Mutually Unbiased Bases:
 Existence and Non-Existence

Stefan Weigert

Department of Mathematics, University of York, United Kingdom
EQuaLS3 @ Kuala Lumpur, Malaysia - November 2009

Outline

Mutually Unbiased Bases: Existence and Non-Existence

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
- Analytical results
- Numerical results
- Conclusions

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
- Analytical results
- Numerical results
- Conclusions

Motivation

- What are MU bases?
- What are MU bases good for?
- What do we know about MU bases?
- What do we not know about MU bases?
- What do we know about MU bases in dimension six?

What are MU bases? (1)

a pair of MU bases in \mathbb{C}^{d}

- given two orthonormal bases $\left|\psi_{j}^{(1)}\right\rangle$ and $\left|\psi_{k}^{(2)}\right\rangle, j, k=1 \ldots d$, one requires

$$
\left|\left\langle\psi_{j}^{(b)} \mid \psi_{k}^{\left(b^{\prime}\right)}\right\rangle\right|=\chi_{j k}^{b b^{\prime}} \equiv\left\{\begin{array}{lll}
\delta_{j k} & \text { if } & b=b^{\prime} \\
1 / \sqrt{d} & \text { if } & b \neq b^{\prime}
\end{array}\right.
$$

- given any orthonormal basis \mathcal{B}_{0} in \mathbb{C}^{d}, one can construct a (symmetric) pair of MU bases, $\mathcal{B}_{1}, \mathcal{B}_{2}{ }_{\text {[560] }}$

What are MU bases? (2)

example: a triple of $M U$ bases in \mathbb{C}^{2} :

- let $\left(m_{x}= \pm, \ldots\right)$

$$
\mathcal{B}_{1}=\left\{\left|m_{x}\right\rangle\right\}, \quad \mathcal{B}_{2}=\left\{\left|m_{y}\right\rangle\right\}, \quad \mathcal{B}_{3}=\left\{\left|m_{z}\right\rangle\right\}
$$

be the eigenstates of $\sigma_{x}, \sigma_{y}, \sigma_{z}$, resp., then

$$
\left|\left\langle m_{x} \mid m_{y}\right\rangle\right|^{2}=\left|\left\langle m_{y} \mid m_{z}\right\rangle\right|^{2}=\ldots=\frac{1}{2}
$$

- explicitly:

$$
B_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad B_{x}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad B_{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
i & -i
\end{array}\right)
$$

- there are no more...

What are MU bases? (3)

- A complete set of MU bases $[181, \mathrm{WF} 89]$ in \mathbb{C}^{d},

$$
\mathcal{B}_{b}=\left\{\left|\psi_{j}^{(b)}\right\rangle, j=1 \ldots d\right\}, b=1 \ldots d+1
$$

consists of $d(d+1)$ pure states such that

$$
\left|\left\langle\psi_{j}^{(b)} \mid \psi_{j^{\prime}}^{\left(b^{\prime}\right)}\right\rangle\right|= \begin{cases}\delta_{j j^{\prime}} & \text { if } b=b^{\prime} \\ \frac{1}{\sqrt{d}} & \text { if } b \neq b^{\prime}\end{cases}
$$

- dimension $d=3$:

$$
\begin{array}{ll}
B_{0}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & B_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right) \\
B_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{2} & 1 & \omega \\
\omega^{2} & \omega & 1
\end{array}\right) & B_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega & \omega^{2} & 1 \\
\omega & 1 & \omega^{2}
\end{array}\right)
\end{array}
$$

where $\omega=e^{2 \pi i / 3}$

What are MU bases good for?

MU bases are used for

- optimal state estimation [wf89,A508]
- quantum key distribution [ввв4,вкво1,Свко2, кмвоо,во9]
- generalised Bell inequalities [JLL08]
- quantum challenges: the mean king [aE01,EA01]
- see talks by T. Durt and B.-G. Englert
they find and hide (quantum) information

What do we know about MU bases?

results independent of the dimension d :

- no more than $(d+1) \mathrm{MU}$ bases [wF89]
- have triples of MU bases for any d [KR03,G04]
- given $d \mathrm{MU}$ bases in $\mathbb{C}^{d}, d+1 \mathrm{MU}$ bases can be found [woo]
- a complete set of MU bases is equivalent to an orthogonal decomposition of the Lie algebra $s l_{d}(\mathbb{C})$ [BSTor]
results for prime power dimensions, $d=p^{k}, k \in \mathbb{N}$:
- complete sets have been constructed using (cf. [k009)
- discrete Fourier analysis over Galois fields/rings
- discrete Wigner functions
- generalized Pauli matrices
- mutually orthogonal Latin squares
- finite geometry methods
results for N continuous variables, $d=\infty$ [wwo8]
- $N=1$: triples of MU bases
- $N=2$: quintuples of MU bases

What do we not know about MU bases?

- for composite dimensions $d=6,10,12, \ldots$, the existence of complete MU bases is an open problem
- for composite dimensions $d=6,10,12, \ldots$, the existence of orthogonal decomposition of the Lie algebra $s l_{d}(\mathbb{C})$ is an open problem

What do we know about MU bases for composite d ?
results for $d=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{n}^{k_{n}}$ (with $p_{1}^{k_{1}}<p_{2}^{k_{2}}<\ldots<p_{n}^{k_{n}}$):

- can construct $p_{1}^{k_{1}}+1 \mathrm{MU}$ bases [KRO3]
- for some square dimensions $d=s^{2}$, there are more [wbo4]
- e.g.: if $d=2^{2} \times 13^{2}$, there are $6\left(=2^{2}+1+1\right) \mathrm{MU}$ bases
prime powers are sparse for $d \rightarrow \infty$!

What do we know about MU bases in dimension six? (1)

 analytic results:- standard prime power construction cannot be extended to more than three MU bases [604]
- no four MU bases have been found using a finite list of elements [BbE07]
numerical results:
- no four MU bases have been found by numerical searches [внот] other results:
- plausible generalisations of number theoretic formulas used for $d=p^{r}$ fail ${ }_{\text {[A05] }}$

conjecture:

There are only three MU bases in \mathbb{C}^{6}. [z99]

What do we know about MU bases in dimension six?(2)

recent analytic result:

- all MU bases in dimensions two to five [BWBoo]
- many candidates for MU bases can be excluded [Bwoo]
recent numerical results:
- many small MU constellations seemingly do not exist [Bwo8]

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
- Analytical results
- Numerical results
- Conclusions

Sets of MU bases in \mathbb{C}^{d}

pairs of MU bases in \mathbb{C}^{2} :

$$
\left\{B_{x}, B_{y}\right\},\left\{B_{y}, B_{x}\right\},\left\{B_{y}, B_{z}\right\}, \ldots
$$

more generally:

- How many pairs of MU bases exist in \mathbb{C}^{2} ?
- How many triples of MU bases exist in \mathbb{C}^{2} ?
- How many pairs of MU bases exist in \mathbb{C}^{2} ?
- What types of sets of MU bases exist in \mathbb{C}^{d} ?

Equivalent sets of MU bases

many sets of MU bases are equivalent to each other:

$$
\left\{B_{x}, B_{y}\right\} \sim\left\{B_{y}, B_{x}\right\} \sim\left\{B_{y}, B_{z}\right\} \sim \ldots
$$

transformations leaving $\left|\left\langle\psi_{j}^{(b)} \mid \psi_{k}^{\left(b^{\prime}\right)}\right\rangle\right|=\chi_{j k}^{b b^{\prime}}$ invariant:

- an overall unitary transformation U
- $(r+1)$ diagonal unitary transformations D_{ρ}
- $(r+1)$ permutations of the elements within each basis
- pairwise exchanges of two bases
- complex conjugation of all bases
define a standard form of MU bases!

Equivalence transformations of sets of MU bases

two sets of $(r+1) \mathrm{MU}$ bases are equivalent to each other

$$
\left\{B_{0}, B_{1}, \ldots, B_{r}\right\} \sim\left\{B_{0}^{\prime}, B_{1}^{\prime}, \ldots, B_{r}^{\prime}\right\}
$$

if one is obtained from the other via

- $\left\{B_{0}, B_{1}, \ldots, B_{r}\right\} \rightarrow\left\{U B_{0}, U B_{1}, \ldots, U B_{r}\right\}$
- $\left\{B_{0}, B_{1}, \ldots, B_{r}\right\} \rightarrow\left\{B_{0} D_{0}, B_{1} D_{1}, \ldots, B_{r} D_{r}\right\}$
- $\left\{B_{0}, B_{1}, \ldots, B_{r}\right\} \rightarrow\left\{B_{0} P_{0}, B_{1} P_{1}, \ldots, B_{r} P_{r}\right\}$
- $\left\{\ldots, B_{\rho}, \ldots, B_{\rho^{\prime}}, \ldots\right\} \rightarrow\left\{\ldots, B_{\rho^{\prime}}, \ldots, B_{\rho}, \ldots\right\}$
- $\left\{B_{0}, B_{1}, \ldots, B_{r}\right\} \sim\left\{B_{0}^{*}, B_{1}^{*}, \ldots, B_{r}^{*}\right\}$
define a standard form of MU bases!

Standard form of four MU bases

four MU bases for $d=3$: $\left\{I, B_{1}, B_{2}, B_{3}\right\}$ with

$$
\left.\begin{array}{r}
I=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
B_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{2} & 1 & \omega \\
\omega^{2} & \omega & 1
\end{array}\right)
\end{array} \quad B_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right), \begin{array}{ccc}
1 & 1 & 1 \\
\omega & \omega^{2} & 1 \\
\omega & 1 & \omega^{2}
\end{array}\right), ~ \$
$$

observation: the matrices B_{ρ} satisfy

- $B_{k}^{\dagger} B_{k}=I \quad$ (unitarity)
- $\left|\left(B_{k}\right)_{i j}\right|=\frac{1}{\sqrt{d}}, \quad$ (constant moduli)
they are complex Hadamard matrices

Standard form for sets of MU bases (1)

any set of $(r+1) \mathrm{MU}$ bases can be written as

$$
\left\{I, H_{1}, \ldots, H_{\rho} \ldots, H_{r}\right\}
$$

where

- first basis is the standard basis I
- all matrices H_{ρ} are complex Hadamard matrices
- first column of H_{1} has entries $1 / \sqrt{d}$ only
- first row of each Hadamard matrix has entries $1 / \sqrt{d}$ only

Standard form for sets of MU bases (2)

example: four MU bases for $d=3:\left\{I, B_{1}, B_{2}, B_{3}\right\}$

$$
\begin{aligned}
I=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) & B_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right) \\
B_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{2} & 1 & \omega \\
\omega^{2} & \omega & 1
\end{array}\right) & B_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega & \omega^{2} & 1 \\
\omega & 1 & \omega^{2}
\end{array}\right)
\end{aligned}
$$

where

- first basis is the standard basis I
- all matrices B_{ρ} are complex Hadamard matrices
- first column of B_{1} has entries $1 / \sqrt{3}$ only
- first row of each Hadamard matrix has entries $1 / \sqrt{3}$ only
- B_{1} has been dephased

Pairs of MU bases in \mathbb{C}^{d}

strategy:

- suppose we knew all complex Hadamard H matrices in \mathbb{C}^{d}
- then: all pairs $\{I, H\}$ are candidates for inequivalent MU bases
- apply equivalence transformations to obtain standard form
- list remaining inequivalent ones
- done!
need a list!
catalog of known complex $(d \times d)$ Hadamard matrices [TZ06]:
- complete classification for $d \leq 5$
- incomplete classification for $d \geq 6$

MU vectors

task: given $\{I, H\}$ construct additional MU bases
idea: search for all vectors $|v\rangle \in \mathbb{C}^{d}$ which are MU to both I and H in the pair $\{I, H\}$
properties of MU vectors $|v\rangle \in \mathbb{C}^{d}$:

- $\left|v_{i}\right|=1 / \sqrt{d}$
- $|\langle h(k) \mid v\rangle|=1 / \sqrt{d}, \quad k=1, \ldots, d$
requirements on MU vectors $|\mathrm{v}\rangle$ to form a third MU basis:
- need d independent vectors
- pairwise orthogonality

How to construct sets of MU bases \mathbb{C}^{d}

strategy:

- choose a Hadamard matrix H
- list the constraints on vectors MU to $\{I, H\}$
- determine all solutions
- list all MU vectors $\left|v_{1}\right\rangle,\left|v_{2}\right\rangle, \ldots$
- analyse the vectors to identify additional ON-bases
apply to
- dimensions two to five
- dimension six

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five [BWboo]
- MU bases in dimension six
- Analytical results
- Numerical results
- Conclusions

Dimension $d=2$

only one dephased complex Hadamard matrix exists in \mathbb{C}^{2} :

$$
F_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \quad \text { (Fourier matrix) }
$$

vectors MU to $I:|v\rangle=\frac{1}{\sqrt{2}}\binom{1}{e^{i \alpha}}, \alpha \in[0,2 \pi)$
vectors MU to $\left\{I, F_{2}\right\}$ satisfy: $\left|1 \pm e^{i \alpha}\right|=\sqrt{2}$
two solutions: $e^{i \alpha}= \pm i \Rightarrow\left|v_{ \pm}\right\rangle=\frac{1}{\sqrt{2}}\binom{1}{ \pm i}$
new Hadamard matrix: $H_{2}=\left(v_{+} \mid v_{-}\right)$
all sets of MU bases in \mathbb{C}^{2} :

$$
\left\{I, F_{2}\right\},\left\{I, F_{2}, H_{2}\right\}
$$

Dimension $d=3$

only one dephased complex Hadamard matrix exists in \mathbb{C}^{3} :

$$
F_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right) \text { (Fourier matrix) }
$$

vectors MU to $I:|v\rangle=\left(1, e^{i \alpha}, e^{i \beta}\right)^{T} / \sqrt{3}, \alpha, \beta \in[0,2 \pi)$ vectors MU to $\left\{I, F_{3}\right\}$ satisfy:

$$
\begin{aligned}
\sqrt{3} & =\left|1+e^{i \alpha}+e^{i \beta}\right| \\
\sqrt{3} & =\left|1+\omega e^{i \alpha}+\omega^{2} e^{i \beta}\right| \\
\sqrt{3} & =\left|1+\omega^{2} e^{i \alpha}+\omega e^{i \beta}\right|
\end{aligned}
$$

graphical solution...

Dimension $d=3$ (cont'd)

\ldots or, with some ζ of modulus $1 / 2$:

$$
\left|\zeta+\cos \frac{\alpha}{2}\right|=\frac{\sqrt{3}}{2} \text { and }\left|\zeta+\cos \left(\frac{\alpha}{2} \pm \frac{2 \pi}{3}\right)\right|=\frac{\sqrt{3}}{2}
$$

$\Rightarrow \boldsymbol{s i x}$ solutions $\left(\alpha_{j}, \beta_{j}\right), j=1 \ldots 6$

Dimension $d=3$ (cont'd)

\Rightarrow six vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{6}\right\rangle$
two new Hadamard matrices:

$$
\begin{gathered}
H_{3}=\left(v_{1}\left|v_{2}\right| v_{3}\right) \text { and } J_{3}=\left(v_{4}\left|v_{5}\right| v_{6}\right) \\
H_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega^{2} & 1 & \omega \\
\omega^{2} & \omega & 1
\end{array}\right) \quad J_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
\omega & \omega^{2} & 1 \\
\omega & 1 & \omega^{2}
\end{array}\right)
\end{gathered}
$$

note: $\left\{I, F_{3}, H_{3}\right\} \sim\left\{I, F_{3}, J_{3}\right\}$
all sets of MU bases in \mathbb{C}^{3} :
$\left\{I, F_{3}\right\},\left\{I, F_{3}, H_{3}\right\},\left\{I, F_{3}, H_{3}, J_{3}\right\}$

Triples of MU bases in dimension $d=4$

one-parameter set $(x \in[0, \pi))$ of Hadamard matrices exists in \mathbb{C}^{4} :

$$
F_{4}(x)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & i e^{i x} & -i e^{i x} \\
1 & -1 & -i e^{i x} & i e^{i x}
\end{array}\right), \quad \text { Fourier family }
$$

note: Fourier matrix $F_{4}(0) \equiv F_{4}$ and $F_{4}(\pi / 2) \equiv F_{2} \otimes F_{2}$ geometric arguments similar to those for \mathbb{C}^{3} :

$$
H_{4}(y, z)=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
-e^{i y} & e^{i y} & e^{i z} & -e^{i z} \\
e^{i y} & -e^{i y} & e^{i z} & -e^{i z}
\end{array}\right)
$$

three parameter-family of triples: $\left\{I, F_{4}(x), H_{4}(y, z)\right\}$

All sets of MU bases in dimension $d=4$

there is one quadruple of $M U$ bases in \mathbb{C}^{4} :

$$
\left\{I, F_{4}(\pi / 2), H_{4}, J_{4}\right\}
$$

there is one quintuple of MU bases in \mathbb{C}^{4} :

$$
\left\{I, F_{4}(\pi / 2), H_{4}, J_{4}, K_{4}\right\}
$$

all sets of MU bases in \mathbb{C}^{4} :

$$
\begin{gathered}
\left\{I, F_{4}(x)\right\} \\
\left\{I, F_{4}(x), H_{4}(y, z)\right\} \\
\left\{I, F_{4}(\pi / 2), H_{4}, J_{4}\right\} \\
\left\{I, F_{4}(\pi / 2), H_{4}, J_{4}, K_{4}\right\}
\end{gathered}
$$

All sets of MU bases in dimension $d=5$

only one dephased complex Hadamard matrix exists in \mathbb{C}^{5} :

$$
F_{5}=\frac{1}{\sqrt{5}}\left(\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} \\
1 & \omega^{2} & \omega^{4} & \omega & \omega^{3} \\
1 & \omega^{3} & \omega & \omega^{4} & \omega^{2} \\
1 & \omega^{4} & \omega^{3} & \omega^{2} & \omega
\end{array}\right), \quad \omega=e^{2 \pi i / 5}
$$

computer-assisted (cf. later) exact result:
all sets of $M U$ bases in \mathbb{C}^{5} :
$\left\{I, F_{5}\right\}$
$\left\{I, F_{5}, H_{5}\right\},\left\{I, F_{5}, J_{5}\right\}$
$\left\{I, F_{5}, H_{5}, J_{5}\right\}$
$\left\{I, F_{5}, H_{5}, J_{5}, K_{5}\right\}$
$\left\{I, F_{5}, H_{5}, J_{5}, K_{5}, L_{5}\right\}$

All MU bases for dimensions two to five

	\mathbb{C}^{2}	\mathbb{C}^{3}	\mathbb{C}^{4}	\mathbb{C}^{5}	\mathbb{C}^{6}
pairs	1	1	∞^{1}	1	$\geq \infty^{2}$
triples	1	1	∞^{3}	2	$\geq \infty^{1}$
quadruples	-	1	1	1	$?$
quintuples	-	-	1	1	$?$
sextuples	-	-	-	1	$?$

main results:

- a three-parameter family of triples in \mathbb{C}^{4}
- two inequivalent triples in \mathbb{C}^{5}
- prime power construction of complete sets is unique for $d \leq 5$

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
- Analytic results [BWoo]
- Numerical results
- Conclusions

Overview

- MU bases and complex Hadamard matrices
- known Hadamard matrices in dimension six
- MU vectors as solutions of multivariate polynomial equations
- Buchberger's algorithm and Gröbner bases
- Result: only triples of MU bases in \mathbb{C}^{6} (so far)

MU bases and complex Hadamard matrices

$(d+1) \mathrm{MU}$ bases in \mathbb{C}^{d} are characterized by
d complex $(d \times d)$ Hadamard matrices $H, H^{\prime}, H^{\prime \prime} \ldots$, satisfying

- $\left|H_{i j}\right|=1 / \sqrt{d}, \quad i, j=1, \ldots, d$
- $H^{\dagger} H^{\prime}=H^{\prime \prime}$
example ($\omega=e^{2 \pi i / 3}$):

$$
\text { I, } \quad H_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \omega & \omega^{2} \\
1 & \omega^{2} & \omega
\end{array}\right), \quad H_{2}=\ldots, \quad H_{3}=\ldots
$$

- given $\left\{I, F_{6}\right\}$, no further MU vectors have been found [G04]
- generalize F_{6} to any complex Hadamard matrix H
- complete classification for $d \leq 5$ only!

Complex Hadamard matrices of dimension six

- landscape of known Hadamard matrices for $d=6$
- recent two-parameter family: $K(x, y)$ [Kа09]

Constructing MU vectors in \mathbb{C}^{d}

given: identity I and some Hadamard matrix H
find all $|v\rangle \in \mathbb{C}^{d} \mathrm{MU}$ w.r.t. to the columns $|h(k)\rangle$ of H and of I

- $\left|v_{k}\right|=1 / \sqrt{d}$
- $|\langle h(k) \mid v\rangle|^{2}=1 / d, \quad k=1, \ldots, d$

algorithm

- choose a Hadamard matrix H
- list the constraints
- construct solutions using Buchberger's algorithm! [604]
- list all MU vectors
- analyse the vectors

Buchberger's algorithm: solving polynomial equations

Buchberger's algorithm [B65]:
Gaussian elimination for non-linear polynomial equations!

$$
x^{2}-y=0 \& x-y=0 \quad \Leftrightarrow \quad x^{2}-x=0 \& x-y=0
$$

with solutions $(x, y)=(0,0)$ or $(1,1)$
search for simple description of the algebraic variety:

- have polynomials $P \equiv\left\{p_{n}(\mathbf{x}), n=1, \ldots, N\right\}$
- want solutions of $P=0$
- use Buchberger's algorithm to find Gröbner basis for P : $G=\left\{g_{m}(\mathbf{x}), m=1, \ldots, M\right\}$
- solve 'triangular' set of equations $G=0$

Example: four MU bases in \mathbb{C}^{3}

- choose $H \equiv F_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right), \quad$ where $\omega=e^{2 \pi i / 3}$
- constraints $P=0$, using $v=\left(1, x_{1}+i y_{1}, x_{2}+i y_{2}\right)^{T} / \sqrt{3}$:

- find Gröbner basis using Buchberger's algorithm
- list all MU vectors
- analyse the vectors

Example: four MU bases in $\mathbb{C}^{3}(2)$

- choose $H \equiv F_{3}$
- constraints $P=0$
- find Gröbner basis G via Buchberger's algorithm, put $G=0$:

$$
\begin{aligned}
3 y_{2}-4 y_{2}^{3} & =0 \\
1-x_{2}-2 y_{2}^{2} & =0 \\
1+2 x_{1}+4 y_{1} y_{2}-4 y_{2}^{2} & =0 \\
3-4 y_{1}^{2}+4 y_{1} y_{2}-4 y_{2}^{2} & =0
\end{aligned}
$$

with solutions:

$$
\begin{array}{ll}
\mathbf{s}_{a}=\frac{1}{2}(-1,-1, \sqrt{3}, \sqrt{3}), & \mathbf{s}_{b}=\frac{1}{2}(-1,2,-\sqrt{3}, 0), \\
\mathbf{s}_{c}=\frac{1}{2}(2,-1,0,-\sqrt{3}), & \mathbf{s}_{d}=\frac{1}{2}(-1,-1,-\sqrt{3},-\sqrt{3}), \\
\mathbf{s}_{e}=\frac{1}{2}(2,-1,0, \sqrt{3}), & \mathbf{s}_{f}=\frac{1}{2}(-1,2, \sqrt{3}, 0)
\end{array}
$$

- list all MU vectors
- analyse the vectors

Example: four MU bases in $\mathbb{C}^{3}(3)$

- choose $H \equiv F_{3}$
- constraints $P=0$
- solve $G=0$ to find $\mathbf{s}_{a}, \ldots, \mathbf{s}_{f}$
- list MU vectors:

$$
\begin{gathered}
v_{a}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
\omega \\
\omega
\end{array}\right), v_{b}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
\omega^{2} \\
1
\end{array}\right), v_{c}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
\omega^{2}
\end{array}\right), \\
v_{d}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
\omega^{2} \\
\omega^{2}
\end{array}\right), v_{e}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
\omega
\end{array}\right), v_{f}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
\omega \\
1
\end{array}\right)
\end{gathered}
$$

- analyse the vectors: $H_{3} \sim\left[v_{a}, v_{b}, v_{c}\right]$ and $H_{2} \sim\left[v_{d}, v_{e}, v_{f}\right]$
- done

Results: Special Hadamard matrices

H	N_{v}	N_{t}
F_{6}	48	16
$D(0)$	120	10
C	38	0
S	90	0

- N_{v} : number of vectors MU to $\{I, H\}$
- N_{t} : number of triples of MU bases

Results: Affine Hadamard matrices

H	\mathbf{x}	$\#(\mathbf{x})$	N_{v}	N_{t}
$D(x)$	grid Γ_{D}	36	$72 / 120$	4
	random	500	$72 / 120$	4
$F(\mathbf{x})$	grid Γ_{F}	168	48	$8 / 70$
	random 2	2,000	48	8
$F^{\top}(\mathbf{x})$	grid Γ_{F}	168	48	$8 / 70$
	random	2,000	48	8

Diță

- \#(x): points chosen
- N_{v} : vectors MU to $\{I, H\}$
- N_{t} : triples of MU bases

Results: Non-affine Hadamard matrices (approximate!)

H	\mathbf{x}	$\#(\mathbf{x})$	N_{v}	N_{t}
$M(t)$	grid Γ_{M}	70	$48-120$	0
	random	300	$48-120$	0
$B(\theta)$	grid Γ_{B}	34	$56-120$	0
	random	300	$56-120$	0

symmetric

- $N_{v}(t)$ for the pair $\{I, M(t)\}$

Hermitean

- $N_{v}(\theta)$ for the pair $\{I, B(\theta)\}$

Results: Szöllősi family (approximate!)

H	\mathbf{x}	$\#(\mathbf{x})$	N_{v}	N_{t}
$X(a, b)$	Λ	50	$48 / 56$	0
	Λ^{\prime}	50	$48-60$	0
	random	300	$48-120$	0

along the line Λ
along the line Λ^{\prime}

- N_{v} for the pair $\{I, X(a, b)\}$
- N_{v} for the pair $\{I, X(a, b)\}$

Summary

29,000hrs later, on a single 2.2 GHz processor:

At most three MU bases in \mathbb{C}^{6} for 5,980 cases!

- Fourier families allow for MU triples only [лммо9]

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
- Analytic results
- Numerical results [BW08]
- Conclusions

Overview

- MU constellations
- Numerical results
- Summary

MU constellations

search numerically for complete sets of MU bases in \mathbb{C}^{6}
problem: search for seven complex (6×6) matrices
$\rightarrow 7 \times 2 \times 6^{2}=504$ real parameters!
idea: consider subsets of complete MU bases define MU constellations:

$$
\{x\}_{d} \equiv\left\{x_{0}, x_{1}, \ldots, x_{d}\right\}_{d}
$$

i.e. $d+1$ sets of x_{b} pure states that define the MU conditions MU constellations define a lattice:

- all smaller MU constellations must exist for a complete set
- any missing subset implies non-existence of a complete set

Examples of MU constellations

MU constellations:

$$
\{x\}_{d} \equiv\left\{x_{0}, x_{1}, \ldots, x_{d}\right\}_{d}, \quad x \in(\mathbb{Z} \bmod (d-1))^{d+1}
$$

note: need to specify only $(d-1)$ vectors in each basis

Examples:

- $\{2,2,2,2\}_{3}$ is a complete set in \mathbb{C}^{3}
- Butterley and Hall studied $\{5,5,5,5\}_{6}$ [внот]
- We can always find $\{d-1, d-1, d-1\}_{d}$ [KRO3]
- Grassl considered $\{5,5,5,1\}_{6}$ containing $\left\{I, F_{6}\right\}$ [604]

MU constellations as global minima

consider constellations of the form $\{5, x, y, z\}_{6}$
define a continuous function

$$
F(\vec{\alpha})=\sum_{\text {all indices }}\left(\left|\left\langle\psi_{j}^{b}(\vec{\alpha}) \mid \psi_{j^{\prime}}^{b^{\prime}}(\vec{\alpha})\right\rangle\right|-\chi_{j j^{\prime}}^{b b^{\prime}}\right)^{2}
$$

where

$$
\chi_{i j j^{\prime}}^{b b^{\prime}}= \begin{cases}\delta_{j j^{\prime}} & \text { if } b=b^{\prime} \\ \frac{1}{\sqrt{d}} & \text { if } b \neq b^{\prime}\end{cases}
$$

then, a constellation is MU if

$$
F(\vec{\alpha})=0
$$

Minimising $F(\vec{\alpha})$

- use form with fewest possible parameters
- search for minima starting at random points
- use method by Levenberg-Marquardt
- take $F(\vec{\alpha})<10^{-7}$ as numerical cut-off for a zero
this is a hard problem: can get stuck in local minima!

Testing the program

success rates for searches of constellations $\{d-1, d-1, d-1\}_{d}$:

d	2	3	4	5	6	7	8
$\%$	100.0	81.9	96.6	49.3	67.9	24.0	48.5

success rates for searches of MU constellations $\{4, x, y, z\}_{5}$:

$d=5$	parameters p_{5}				success rate				
x, y	z			z					
	1	2	3	4	1	2	3		
1,1	8	-	-	-	100.0	-	-		
2,1	12	-	-	-	100.0	-	-		
2,2	16	20	-	-	100.0	96.4	-		
3,1	16	-	-	-	100.0	-	-		
3,2	20	24	-	-	92.0	35.7	-		
3,3	24	28	32	-	68.3	38.0	29.0		
4,1	20	-	-	-	-				
4,2	24	28	-	-	56.0	-	-		
4,3	28	32	36	-	55.8	37.0	-		
4,4	32	36	40	44	37.4	-			

1,000 initial points randomly chosen in $\mathcal{C}_{5}(4, x, y, z)$
success rates for searches of MU constellations $\{6, x, y, z\}_{7}$:

$d=7$	parameters p_{7}						success rate					
x, y				z					z			
	1	2	3	4	5	6	1	2	3	4	5	6
1,1	12	-	-	-	-	-	100.0	-	-	-	-	-
2,1	18	-	-	-	-	-	100.0	-	-	-	-	-
2,2	24	30	-	-	-	-	100.0	100.0	-	-	-	-
3,1	24	-	-	-	-	-	100.0	-	-	-	-	-
3,2	30	36	-	-	-	-	100.0	100.0	-	-	-	-
3,3	36	42	48	-	-	-	100.0	100.0	99.3	-	-	-
4,1	30	-	-	-	-	-	100.0	-	-	-	-	-
4,2	36	42	-	-	-	-	100.0	100.0	-	-	-	-
4,3	42	48	54	-	-	-	99.9	95.6	0.0	-	-	-
4,4	48	54	60	66	-	-	52.3	0.0	0.0	0.0	-	-
5,1	36	-	-	-	-	-	100.0	-	-	-	-	-
5,2	42	48	-	-	-	-	100.0	37.9	-	-	-	-
5,3	48	54	60	-	-	-	2.6	0.0	0.1	-	-	-
5,4	54	60	66	72	-	-	0.0	0.0	0.0	0.1	-	-
5,5	60	66	72	78	84	-	0.2	0.2	0.2	0.1	0.2	-
6,1	42	-	-	-	-	-	57.5	-	-	-	-	-
6,2	48	54	-	-	-	-	1.1	0.0	-	-	-	-
6,3	54	60	66	-	-	-	0.0	0.1	0.0	-	-	-
6,4	60	66	72	78	-	-	0.2	0.0	0.1	0.3	-	-
6,5	66	72	78	84	90	-	0.3	0.4	0.1	0.1	0.1	-
6,6	72	78	84	90	96	102	0.5	0.2	0.2	0.0	0.4	0.3

1,000 initial points randomly chosen in $\mathcal{C}_{7}(6, x, y, z)$

Application to Dimension 6

success rates for searches of MU constellations $\{5, x, y, z\}_{6}$:

$d=6$	parameters p_{6}					success rate				
x, y			z					z		
	1	2	3	4	5	1	2	3	4	5
1,1	10	-	-	-	-	100.00	-	-	-	-
2,1	15	-	-	-	-	100.00	-	-	-	-
2,2	20	25	-	-	-	100.00	100.00	-	-	-
3,1	20	-	-	-	-	100.00	-	-	-	-
3,2	25	30	-	-	-	99.95	100.00	-	-	-
3,3	30	35	40	-	-	99.42	39.03	0.00	-	-
4,1	25	-	-	-	-	100.00	-	-	-	-
4,2	30	35	-	-	-	92.92	44.84	-	-	-
4,3	35	40	45	-	-	12.97	0.00	0.00	-	-
4,4	40	45	50	55	-	0.74	0.00	0.00	0.00	-
5,1	30	-	-	-	-	95.40	-	-	-	-
5,2	35	40	-	-	-	76.71	10.96	-	-	-
5,3	40	45	50	-	-	1.47	0.00	0.00	-	-
5,4	45	50	55	60	-	0.00	0.00	0.00	0.00	-
5,5	50	55	60	65	70	0.00	0.00	0.00	0.00	0.00

$\mathbf{1 0 , 0 0 0}$ initial points randomly chosen in $\mathcal{C}_{6}(5, x, y, z)$

Histograms of search results

Log-log histograms of search results

Summary

seemingly, not all MU constellations $\{5, x, y, z\}_{6}$ exist:

- only 18 MU constellations identified
- 17 unobserved MU constellations
- largest existing constellation is $\{5,5,3,1\}_{6}$ with 16 states
- smallest missing sets: $\{5,3,3,3\}_{6}$ and $\{5,4,3,2\}_{6}$
strongest numerical evidence for non-existence of $\left\{5^{7}\right\}_{6}$ so far!

observation:

$\left\{5^{7}\right\}_{6}$ has $\mathbf{1 4 5}$ free parameters and there are $\mathbf{4 9 5}$ constraints!

Counting parameters

free parameters of the constellation $\left\{(d-1)^{d+1}\right\}_{d}$:

$$
p_{d}=(d-1)\left(d^{2}-d-1\right)
$$

number of constraints on the vectors in $\left\{(d-1)^{d+1}\right\}_{d}$:

$$
c_{d}=\frac{1}{2} d(d-1)\left(d^{2}-3\right)
$$

thus

$$
c_{d}>p_{d}, \quad d>2
$$

e.g. in dimension 7:

$$
c_{7}=1328>288=p_{7}
$$

Outline

- Introduction
- Classifying MU bases
- All MU bases for dimensions two to five
- MU bases in dimension six
- Analytic results
- Numerical results
- Conclusions

Conclusions

main observations in dimension $d=6$:

- no evidence for seven MU bases
- evidence for non-existence of seven MU bases
moral:
- surprise: existence of some complete sets of MU bases!
- plausibility of non-existence from parameter counting! implications for physics:
- optimal state estimation only in prime powers dimensions?!
- properties of quantum systems vary with dimension: kinematics of two qubits different from qubit-qutrit system?
- has number theory yet another say on quantum theory?

References

[A05] C. Archer, J. Math. Phys. 46022106 (2005)
[AE01] Y. Aharonov and B.-G. Englert, Z. Naturforsch. 56a, 16 (2001)
[AS08] R.B. Adamson and A.M. Steinberg: Improving Quantum State Estimation with Mutually Unbiased Bases, arXiv:0808.0944
[B09] S. Brierley: Quantum Key Distribution Highly Sensitive to Eavesdropping arXIV:0910.2578
[B65] B. Buchberger, An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal. Ph.D. Dissertation, University of Innsbruck (1965) (English translation by M. Abramson in J. Symb. Comp. 41, 471 (2006))
[BBE07] I. Bengtsson, W. Bruzda, Å. Ericsson, J-Å. Larsson, W. Tadej and K.Życzkowski, Mubs and Hadamards of order six, J. Math. Phys. 48, 052106 (2007)
[BBR02] S. Bandyopadhyay, P.O. Boykin, V.
Roychowdhury, and F. Vatan Algorithmica 34, 512 (2002)
[BH07] P. Butterley and W. Hall, Phys. Lett. A 369, 5 (2007)
[BKB01] M. Bourennane, A. Karlsson and G. Björk, Phys. Rev. A 64, 012306 (2001)
[BST07] P.O. Boykin, M. Sitharam, P.H Tiep and P. Wocjan, Quantum Inf. Comp. 7, 371 (2007)
[BW08] S. Brierley and S. Weigert, Phys. Rev. A 78, 042312 (2008)
[BW09] S. Brierley and S. Weigert: Phys. Rev. A 79, 052316 (2009)
[BWB09] S. Brierley, S. Weigert and I. Bengtsson, All mutually unbiased bases in dimensions two to five, arXiv:0907.4097
[CBK02] N. Cerf, M. Bourennane, A. Karlsson, and N. Gisin: Phys. Rev. Lett. 88, 127902 (2002)
[EA01] B.-G. Englert, Y. Aharonov, Phys. Lett. A 284, 1 (2001)
[G04] M. Grassl, On SIC-POVMs and MUBs in Dimension 6, in: Proc. ERATO Conference on Quantum Information Science (EQUIS 2004), J. Gruska (ed.)
[181] I. D. Ivanović, J. Phys. A 14, 3241 (1981)
[JLL08] S-W Ji, J. Lee, J Lim,K Nagata,H-W Lee, Phys. Rev. A 78, 052103 (2008)
[JMM09] P. Jaming, M. Matolcsi, P. Móra, F. Szöllősi and M. Weiner, J. Phys. A: Math. Theor. 42245305 (2009)
[Ka09] B.R. Karlsson, J. Math. Phys. 50, 082104 (2009)
[K09] M. Kibler, An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, unitary group and Pauli group, arXiv:0907.2838

References

[KMB09] M. Khan, M. Murphy and A. Beige, New J.
Phys. 11, 063043 (2009)
[KR03] A. Klappenecker, M. R"otteler, Constructions of Mutually Unbiased Bases, quant-ph/0309120
[S60] J. Schwinger, Proc. Nat. Acad. Sci. U.S.A., 46, 560, (1960)
[TZ06] W. Tadej and K. Życzkowski, Open Systems and Infor. Dyn. 13 133-177 (2006) (cf. http://chaos.if.uj.edu.pl/~karol/hadamard/
[W09] M. Weiner: A gap for the maximum number of mutually unbiased bases, arXiv:0902.0635
[WB04] P. Wocjan and T. Beth, New Construction of Mutually Unbiased Bases in Square Dimensions, arXiv:quant-ph/0407081
[WF89] W. K. Wootters and B. D. Fields, Ann. Phys. (N.Y.) 191, 363 (1989)
[WW08] S. Weigert and M. Wilkinson, Phys. Rev. A 78, 020303(R) (2008)
[Z99] G. Zauner, Quantendesigns. Grundzüge einer nichtkommutativen Designtheorie. PhD thesis, University of Wien, 1999.

