Mutually Unbiased Bases: Existence and Non-Existence

Stefan Weigert

Department of Mathematics, University of York, United Kingdom

EQuaLS3 @ Kuala Lumpur, Malaysia - November 2009

Outline

Mutually Unbiased Bases: Existence and Non-Existence

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
 - Analytical results
 - Numerical results
- Conclusions

Outline

Introduction

- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
 - Analytical results
 - Numerical results
- Conclusions

Motivation

- What are MU bases?
- What are MU bases good for?
- What do we know about MU bases?
- What do we not know about MU bases?
- What do we know about MU bases in dimension six?

What are MU bases? (1)

- a **pair** of MU bases in \mathbb{C}^d
 - ▶ given two orthonormal bases $|\psi_j^{(1)}\rangle$ and $|\psi_k^{(2)}\rangle, j, k = 1...d$, one requires

$$|\langle \psi_j^{(b)} | \psi_k^{(b')} \rangle| = \chi_{jk}^{bb'} \equiv \begin{cases} \delta_{jk} & \text{if } b = b' \\ 1/\sqrt{d} & \text{if } b \neq b' \end{cases}$$

▶ given any orthonormal basis B₀ in C^d, one can construct a (symmetric) pair of MU bases, B₁, B₂ [s60]

What are MU bases? (2)

example: a **triple** of MU bases in \mathbb{C}^2 :

► let
$$(m_x = \pm, ...)$$

 $\mathcal{B}_1 = \{|m_x\rangle\}, \quad \mathcal{B}_2 = \{|m_y\rangle\}, \quad \mathcal{B}_3 = \{|m_z\rangle\}$
be the eigenstates of σ_x , σ_y , σ_z , resp., then
 $|\langle m_x | m_y \rangle|^2 = |\langle m_y | m_z \rangle|^2 = ... = \frac{1}{2}$

explicitly:

$$B_z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad B_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad B_y = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ i & -i \end{pmatrix}$$

there are no more...

What are MU bases? (3)

▶ A complete set of MU bases [I81,WF89] in \mathbb{C}^d ,

$$\mathcal{B}_b = \{|\psi_j^{(b)}\rangle, j = 1 \dots d\}, b = 1 \dots d + 1$$

consists of d(d + 1) pure states such that

$$\left| \langle \psi_j^{(b)} | \psi_{j'}^{(b')} \rangle \right| = \begin{cases} \delta_{jj'} & \text{if } b = b' \\ \frac{1}{\sqrt{d}} & \text{if } b \neq b' \end{cases}$$

• dimension d = 3:

$$B_{0} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad B_{1} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega \end{pmatrix}$$
$$B_{2} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega^{2} & 1 & \omega \\ \omega^{2} & \omega & 1 \end{pmatrix} \qquad B_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega & \omega^{2} & 1 \\ \omega & 1 & \omega^{2} \end{pmatrix}$$

where
$$\omega = e^{2\pi i/3}$$

What are MU bases good for?

MU bases are used for

- optimal state estimation [WF89,AS08]
- quantum key distribution [BB84,BKB01,CBK02, KMB09,B09]
- generalised Bell inequalities [JLL08]
- quantum challenges: the mean king [AE01,EA01]
- see talks by T. Durt and B.-G. Englert

they find and hide (quantum) information

What do we know about MU bases?

results **independent** of the dimension *d*:

- no more than (d+1) MU bases [WF89]
- have triples of MU bases for any d [κR03,G04]
- ▶ given d MU bases in \mathbb{C}^d , d + 1 MU bases can be found [W09]
- ► a complete set of MU bases is equivalent to an orthogonal decomposition of the Lie algebra sl_d(C) [BST07]

results for **prime power dimensions**, $d = p^k, k \in \mathbb{N}$:

- complete sets have been constructed using (cf. [K09])
 - discrete Fourier analysis over Galois fields/rings
 - discrete Wigner functions
 - generalized Pauli matrices
 - mutually orthogonal Latin squares
 - finite geometry methods

results for N continuous variables, $d=\infty$ [www]

- N = 1: triples of MU bases
- N = 2: **quintuples** of MU bases

What do we **not** know about MU bases?

for composite dimensions d = 6, 10, 12, ..., the existence of complete MU bases is an open problem

▶ for composite dimensions d = 6, 10, 12, ..., the existence of orthogonal decomposition of the Lie algebra sl_d(ℂ) is an open problem

What do we know about MU bases for **composite** *d*?

results for
$$d = p_1^{k_1} p_2^{k_2} \dots p_n^{k_n}$$
 (with $p_1^{k_1} < p_2^{k_2} < \dots < p_n^{k_n}$):

- can construct $p_1^{k_1} + 1$ MU bases [KR03]
- ► for some square dimensions $d = s^2$, there are **more** [WB04]
 - e.g.: if $d = 2^2 \times 13^2$, there are 6 (= $2^2 + 1 + 1$) MU bases

prime powers are **sparse** for $d \to \infty$!

What do we know about MU bases in dimension six? (1)

analytic results:

- standard prime power construction cannot be extended to more than three MU bases [G04]
- no four MU bases have been found using a finite list of elements [BBE07]

numerical results:

► no four MU bases have been found by numerical searches [BH07] other results:

 plausible generalisations of number theoretic formulas used for *d* = *p^r* fail [A05]

What do we know about MU bases in dimension six?(2)

recent analytic result:

- ► all MU bases in dimensions two to five [BWB09]
- ▶ many candidates for MU bases can be excluded [BW09]

recent numerical results:

many small MU constellations seemingly do not exist [BW08]

Outline

Introduction

Classifying MU bases

- All MU bases for dimensions two to five
- MU bases in dimension six
 - Analytical results
 - Numerical results
- Conclusions

Sets of MU bases in \mathbb{C}^d

pairs of MU bases in \mathbb{C}^2 :

$$\{B_x, B_y\}, \{B_y, B_x\}, \{B_y, B_z\}, \ldots$$

more generally:

- How many **pairs** of MU bases exist in \mathbb{C}^2 ?
- How many **triples** of MU bases exist in \mathbb{C}^2 ?
- How many **pairs** of MU bases exist in \mathbb{C}^2 ?
- ▶ ...
- What types of sets of MU bases exist in \mathbb{C}^d ?

Equivalent sets of MU bases

many sets of MU bases are equivalent to each other:

$$\{B_x, B_y\} \sim \{B_y, B_x\} \sim \{B_y, B_z\} \sim \ldots$$

transformations leaving $|\langle \psi_j^{(b)} | \psi_k^{(b')} \rangle| = \chi_{jk}^{bb'}$ invariant:

- an overall unitary transformation U
- (r+1) diagonal unitary transformations $D_{
 ho}$
- (r+1) permutations of the elements within each basis
- pairwise exchanges of two bases
- complex conjugation of all bases

define a standard form of MU bases!

Equivalence transformations of sets of MU bases

two sets of (r + 1) MU bases are **equivalent** to each other

$$\{B_0, B_1, \ldots, B_r\} \sim \{B'_0, B'_1, \ldots, B'_r\}$$

if one is obtained from the other via

▶ {
$$B_0, B_1, ..., B_r$$
} → { $UB_0, UB_1, ..., UB_r$ }
▶ { $B_0, B_1, ..., B_r$ } → { $B_0D_0, B_1D_1, ..., B_rD_r$ }
▶ { $B_0, B_1, ..., B_r$ } → { $B_0P_0, B_1P_1, ..., B_rP_r$ }
▶ { $..., B_{\rho}, ..., B_{\rho'}, ...$ } → { $..., B_{\rho'}, ..., B_{\rho}, ...$ }
▶ { $B_0, B_1, ..., B_r$ } ~ { $B_0^*, B_1^*, ..., B_r^*$ }

define a standard form of MU bases!

Standard form of four MU bases

four MU bases for d = 3: $\{I, B_1, B_2, B_3\}$ with

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad B_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}$$
$$B_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega^2 & 1 & \omega \\ \omega^2 & \omega & 1 \end{pmatrix} \qquad B_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega & \omega^2 & 1 \\ \omega & 1 & \omega^2 \end{pmatrix}$$

observation: the matrices B_{ρ} satisfy

•
$$B_k^{\dagger}B_k = I$$
 (unitarity)
• $|(B_k)_{ij}| = \frac{1}{\sqrt{d}}$, (constant moduli)

they are complex Hadamard matrices

Standard form for sets of MU bases (1)

any set of (r + 1) MU bases can be written as

$$\{I, H_1, \ldots, H_\rho \ldots, H_r\}$$

where

- first basis is the standard basis I
- all matrices H_{ρ} are complex Hadamard matrices
- first column of H_1 has entries $1/\sqrt{d}$ only
- first row of each Hadamard matrix has entries $1/\sqrt{d}$ only

Standard form for sets of MU bases (2)

example: four MU bases for d = 3: $\{I, B_1, B_2, B_3\}$

$$I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad B_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}$$
$$B_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega^2 & 1 & \omega \\ \omega^2 & \omega & 1 \end{pmatrix} \qquad B_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ \omega & \omega^2 & 1 \\ \omega & 1 & \omega^2 \end{pmatrix}$$

where

- first basis is the standard basis I
- all matrices B_ρ are complex Hadamard matrices
- first column of B_1 has entries $1/\sqrt{3}$ only
- first row of each Hadamard matrix has entries $1/\sqrt{3}$ only
- ▶ *B*₁ has been *dephased*

Pairs of MU bases in \mathbb{C}^d

strategy:

- ▶ suppose we knew **all** complex Hadamard *H* matrices in \mathbb{C}^d
- ▶ then: all pairs $\{I, H\}$ are candidates for inequivalent MU bases
- apply equivalence transformations to obtain standard form
- list remaining inequivalent ones
- done!

need a list!

catalog of known complex $(d \times d)$ Hadamard matrices [TZ06]:

- **complete** classification for $d \le 5$
- **incomplete** classification for $d \ge 6$

MU vectors

task: given $\{I, H\}$ construct additional MU bases

idea: search for all vectors $|v\rangle \in \mathbb{C}^d$ which are MU to both I and H in the pair $\{I, H\}$

properties of MU vectors $|v\rangle \in \mathbb{C}^d$:

$$|v_i| = 1/\sqrt{d} |\langle h(k)|v\rangle| = 1/\sqrt{d}, \qquad k = 1, \dots, d$$

requirements on MU vectors $|v\rangle$ to form a *third* MU basis:

- need d independent vectors
- pairwise orthogonality

How to construct sets of MU bases \mathbb{C}^d

strategy:

- choose a Hadamard matrix H
- ▶ list the constraints on vectors MU to {*I*, *H*}
- determine all solutions
- list all MU vectors $|v_1\rangle, |v_2\rangle, \ldots$
- analyse the vectors to identify additional ON-bases

apply to

- dimensions two to five
- dimension six

Outline

Introduction

Classifying MU bases

All MU bases for dimensions two to five [BWB09]

- MU bases in dimension six
 - Analytical results
 - Numerical results
- Conclusions

Dimension d = 2

only one dephased complex Hadamard matrix exists in \mathbb{C}^2 :

$$F_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \quad \text{(Fourier matrix)}$$

vectors MU to $I: |v\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ e^{i\alpha} \end{pmatrix}, \alpha \in [0, 2\pi)$
vectors MU to $\{I, F_{2}\}$ satisfy: $|1 \pm e^{i\alpha}| = \sqrt{2}$
two solutions: $e^{i\alpha} = \pm i \Rightarrow |v_{\pm}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ \pm i \end{pmatrix}$
new Hadamard matrix: $H_{2} = (v_{+}|v_{-})$

all sets of MU bases in \mathbb{C}^2 : $\{I, F_2\}, \{I, F_2, H_2\}$

Dimension d = 3

only one dephased complex Hadamard matrix exists in \mathbb{C}^3 :

$$F_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ 1 & \omega & \omega^{2}\\ 1 & \omega^{2} & \omega \end{pmatrix}$$
 (Fourier matrix)

vectors MU to I: $|v\rangle = (1, e^{i\alpha}, e^{i\beta})^T / \sqrt{3}, \alpha, \beta \in [0, 2\pi)$ vectors MU to $\{I, F_3\}$ satisfy:

$$\begin{array}{rcl} \sqrt{3} & = & |1 + e^{i\alpha} + e^{i\beta}| \\ \sqrt{3} & = & |1 + \omega e^{i\alpha} + \omega^2 e^{i\beta}| \\ \sqrt{3} & = & |1 + \omega^2 e^{i\alpha} + \omega e^{i\beta}| \end{array}$$

graphical solution ...

Dimension d = 3 (cont'd)

... or, with some ζ of modulus 1/2:

$$\left|\zeta + \cos\frac{\alpha}{2}\right| = \frac{\sqrt{3}}{2} \text{ and } \left|\zeta + \cos\left(\frac{\alpha}{2} \pm \frac{2\pi}{3}\right)\right| = \frac{\sqrt{3}}{2}$$

 \Rightarrow six solutions $(\alpha_j, \beta_j), j = 1 \dots 6$

Dimension d = 3 (cont'd)

 \Rightarrow six vectors $|v_1\rangle, \ldots, |v_6\rangle$

two new Hadamard matrices:

$$H_{3} = (v_{1}|v_{2}|v_{3}) \text{ and } J_{3} = (v_{4}|v_{5}|v_{6})$$
$$H_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ \omega^{2} & 1 & \omega\\ \omega^{2} & \omega & 1 \end{pmatrix} \quad J_{3} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1\\ \omega & \omega^{2} & 1\\ \omega & 1 & \omega^{2} \end{pmatrix}$$
note: $\{I, F_{3}, H_{3}\} \sim \{I, F_{3}, J_{3}\}$

all sets of MU bases in \mathbb{C}^3 : {*I*, *F*₃}, {*I*, *F*₃, *H*₃}, {*I*, *F*₃, *H*₃, *J*₃}

Triples of MU bases in dimension d = 4

one-parameter set $(x \in [0, \pi))$ of Hadamard matrices exists in \mathbb{C}^4 :

$$F_4(x) = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & ie^{ix} & -ie^{ix} \\ 1 & -1 & -ie^{ix} & ie^{ix} \end{pmatrix}, \quad \text{Fourier family}$$

note: Fourier matrix $F_4(0)\equiv F_4$ and $F_4(\pi/2)\equiv F_2\otimes F_2$

geometric arguments similar to those for \mathbb{C}^3 :

$$H_4(y,z) = rac{1}{2} \left(egin{array}{ccccc} 1 & 1 & 1 & 1 \ 1 & 1 & -1 & -1 \ -e^{iy} & e^{iy} & e^{iz} & -e^{iz} \ e^{iy} & -e^{iy} & e^{iz} & -e^{iz} \end{array}
ight)$$

three parameter-family of triples: $\{I, F_4(x), H_4(y, z)\}$

All sets of MU bases in dimension d = 4

there is **one quadruple** of MU bases in \mathbb{C}^4 :

 $\{I, F_4(\pi/2), H_4, J_4\}$

there is **one quintuple** of MU bases in \mathbb{C}^4 :

{ $I, F_4(\pi/2), H_4, J_4, K_4$ }

all sets of MU bases in \mathbb{C}^4 : $\{I, F_4(x)\}$ $\{I, F_4(x), H_4(y, z)\}$ $\{I, F_4(\pi/2), H_4, J_4\}$ $\{I, F_4(\pi/2), H_4, J_4, K_4\}$

All sets of MU bases in dimension d = 5

only one dephased complex Hadamard matrix exists in \mathbb{C}^5 :

$$F_5 = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 \\ 1 & \omega^2 & \omega^4 & \omega & \omega^3 \\ 1 & \omega^3 & \omega & \omega^4 & \omega^2 \\ 1 & \omega^4 & \omega^3 & \omega^2 & \omega \end{pmatrix}, \quad \omega = e^{2\pi i/5}$$

computer-assisted (cf. later) exact result:

```
all sets of MU bases in \mathbb{C}^5:

{I, F_5}

{I, F_5, H_5}, {I, F_5, J_5}

{I, F_5, H_5, J_5}

{I, F_5, H_5, J_5, K_5}

{I, F_5, H_5, J_5, K_5, L_5}
```

All MU bases for dimensions two to five

	\mathbb{C}^2	\mathbb{C}^3	\mathbb{C}^4	\mathbb{C}^{5}	\mathbb{C}^{6}
pairs	1	1	∞^1	1	$\geq \infty^2$
triples	1	1	∞^3	2	$\geq \infty^1$
quadruples	-	1	1	1	?
quintuples	-	-	1	1	?
sextuples	-	-	-	1	?

main results:

- ▶ a three-parameter family of triples in \mathbb{C}^4
- \blacktriangleright two inequivalent triples in \mathbb{C}^5
- ▶ prime power construction of complete sets is unique for $d \le 5$

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
 - Analytic results [BW09]
 - Numerical results
- Conclusions

Overview

- MU bases and complex Hadamard matrices
- known Hadamard matrices in dimension six
- MU vectors as solutions of multivariate polynomial equations
- Buchberger's algorithm and Gröbner bases
- Result: only **triples** of MU bases in \mathbb{C}^6 (so far)

MU bases and complex Hadamard matrices

(d+1) MU bases in \mathbb{C}^d are characterized by

d complex (d \times d) Hadamard matrices H, H', H'' ..., satisfying

►
$$|H_{ij}| = 1/\sqrt{d}$$
, $i, j = 1, ..., d$
► $H^{\dagger}H' = H''$

example ($\omega = e^{2\pi i/3}$):

$$I, \quad H_1 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}, \quad H_2 = \dots, \quad H_3 = \dots$$

- given $\{I, F_6\}$, **no** further MU vectors have been found [G04]
- ▶ generalize F₆ to any complex Hadamard matrix H
- complete classification for $d \leq 5$ only!

Complex Hadamard matrices of dimension six

- landscape of **known** Hadamard matrices for d = 6
- recent two-parameter family: K(x, y) [Ka09]

Constructing MU vectors in \mathbb{C}^d

given: identity *I* and some Hadamard matrix *H* **find** all $|v\rangle \in \mathbb{C}^d$ MU w.r.t. to the columns $|h(k)\rangle$ of *H* and of *I*

$$|v_k| = 1/\sqrt{d} |\langle h(k)|v\rangle|^2 = 1/d, \quad k = 1, \dots, d$$

algorithm

- choose a Hadamard matrix H
- list the constraints
- construct solutions using Buchberger's algorithm! [G04]
- list all MU vectors
- analyse the vectors

Buchberger's algorithm: solving polynomial equations

Buchberger's algorithm [B65]:

Gaussian elimination for non-linear polynomial equations!

$$x^2 - y = 0 \& x - y = 0 \iff x^2 - x = 0 \& x - y = 0$$

with solutions $(x, y) = (0, 0)$ or $(1, 1)$

search for simple description of the algebraic variety:

- have polynomials $P \equiv \{p_n(\mathbf{x}), n = 1, \dots, N\}$
- want solutions of P = 0
- use **Buchberger's algorithm** to find **Gröbner basis** for *P*: $G = \{g_m(\mathbf{x}), m = 1, ..., M\}$
- solve 'triangular' set of equations G = 0

Example: four MU bases in \mathbb{C}^3

• choose
$$H \equiv F_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix}$$
, where $\omega = e^{2\pi i/3}$

• constraints P = 0, using $v = (1, x_1 + iy_1, x_2 + iy_2)^T / \sqrt{3}$:

$$1 - x_1^2 - y_1^2 = 0$$

$$1 - x_2^2 - y_2^2 = 0$$

$$x_1 + x_2 + x_1 x_2 + y_1 y_2 = 0$$

$$x_1 + x_2 - \sqrt{3}y_1 + \sqrt{3}y_2 + x_1x_2 - \sqrt{3}x_1y_2 + \sqrt{3}y_1x_2 + y_1y_2 = 0$$

- find Gröbner basis using Buchberger's algorithm
- list all MU vectors
- analyse the vectors

Example: four MU bases in \mathbb{C}^3 (2)

- choose $H \equiv F_3$
- constraints P = 0
- find Gröbner basis G via Buchberger's algorithm, put G = 0:

$$3y_2 - 4y_2^3 = 0$$

$$1 - x_2 - 2y_2^2 = 0$$

$$1 + 2x_1 + 4y_1y_2 - 4y_2^2 = 0$$

$$3 - 4y_1^2 + 4y_1y_2 - 4y_2^2 = 0$$

with solutions:

$$\begin{split} \mathbf{s}_{a} &= \frac{1}{2} (-1, -1, \sqrt{3}, \sqrt{3}) \,, \\ \mathbf{s}_{c} &= \frac{1}{2} (2, -1, 0, -\sqrt{3}) \,, \\ \mathbf{s}_{e} &= \frac{1}{2} (2, -1, 0, \sqrt{3}) \,, \end{split}$$

$$\begin{split} \mathbf{s}_{b} &= \frac{1}{2}(-1, 2, -\sqrt{3}, 0) \,, \\ \mathbf{s}_{d} &= \frac{1}{2}(-1, -1, -\sqrt{3}, -\sqrt{3}) \,, \\ \mathbf{s}_{f} &= \frac{1}{2}(-1, 2, \sqrt{3}, 0) \end{split}$$

- list all MU vectors
- analyse the vectors

Example: four MU bases in \mathbb{C}^3 (3)

- choose $H \equiv F_3$
- constraints P = 0
- solve G = 0 to find $\mathbf{s}_a, \ldots, \mathbf{s}_f$
- list MU vectors:

$$\begin{aligned} \mathbf{v}_{a} &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ \omega\\ \omega \end{pmatrix} , \, \mathbf{v}_{b} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ \omega^{2}\\ 1 \end{pmatrix} , \, \mathbf{v}_{c} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ 1\\ \omega^{2} \end{pmatrix} , \\ \mathbf{v}_{d} &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ \omega^{2}\\ \omega^{2} \end{pmatrix} , \, \mathbf{v}_{e} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ 1\\ \omega \end{pmatrix} , \, \mathbf{v}_{f} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\ \omega\\ 1 \end{pmatrix} , \end{aligned}$$

▶ analyse the vectors: H₃ ~ [v_a, v_b, v_c] and H₂ ~ [v_d, v_e, v_f]
▶ done

Results: Special Hadamard matrices

Н	N_{v}	Nt
F ₆	48	16
D(0)	120	10
С	38	0
S	90	0

- N_v: number of vectors MU to {I, H}
- *N_t*: number of triples of MU bases

Results: Affine Hadamard matrices

Н	x	#(x)	N _v	Nt
D(x)	grid Γ_D	36	72/120	4
	random	500	72/120	4
$F(\mathbf{x})$	grid Γ _F	168	48	8/70
	random	2,000	48	8
$F^{T}(\mathbf{x})$	grid Γ _F	168	48	8/70
	random	2,000	48	8

- ▶ #(x): points chosen
- N_v : vectors MU to $\{I, H\}$
- \triangleright N_t : triples of MU bases

Diță

Results: Non-affine Hadamard matrices (approximate!)

H	x	#(x)	N _v	Nt
M(t)	grid Γ _M	70	48-120	0
	random	300	48-120	0
$B(\theta)$	grid Γ_B	34	56-120	0
	random	300	56-120	0

symmetric

1-0.

Hermitean

Results: Szöllősi family (approximate!)

Н	x	#(x)	N _v	Nt
X(a,b)	Λ	50	48/56	0
	Λ'	50	48-60	0
	random	300	48-120	0

along the line Λ

along the line Λ'

• N_v for the pair $\{I, X(a, b)\}$

• N_v for the pair $\{I, X(a, b)\}$

Summary

29,000hrs later, on a single 2.2 GHz processor:

At most three MU bases in \mathbb{C}^6 for 5,980 cases!

Fourier families allow for MU triples only [JMM09]

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
 - Analytic results
 - Numerical results [BW08]
- Conclusions

Overview

- MU constellations
- Numerical results
- Summary

MU constellations

search numerically for complete sets of MU bases in \mathbb{C}^6

problem: search for seven complex (6 \times 6) matrices \rightarrow 7 \times 2 \times 6² = 504 real parameters!

idea: consider subsets of complete MU bases

define MU constellations:

$$\{x\}_d \equiv \{x_0, x_1, \ldots, x_d\}_d$$

i.e. d + 1 sets of x_b pure states that define the MU conditions

MU constellations define a lattice:

all smaller MU constellations must exist for a complete set
 any missing subset implies non-existence of a complete set

Examples of MU constellations

MU constellations:

$$\{x\}_d \equiv \{x_0, x_1, \dots, x_d\}_d, \quad x \in (\mathbb{Z} \mod (d-1))^{d+1}$$

note: need to specify only (d-1) vectors in each basis

Examples:

- $\{2, 2, 2, 2\}_3$ is a complete set in \mathbb{C}^3
- Butterley and Hall studied $\{5, 5, 5, 5\}_{6}$ [BH07]
- We can always find $\{d-1, d-1, d-1\}_d$ [KR03]
- Grassl considered $\{5, 5, 5, 1\}_6$ containing $\{I, F_6\}$ [G04]

MU constellations as global minima

consider constellations of the form $\{5, x, y, z\}_6$

define a continuous function

$${m F}(ec{lpha}) = \sum_{
m all \ indices} \left(|\langle \psi^b_j(ec{lpha}) | \psi^{b'}_{j'}(ec{lpha})
angle | - \chi^{bb'}_{jj'}
ight)^2$$

where

$$\chi_{jj'}^{bb'} = \begin{cases} \delta_{jj'} & \text{if } b = b' \\ \frac{1}{\sqrt{d}} & \text{if } b \neq b' \end{cases}$$

then, a constellation is MU if

 $F(\vec{\alpha}) = 0$

Minimising $F(\vec{\alpha})$

- use form with fewest possible parameters
- search for minima starting at random points
- use method by Levenberg-Marquardt
- ▶ take $F(\vec{\alpha}) < 10^{-7}$ as numerical cut-off for a zero

this is a hard problem: can get stuck in local minima!

Testing the program

success rates for searches of constellations $\{d - 1, d - 1, d - 1\}_d$:

d	2	3	4	5	6	7	8
%	100.0	81.9	96.6	49.3	67.9	24.0	48.5

success rates for searches of MU constellations $\{4, x, y, z\}_5$:

<i>d</i> = 5	pa	arame	eters	p ₅ success rate				
<i>x</i> , <i>y</i>		ż	Z		Z			
	1	2	3	4	1	2	3	4
1,1	8	-	-	-	100.0	-	-	-
2,1	12	-	-	-	100.0	-	-	-
2,2	16	20	-	-	100.0	96.4	-	-
3,1	16	-	-	-	100.0	-	-	-
3,2	20	24	-	-	92.0	35.7	-	-
3,3	24	28	32	-	68.3	38.0	29.0	-
4,1	20	-	-	-	99.0	-	-	-
4,2	24	28	-	-	56.2	37.0	-	-
4,3	28	32	36	-	55.8	31.8	21.8	-
4,4	32	36	40	44	37.4	20.1	14.9	9.7

1,000 initial points randomly chosen in $\mathcal{C}_5(4, x, y, z)$

<i>d</i> = 7	parameters p7						su	ccess r	ate			
x, y				z					z			
	1	2	3	4	5	6	1	2	3	4	5	6
1,1	12	-	-	-	-	-	100.0	-	-	-	-	-
2,1	18	-	-	-	-	-	100.0	-	-	-	-	-
2,2	24	30	-	-	-	-	100.0	100.0	-	-	-	-
3,1	24	-	-	-	-	-	100.0	-	-	-	-	-
3,2	30	36	-	-	-	-	100.0	100.0	-	-	-	-
3,3	36	42	48	-	-	-	100.0	100.0	99.3	-	-	-
4,1	30	-	-	-	-	-	100.0	-	-	-	-	-
4,2	36	42	-	-	-	-	100.0	100.0	-	-	-	-
4,3	42	48	54	-	-	-	99.9	95.6	0.0	-	-	-
4,4	48	54	60	66	-	-	52.3	0.0	0.0	0.0	-	-
5,1	36	-	-	-	-	-	100.0	-	-	-	-	-
5,2	42	48	-	-	-	-	100.0	37.9	-	-	-	-
5,3	48	54	60	-	-	-	2.6	0.0	0.1	-	-	-
5,4	54	60	66	72	-	-	0.0	0.0	0.0	0.1	-	-
5,5	60	66	72	78	84	-	0.2	0.2	0.2	0.1	0.2	-
6,1	42	-	-	-	-	-	57.5	-	-	-	-	-
6,2	48	54	-	-	-	-	1.1	0.0	-	-	-	-
6,3	54	60	66	-	-	-	0.0	0.1	0.0	-	-	-
6,4	60	66	72	78	-	-	0.2	0.0	0.1	0.3	-	-
6,5	66	72	78	84	90	-	0.3	0.4	0.1	0.1	0.1	-
6,6	72	78	84	90	96	102	0.5	0.2	0.2	0.0	0.4	0.3

success rates for searches of MU constellations $\{6, x, y, z\}_7$:

1,000 initial points randomly chosen in $\mathcal{C}_7(6,x,y,z)$

Application to Dimension 6

success rates for searches of MU constellations $\{5, x, y, z\}_6$:

d = 6		para	mete	rs <i>p</i> 6			succe	ess rate	9	
<i>x</i> , <i>y</i>			Ζ					Ζ		
	1	2	3	4	5	1	2	3	4	5
1,1	10	-	-	-	-	100.00	-	-	-	-
2,1	15	-	-	-	-	100.00	-	-	-	-
2,2	20	25	-	-	-	100.00	100.00	-	-	-
3,1	20	-	-	-	-	100.00	-	-	-	-
3,2	25	30	-	-	-	99.95	100.00	-	-	-
3,3	30	35	40	-	-	99.42	39.03	0.00	-	-
4,1	25	-	-	-	-	100.00	-	-	-	-
4,2	30	35	-	-	-	92.92	44.84	-	-	-
4,3	35	40	45	-	-	12.97	0.00	0.00	-	-
4,4	40	45	50	55	-	0.74	0.00	0.00	0.00	-
5,1	30	-	-	-	-	95.40	-	-	-	-
5,2	35	40	-	-	-	76.71	10.96	-	-	-
5,3	40	45	50	-	-	1.47	0.00	0.00	-	-
5,4	45	50	55	60	-	0.00	0.00	0.00	0.00	-
5,5	50	55	60	65	70	0.00	0.00	0.00	0.00	0.00

10,000 initial points randomly chosen in $\mathcal{C}_6(5, x, y, z)$

Histograms of search results

Log-log histograms of search results

Summary

seemingly, not all MU constellations $\{5, x, y, z\}_6$ exist:

- only 18 MU constellations identified
- ▶ 17 unobserved MU constellations
- ▶ largest existing constellation is {5,5,3,1}₆ with 16 states
- ▶ smallest missing sets: {5,3,3,3}₆ and {5,4,3,2}₆

strongest numerical evidence for non-existence of $\{5^7\}_6$ so far!

observation:

 $\{5^7\}_6$ has **145** free parameters and there are **495** constraints!

Counting parameters

free parameters of the constellation $\{(d-1)^{d+1}\}_d$:

$$p_d = (d-1)(d^2 - d - 1)$$

number of **constraints** on the vectors in $\{(d-1)^{d+1}\}_d$:

$$c_d = \frac{1}{2}d(d-1)(d^2-3)$$

thus

$$c_d > p_d$$
, $d > 2$

e.g. in dimension 7:

$$c_7 = 1328 > 288 = p_7$$

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
 - Analytic results
 - Numerical results
- Conclusions

Conclusions

main observations in dimension d = 6:

- **no** evidence for seven MU bases
- evidence for non-existence of seven MU bases

moral:

- surprise: existence of some complete sets of MU bases!
- plausibility of non-existence from parameter counting!

implications for physics:

- optimal state estimation only in prime powers dimensions?!
- properties of quantum systems vary with dimension: kinematics of two qubits different from qubit-qutrit system?
- **has number** theory yet another say on quantum theory?

References

[A05] C. Archer, J. Math. Phys. 46 022106 (2005)

[AE01] Y. Aharonov and B.-G. Englert, Z. Naturforsch. 56a, 16 (2001)

[AS08] R.B. Adamson and A.M. Steinberg: Improving Quantum State Estimation with Mutually Unbiased Bases, arXiv:0808.0944

[B09] S. Brierley: *Quantum Key Distribution Highly* Sensitive to Eavesdropping arXIV:0910.2578

[B65] B. Buchberger, An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal. Ph.D. Dissertation, University of Innsbruck (1965) (English translation by M. Abramson in J. Symb. Comp. 41, 471 (2006))

[BBE07] I. Bengtsson, W. Bruzda, Å. Ericsson, J-Å. Larsson, W. Tadej and K.Życzkowski, Mubs and Hadamards of order six, J. Math. Phys. 48, 052106 (2007)

[BBR02] S. Bandyopadhyay, P.O. Boykin, V. Roychowdhury, and F. Vatan Algorithmica **34**, 512 (2002)

[BH07] P. Butterley and W. Hall, Phys. Lett. A **369**, 5 (2007)

[BKB01] M. Bourennane, A. Karlsson and G. Björk, Phys. Rev. A **64**, 012306 (2001)

[BST07] P.O. Boykin, M. Sitharam, P.H Tiep and P. Wocjan, Quantum Inf. Comp. 7, 371 (2007)

[BW08] S. Brierley and S. Weigert, Phys. Rev. A 78, 042312 (2008)

[BW09] S. Brierley and S. Weigert: Phys. Rev. A 79, 052316 (2009)

[BWB09] S. Brierley, S. Weigert and I. Bengtsson, All mutually unbiased bases in dimensions two to five, arXiv:0907.4097

[CBK02] N. Cerf, M. Bourennane, A. Karlsson, and N. Gisin: Phys. Rev. Lett. 88, 127902 (2002)

[EA01] B.-G. Englert, Y. Aharonov, Phys. Lett. A 284, 1 (2001)

[G04] M. Grassl, On SIC-POVMs and MUBs in Dimension 6, in: Proc. ERATO Conference on Quantum Information Science (EQUIS 2004), J. Gruska (ed.)

[I81] I. D. Ivanović, J. Phys. A 14, 3241 (1981)

[JLL08] S-W Ji, J. Lee, J Lim,K Nagata,H-W Lee, Phys. Rev. A **78**, 052103 (2008)

[JMM09] P. Jaming, M. Matolcsi, P. Móra, F. Szöllősi and M. Weiner, J. Phys. A: Math. Theor. **42** 245305 (2009)

[Ka09] B.R. Karlsson, J. Math. Phys. **50**, 082104 (2009)

[K09] M. Kibler, An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, unitary group and Pauli group, arXiv:0907.2838

References

[KMB09] M. Khan, M. Murphy and A. Beige, New J. Phys. **11**, 063043 (2009)

[KR03] A. Klappenecker, M. R⁷otteler, Constructions of Mutually Unbiased Bases, quant-ph/0309120

[S60] J. Schwinger, Proc. Nat. Acad. Sci. U.S.A., 46, 560, (1960)

[TZ06] W. Tadej and K. Życzkowski, Open Systems and Infor. Dyn. 13 133-177 (2006) (cf. http://chaos.if.uj.edu.pl/~karol/hadamard/

[W09] M. Weiner: A gap for the maximum number of mutually unbiased bases, arXiv:0902.0635

[WB04] P. Wocjan and T. Beth, New Construction of Mutually Unbiased Bases in Square Dimensions, arXiv:quant-ph/0407081

[WF89] W. K. Wootters and B. D. Fields, Ann. Phys. (N.Y.) **191**, 363 (1989)

[WW08] S. Weigert and M. Wilkinson, Phys. Rev. A 78, 020303(R) (2008)

[Z99] G. Zauner, Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie. PhD thesis, University of Wien, 1999.