…Two hours later and with almost all  > 0  

⋮ 
Player A: Do you want to keep playing? I am tired. It seems that no matter what  

you give me I have been able to respond with a corresponding .  
Player B: OK, I am satisfied with your responses. We can stop playing now. The 

sequence converges to  as you claimed. 
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The pattern of the conversation above goes like this: 
 

Given > 0, there is an  such that if ≥   then | − | < , 
given > 0, there is an  such that if ≥   then | − | < , 
given > 0, there is an  such that if ≥   then | − | < , 

⋮ 
given > 0, there is an  such that if ≥   then | − | < , 
 

that is given any > 0 we can always find an  such that if  >  then | − | < . 
 
The formal definition takes shape here. 
 
Let us do a numerical example playing the −  with the sequence = . This sequence 
converges to 0. 
 

Choose any = 1. Then = 2 works because for all > 2 we have 
| − 0| = < < 1 < . 

 

Choose = 0.5, then = 3 works because for all > 3, − 0 < < 0.5 = . 

 
Choose = 0.001, then = 1000  works because for all > 1000, 

− 0 < ≤ 0.001 = , 

 
and so on…  

 
The formal proof is this. Given any > 0, we can find a natural number  such that < . Such 

 exists courtesy of the Completeness Axiom of the real number. Then for all ≥ , we have 

− 0 = < < . 

Therefore  lim → = 0. 

□ 
 

Let us do another example by proving  lim → = . If any > 0 is given, our task is find a 

natural number  such that  

if ≥  then − < . 

Now  −  < , simplifies to < . (The modulus sign can be dropped since  is positive). 

By the Archimedean axiom, given any  > 0, there is an  such that < 4 .  Then for all 

≥  we have 4 ≥ 4  and therefore   < < . 

□ 
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(The Archimedean axiom states that for any real numbers a,b with > 0, there is a natural 
number  such that > . Given a cup that can take  unit volume of water, with enough 
number of scooping (and patience) we can fill a swimming pool that takes  unit volume of 
water.) 
 

CONVERGENCE TO INFINITE LIMITS 

As with sequences that converge, there are sequences whose terms are positive and gets larger 
and larger in the positive directive, or negative and get larger and larger in the negative direction. 
The terms do no approach any real number but shoot off to ∞ or −∞.  
 
We will see how the definition of sequences converging to ±∞ takes shape. 
 
Intuitively as  tends gets larger and larger, the terms of the sequence get larger and larger. The 
sequence is not bounded above, which means that whatever bound we put, there are terms that 
exceed the bound. That is, for any real number α (usually positive) there is some integer , 
which depends on α, such that > . Since the sequence is increasing, we have ≤ ≤

≤  ⋯ and therefore >  for ≥ . (Figure 3) 
 

 
Figure 3: For all ≥ ,  >   

 
These are formalised as follows. The sequence → ∞ as → ∞ if given any positive real 
number  there is an ∈ ℕ, which depends on , such that for all ∈ ℕ if >  then > . 
In symbolic logic 
 
 (∀ ∈  ℝ)(∃ ∈ ℕ)(∀ ≥ ℕ) ≥ → >  (2) 
 

Take the sequence = 2 . Given an ∈ , choose ∈ ℕ such that ≥ . This is possible 

by the Archimedean Axiom. Then for all ≥ , we have = 2 > 2 > 2 ⋅ =  . 

 
As for the sequence that goes to −∞, the terms of the sequence get larger and larger in the 
negative direction. The sequence is not bounded below, so that whatever bound we place, there 
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are terms that exceed the bound. That is, for any real number  (usually negative) there is some 
integer  such that < . Since the sequence is decreasing, we have ≥ ≥ ≥
 ⋯ and therefore <  for ≥ . (Figure 4) 
 

 
Figure 4: For all ≥ ,  <  

 
 
The formal definition is thus if given any positive real number  there is an ∈  ℕ, which 
depends on , such that for all ∈ ℕ if >  then < . 
 
As an illustration, take the sequence = − . Given any ∈  ℝ, choose ∈ ℕ such that 

> − . Then for all ≥ , we have = − ≤ − < .  
 
As a summary, let's compare the definitions of convergence to ∞ and −∞: 
 

A sequence  has lim → =
∞,

−∞ if given any 
∈ ℝ (usually positive)
∈ ℝ (usually negative) 

 

there is an ∈ ℕ such that for all ≥  the terms of the sequence 
>
< . 

 
DIVERGENT SEQUENCES 

So far we have seen sequences that converge to some real number , sequences that converge to 
∞, and −∞. As with sequences that converge, there are sequences that do not converge. 
 
A sequence which is not convergent is divergent. 
 
The terms of the sequence (−1)  alternates between −1 and 1. There is no real number to where 
the sequence converges (Figure 5) 
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Figure 5: Oscillate between −1 and 1 

 
The terms of the sequence 1, 2, 3, 2, 5, 2, 7, 2, … oscillate between 2 and the odd positive integers. 
Again the sequence does not approach any real number. (Figure 6) 
 

 
Figure 6: Oscillate between 2 and the odd numbers 

 
How is then the non-convergence of a sequence is defined? We negate statement (1) to obtain 
 
 ∀ ∈  ℝ, ∃ > 0, ∀  ∈  ℕ, ∃  ∈ ℕ, ≥ ∧  | − | <  (3) 
 
that is, for any ∈ ℝ, we can find an > 0 such that for each ∈  ℕ, there is an ∈ ℕ such that 
although ≥  but | − | ≥ . 
 
Take the sequence {(−1) }. We will prove that it is divergent. 
 
Suppose for contradiction, the sequence tends to some real number . Choose = | | > 0. There 
there is an ∈  ℕ such that for all ≥ , we have | − | < = | |. For odd integer greater 
than , we have |−1 − | and for even integer greater than  , we have |1 − |. 
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Then, for ≥ , by the triangle inequality, 
 
 |2 | = |−2 | 
  = |(−1 − ) + (1 − )| 
  =  |( − ) + ( − )| 
  < | − | + | − |   by the triangle inequality 
  < +  
  = | | + | | 
  = |2 | 
   
That is |2 | < |2 |, which is impossible. 

□ 
 
Take the sequence whose terms oscillate between 2 and the odd integers. How do we show that 
the limit is not ∞? We negate statement (2) to obtain 
 

(∃  ∈ ℝ)(∀ ∈ ℕ)(∃ ≥ ) ≥ ∧ ≤  
 
that is we can find a real number  such that no matter what natural number  we choose, there 
is a number  such that although ≥  but ≤ . 
 
Let us choose = 4. Then for = 1, let = 3. Then 3 ≥ 1 and = 2 < 4. For = 3, let 

= 4. Then 4 ≥ 3 and = 2 < 4. Continuing, for any , any even ≥  is such that =
2 < 4 . 

□ 
 
Observant reader may notice that even though the sequence {(−1) } does not converge, by 
taking even indices, it contains subsequence {1} which converges to 1. Also by taking odd 
indices it also contains subsequence {−1}. The limit 1 is what we call limit superior and the limit 
−1 is the limit inferior of the sequence. 
 
For the sequence in Figure 6, it contains a subsequence of odd integers which converges to ∞ 
and a subsequence {2} which converges to 2.Here the limit superior is ∞ and the limit inferior is 
2. 
 
We will not delve into limit superior/inferior of a sequence. Perhaps we will discuss it in another 
article. 
 

CONCLUSION 

In this article we discuss how the formal definitions of convergence and divergence of real 
sequences were developed. We explicate how the intuitive concept of convergence leads to the 
formal definition. A few easy examples were chosen to illustrate how convergence is proven 
formally. Interested reader may want to consult the reference for more interesting and harder 
examples. 
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We do not give precise definitions of the terms in this article, for example subsequences, 
increasing/decreasing sequences, bounded above/below, etc. We trust the reader's intuition to 
guide him through.  
 
It is hoped that this exposition will bridge the gap between concrete mathematics and abstract 
mathematics and encourage interests in real analysis. 
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