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ABSTRACT 
This paper presents some efficient methods for unconstrained optimization based upon 
approximating the gradient flow of the objective function. Most ODE-based methods would 
generate Levenberg-Marquardt-like steps that require the solution of linear systems. On the 
other hand our proposed methods used some quasi-Newton matrices to approximate the 
solution of these linear systems, thus avoiding the solution of linear systems repeatedly. Two 
implementations of the modified ODE-based methods - line search and trust region 
implementation are proposed. Under some suitable assumptions, the convergence of the 
proposed methods is then established. Numerical results indicate that the modified methods are 
more effective and comparable than the standard line search and trust region method using the 
well-known BFGS formula. 

 
Keywords: Gradient flow, Line search method, Quasi-Newton formula, Trust region 

method, Unconstrained optimization 
 
 

INTRODUCTION 
 
In this paper, we consider the following unconstrained optimization problems:  

 
),(min xf

nRx
            (1) 

where the objective function )(xf  is assumed to be twice continuously differentiable for all 

x  in nR .  
 
There have been enormous development of powerful algorithms for solving (1) numerically 

and these methods are generally iterative. In an iterative algorithm, an initial point 0x  is 

given and a new iterative point kx  is to be computed. For each k-iteration, the next iterative 

point 1kx  depends on the information at the current iterative point kx  and the objective 

function f . The computation can also be done by using the information stored from earlier 

iterates. Hopefully the sequence  kx  generated will converge to the solution of (1) 

satisfying the first and second-order necessary conditions for a local multivariate 
unconstrained minimum:  

        ,0)( *  xf            (2) 
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and )( *2 xf  be positive definite (or at least positive semi-definite), then an optimum 

solution *x  of f  can be obtained. 

Presently, these iterative algorithms can be categorized into two broad classes which are 
line search methods and trust region methods. The line search methods are presented in the 
form 

.0,1  kdxx kkkk             (3) 

Particularly, quasi-Newton methods (see, for example, Khiyabani and Leong (2014), Wu 
and Sun (2006)) for minimizing )(xf  are commonly used especially when the analytical 
expression of the second derivative of )(xf , called the Hessian is hard to obtain or is 
expensive to compute or store. Quasi-Newton methods compute a search direction first: 

 

),(1
kkk xfBd          (4) 

 
where kB  is an nn  symmetric matrix that approximates to the Hessian via updating 

formula, such as Broyden, Fletcher, Goldfrab and Shanno (BFGS) formula (see, for 
example, Broyden (1970)): 
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where )()( 1 kkk xfxfy   and kkk xxs  1 . Using the Sherman-Morrison Householder 

formula, the update formula for the approximation kH  of the inverse Hessian can be 

obtained as follow:  
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            (6) 

Then a steplength k  is obtained by searching along that particular search direction using 

an appropriate line search in order to enforce global convergence. Hence, a new iterate 
point 1kx   is computed and the process is continues until the sequence  kx  reaches the 

termination criterion. 
 
On the other hand, trust region methods have attracted much attention from more and more 
researchers since their emergence (see, for example, Conn et al. (2000), Wang et al. (2008)). 
This is basically due to they can guarantee strong global convergence for solving (1). The 
basic idea of trust region methods is they define a region around the current iterate in which 
the relatively simple model is “trusted” to be an adequate representation of the objective 
function, and then choose the step to be the approximate minimizer of the model in this 
trust region. Traditionally, a quadratic model is usually being chosen as the approximation 
to the )(xf . Thus, trust region methods compute a trial step by solving the following 
subproblem: 
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        (7) 

 
 
where kkk xxd  1 , kB  is an  nn  symmetric matrix which approximates to the Hessian 

of the objective function and 0 k  is the radius of trust region. We will describe trust 

region methods in more detail in the later section. For an in-depth overview of trust region 
methods, refer to Conn et al. (2000). Some authors also proposed a hybrid algorithm which 
combines line search methods with trust region methods (see, for example, Gertz (2004), 
Nocedal and Yuan (1998)). 

 
 
 

GRADIENT FLOW SYSTEM AND QUASI-NEWTON UPDATING 
 
Traditionally, optimal control, gradient flow systems and partial differential equations are 
ideas from different fields of mathematics that have been rather disparate. However, the 
interactions between these ideas have surprisingly sparked the curiosity from many 
researchers in these recent years. Courant (1962) was the first to propose the method of 
gradients in year 1941 for solving variational partial differential equations. Courant 
considered the use of the following gradient flow system: 
 

ẋ )),(()( txft                (8) 

with the initial-value condition 
 

      ,)0( 0xx                   (9) 

 
to obtain the equilibrium point *x  such that 
 

    ,0)( *  xf                         (10) 
 

The solution is called an integral curve and is simply the curve that at each instant proceeds 
in the direction of the steepest descent of f . 
 
ODE-based methods for solving (8)-(9) proceed by discretizing the time step in (8) to 
obtain some difference equation. Since we are mainly interested in the long term behaviour 
of the gradient flow system (8), and do not concern about the accurate solutions of its 
immediate courses, we consider implicit (backward) Euler method for (8). Another reason 
that motivates our choice is that the implicit Euler method is unconditionally stable 
regardless of the (discretized) time step. Hence, it avoids the unnecessary amount of 
computational effort to control the time step using the local error principal.  Applying the 
implicit Euler method to (8) gives 

 
...,2,1,0);( 11   kxfxx kkkk                   (11) 
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One can view (11) as a line search method where k  is the steplength and )( 1 kxf  is the 

search direction. As oppose, the steepest descent method is obtained if we apply the 
forward Euler method to (8). However, stability of the forward Euler method requires a 
special attention on the choices of time step. Thus, we avoid this method. 
An obvious difficulty on the implementation of (11) is that it requires the computation of 
the gradient at the unknown future point, 1kx . Hence, some adequate approximation is 

needed for )( 1 kxf . Usually, the approximation of f can be done through second order 

Taylor expansion, i.e. quadratic approximation. For this purpose one must define a region 
in which the approximation used is valid. Since the integral curve of the negative gradient 
field is not available to us, we propose to measure the validity of the quadratic 
approximation by a simple strategy that is often used within a trust region framework, 
namely a ratio test. To express our algorithm, suppose that given kx and a ball region 

centered at kx with radius k . Let )( 1 kk xfd , then the quadratic approximation for f  

gives 
 

   ],)()([)( 2
1 kkkkkkk dxfxfxfd                 (12) 

where )(2
kxf  is the Hessian matrix of f at kx . Hence, kd  can be obtained by 

rearranging (12): 
 

   ),()]([ 2
kkkkk xfdxfI             (13) 

and therefore, the iteration equation (11) becomes 
 

      ),()]([ 12
1 kkkkkk xfxfIxx  
                   (14) 

Since the implicit Euler method is unconditional stable, we can choose any fixed arbitrary 
small k . However, it is desirable to use a variable step length to ensure convergence. 

Hence solving (13) exactly to obtain kd  is not feasible particularly we may need to solve 

the linear system multiple time for different steplengths. Hence, we shall propose some 
approximation for the inversion through some quasi-Newton updating scheme. Suppose 
that a quasi-Newton updating matrix, 1kB  is used to approximate )(2

kxf , then 1kB  

should satisfy the quasi-Newton (QN) equation: 
 

        ,1 kkk ysB                      (15) 

where kkk xxs  1  and )()( 1 kkk xfxfy   . Then if an updating matrix, 1kB  would 

approximate )(2
kk xfI  , it should obey 

          .11 kkkkkkkkkk yyssBssB               (16) 

Here, 1kB  may be chosen to be any symmetric approximation that satisfying (16). In this 

paper we shall employ the famous BFGS updating formula (5) to generate the matrix 
sequence { kB }, i.e., 
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By using the Sherman-Morrison Householder formula, we can obtain the inverse of (17) 
explicitly, which is more convenient for the algorithmic purpose: 
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        (18) 

where 1 kk BH . 

 
 
 

LINE SEARCH IMPLEMENTATION 
 
Traditionally, a variable steplength strategy makes decision on the size of the step using 
information on some (local) error estimation. If the current step is not acceptable, one can 
reduce the steplength by a portion of its original size. Otherwise, the steplength is enlarged. 
Therefore, using the reduction in objective function as an indicator, it is equivalent to 
perform a line search procedure to obtain the steplength. 
 
There are a large number of line search procedures (see, for example, Goldstein (1965), 
Wolfe (1969), Wolfe (1971)), among which the Armijo backtracking line search Armijo 
(1966) is in common use where its general algorithm is as follows: 
 
Algorithm 3.1 (Armijo backtracking line search): 
 

Step 0. The constants )1,0(  and 21,  with 10 21   , are given.  

Step 1. Set 1k .  

Step 2. Test the relation 
 

      .)()()( k
T

kkkkkk dxfxfdxf      (19) 

Step 3. If (19) is not satisfied, choose a new ],[ 21 kkk    and go to Step 2.  

If (19) is satisfied, set kk  1  and kkkk dxx 11    . 

 
Several procedures have been used to choose a new trial value of k  in Step 3. The 

classical Armijo line search is to simply multiply the old value of k  by 
2

1
 or some other 

constant in (0,1) until (19) is satisfied. Using the backtracking line search, an algorithm of 
line search ODE-based method can be outlined as follows: 
 
ODE-LS method: 
 

Step 0.  Choose an initial point nRx 0  and IB 0 . Let 0:k .  
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Step 1. Compute )( kxf . If the stopping criterion  )( kxf  is reached, then     

stop. Else go to Step 2.  

Step 2. Compute )(1
kkk xfBd    and calculate 0k  using Algorithm 3.1. Set 

)(1
1 kkkkk xfBxx  
   and update 1kB  by (17).  

Step 3.  Set 1:  kk  and return to Step 1. 
 
 

Remark 1. In practical computation, kH  is used instead of 1 kB . Also since k  appears 

explicitly in ky , this does not incur additional computational cost when compute k  using 

(18) within Algorithm 3.1. 
 
 
 
To study the convergence properties of the algorithm, we consider the following standard 
assumptions. 

 
Assumption 3.1: 
 

A1. The level set )}()(|{ 0xfxfRxD n   is bounded for a chosen 0x .  

A2. The gradient is Lipschitz continuous on an open convex set S  contained in D , 
namely there exists a constant 0L  such that 

 
       .,,)()( SyxyxLyfxf        (20) 

A3. There exists positive constants m  and M  such that 
 

      ,)(
222

zMzxfzzm T            (21) 

for all nRz  and Dx , where, and for the rest of this paper,    denotes the 

2l  vector norm. 
 
 
 

Lemma 3.1. Under Assumption 3.1, there exist positive constants L , m  and M  such that  
 

         ,kk sLy            (22) 

    .0,
22  ksMyssm kk

T
kk              (23) 

 
 
Proof. By the Lipschitz continuity (20) and the fact that ]1,0(k , we have  

 
,)1( kkkkkkkkk sLsLysysy          (24) 
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and  

,)1(
2
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k sMysssysss             (25) 

where 1m  and MM 1 .                                                                            
 

 
Lemma 3.1 implies that with the Lipschitz condition as well as the boundedness on the 
curvature hold for ky  and thus, one can proceed with a similar proof by Byrd and Nocedal 

(1989) to show that the modified BFGS method under backtracking line search with ky  is 

globally and superlinearly convergent on objective functions that satisfied Assumption 1. 
 
 
 

TRUST REGION APPROACH 
 
Alternative to the adjustment on steplength to achieve sufficient descent in objective 
function, the trust region method adjust a trust region bound k  on the norm of the trial 

step kd . It can be easily seen that (14) is equivalent to Levenberg-Marquardt method for 

unconstrained optimization, which obtain a trial step by solving the following linear 
equation at k -th iteration,  

 
      ),()]([ 2

kkkk xfdxfI                (26) 

when 
k

k 
 1

 . 

 
In order to use the iterative equation in the trust region method for solving unconstrained 
minimization problem (1), we construct the following subproblems: 
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where kB  is some symmetry approximation of the Hessian matrix at kx , and 
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Remark 2. In this first subproblem, a standard quadratic model is considered where the 
computed trial step is benchmarked with the quasi-Newton step (or the Newton step, if 
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)(2
kk xfB  ). On the other hand, the second subproblem uses the quadratic model that 

based upon second order Taylor expansion on (14). 

Similar to the line search method, we can approximate the trial step using some quasi-

Newton approximating matrix. Let )]([ˆ 2
1 kkk xfIB    , then, 

.ˆ)]([ˆ 2
1 kkkkkkkkk yyssxfIsB          (29) 

 
Hence, a BFGS updating matrix that based upon (29) can be obtained by 
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Again if 1ˆˆ  kk BH , we can compute 
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     (31) 

 

The steplength is fixed rather than being computed through some line searches procedure 
because we shall adjust the radius of the region to obtain desired reduction in the objective 
function within a trust region framework. For this purpose, we can emply the following 
steplength, which is due to Ou et al. (2009): 

             ,1,
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,10 


 k

ddL

dxf

k
T

kk

k
T

k
k          (32) 

where 
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k
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k s

y
L .  

Before we proceed to state our proposed algorithm, we present the characterization of the 
solution of subproblem (27) by giving the following well known lemmas (see, for example, 
Yuan (2000)): 

Lemma 4.1. A vector n
k Rd *  is a solution of the subproblem (27), if and only if kkd   

and there exists 0*   such that 

     ),()( **
kkk xfdIB               (33) 

   ,0)( **  kk d           (34) 

       .0*  IBk            (35) 

Lemma 4.2. If a vector n
k Rd *

 is a solution of the subproblem (27), then  
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xfdqq     (36) 

 
In each iteration, a trial step kd  is computed approximately using (30). Hence, the 

conditions in Lemma 4.1 may not hold and thus, the inequality in Lemma 4.2 must also be 
satisfied on every iteration. 
 
 
Lemma 4.3. Let Assumptions 3.1 hold. If Algorithm ODE-TR-I generates kd  that satisfies 

conditions (33)-(36), then 
 

           .0)(inflim 
 k

k
xf            (37) 

Proof. Since the inequality in Lemma 4.2 is satisfied on every iteration, then either kk dx   

is accepted as a new iteration point or rejected according to the ratio of the comparison 
between the actual reduction in f  

 
   ),()( kkkk dxfxfared            (38) 

with the predicted reduction in the approximation model  
 

             ).()0( kkkk dqqpred                (39) 

i.e., 
 

         .
k

k
k pred

ared
          (40) 

 
If k  is close to 1 which means the reduction in f  is satisfactory, then we accept the trial 

step and expand the trust region for the next iteration; if k  is close to zero or negative, we 

contract the trust region for the next iteration; otherwise, we do not alter the trust region. 
 
Note that kpred  will always be nonnegative and hence a negative k  implies that the new 

objective function value )( kk dxf   is greater than the current function value )( kxf . In 

other words, the vector 1kx  is also defined by the equation 
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 which provides the condition  

  ).()( kkk xfdxf           (42) 
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Since f  is a decreasing sequence and f  is bounded below, then 0lim 
 k

k
ared  implies 

(37). 
 
Now we describe our trust region ODE-based algorithm as follows.  
 
ODE-TR-I algorithm (ODE-TR using subproblem SP1):  
 
Step 0. Initialization. Choose an initial point nRx 0 , and an initial trust region radius 

]
~

,0(0  . Let 0B  and 0H  be a symmetric positive definite matrix. Choose the 

constants 21,21 ,,   and   satisfying 10 21   , 21 10    and 10   . 

Set 0:k . 
Step 1. Test for convergence criterion. Compute )( kxf . If  )( kxf , then stop. Else 

go to Step 2. 
Step 2.  Model definition. Choose 

2
  and use quadratic model SP1. 

Step 3. Step Calculation. Compute kd  that “sufficiently reduces the model” kq  for which 

kkd   such that  

 ,
)(

,min)(
2

1
)()0( *










 


k

k
kkkkk B

xf
xfdqq       (43) 

 by using the following linear equation )(ˆ
kkk xfHd  . 

Step 4. Computation for the ratio of reduction. Compute )( kk dxf   and then calculate k   

using (40).  
Step 5. Update for trust region radius. Set  
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     (44) 

Step 6. Acceptance of the trial point. If 1 k , define kkk dxx 1  and then update 

matrices 1kB  and 1kH  using (5) and (31) respectively.  

Go to Step 1. Otherwise define kk xx 1  and go to Step 2. Set 1:  kk . 

 
ODE-TR-II algorithm: Equivalent to ODE-TR-I algorithm except that 1kB  is updated by 

(30) where k  is given by (32). 

 
NUMERICAL RESULTS AND DISCUSSION 

 
In this section, we present and discuss some numerical experiments that were implemented 
on some famous optimization test problems in order to test the efficiency of the proposed 
algorithms. We report the numerical results for all the five Algorithms BFGS-LS, ODE-LS, 
TR-BFGS, ODE-TR-I and ODETR-II and to check whether the modified methods provide 
improvements over the standard method. 
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We use Matlab R2012b programming language to code the procedures and implement them 
on a PC with 2.5GHz processor and 4.00GB RAM. The 65 problems tested are the 
unconstrained problems with standard starting points from Neculei (2008) and the 
convergence test is used with 310 . For each test problem, we have considered 3 
different dimensions which are 100,10n  and 1000. All algorithms use exactly the same 

set of parameters which are 1.01  , 75.02  , 5.01  , 22   and 2
~  . Other than that, 

we choose the initial matrix 0B  and 0H  as the Identity matrices and we also restrict the 

number of iteration within 1000. For all the runs which the convergence criterion is not 
fulfilled within the maximum number of iterations, we consider it as failure. In order to 
compare and evaluate the performance of the proposed methods, we use the performance 
profiling proposed by Dolan and Moré (2002). Comparison is made in term of number of 
iterations, function calls and CPU time. 
 

Table 1: Test Problem 
Test Functions 

Almost Perturbed Quadratic, ARWHEAD, BIGGSB1, COSINE, CUBE, 
Diagonal 1, Diagonal 2, Diagonal 3, Diagonal 4, Diagonal 5, Diagonal 6, 
Diagonal 7, Diagonal 8, Diagonal 9, DIXON3DQ, DQDRTIC, EDENSCH, EG2, 
ENGVALI, EXPLIN1, Extended BD1, Extended Beale, Extended Cliff, 
Extended DENSCHNB, Extended DENSCHNF, Extended EP1, Extended 
Freudenstein & Roth, Extended Hiebert, Extended Himmelblau, Extended 
Maratos, Extended Penalty, Extended Powell, Extended PSC1, Extended QP1, 
Extended QP2, Extended Rosenbrock, Extended TET, Extended Tridiagonal 1, 
Extended White & Holst, Extended Wood, FH1, FH2, FH3, FLETCHCR, 
Generalized PSC1, Generalized Quartic, Generalized Rosenbrock, Generalized 
Tridiagonal1, Generalized Tridiagonal 2, Generalized White & Holst, Hager, 
HIMMELBG, HIMMELH, LIARWHD, MCCORMCK, NONDIA, 
NONSCOMP, Perturbed Quadratic Diagonal, Perturbed Tridiagonal Quadratic, 
POWER, Quadratic QF1, Quadratic QF2, Raydan 1, Raydan 2, SINE. 
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Figure 1: Performance profiles based on number of iterations 

 
Figure 2: Performance profiles based on number of function evaluations (Trust region 

methods require one function calls per iteration.) 
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Figure 3: Performance profiles based on CPU time in second 

 
 
From the numerical results, we observed that our proposed methods ODELS, ODE-TRI and 
ODE-TRII were able to solve as many test problems as the standard BFGS-LS and TR-
BFGS methods. In term of CPU time, our proposed methods are also faster than the 
standard methods. For most test problems, the standard BFGS-LS and TR-BFGS methods 
needed more iterations and function calls to achieve convergence. In general, the proposed 
methods are comparable and outperform the standard BFGS and trust region methods. 
 
 

CONCLUSION 
 
In this paper, we have proposed some new quasi-Newton-like approximation for ODE-
based methods to solve unconstrained optimization problem. By using these 
approximations, solving linear systems repeatedly on each iteration can be avoided. From a 
computational point of view, this approach is efficient as it often requires lower number of 
iteration to obtain an acceptable solution. Convergence of the modified methods is also 
established under some suitable assumptions. Numerical results show that the proposed 
methods are competitive and effective than the standard line search and trust region method 
using BFGS formula. 
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