Coherent States in Physics and Mathematics - IV

S. Twareque Ali
Department of Mathematics and Statistics
Concordia University
Montréal, Québec, CANADA H3G 1M8
stali@mathstat.concordia.ca
Expository Quantum Lecture Series 5
Institute for Mathematical Research
Putra University, Malaysia

Jan 9-13, 2012

Abstract

In this lecture we construct coherent states using unitary irreducible representations of locally compact groups on Hilbert spaces. As an example we look at the coherent states arising from the affine group of the line - the wavelets of signal analysis.

Contents

(1) Preliminaries

- Contents

Contents

(1) Preliminaries

- Contents
(2) Some group theoretical concepts

Contents

(1) Preliminaries

- Contents
(2) Some group theoretical concepts
(3) Coherent states from group representations

Contents

(1) Preliminaries

- Contents
(2) Some group theoretical concepts
(3) Coherent states from group representations
(4) Orthogonality relations

Contents

(1) Preliminaries

- Contents
(2) Some group theoretical concepts
(3) Coherent states from group representations
(4) Orthogonality relations
(5) The group theoretic meaning of wavelets

Contents

(1) Preliminaries

- Contents
(2) Some group theoretical concepts
(3) Coherent states from group representations
(4) Orthogonality relations
(5) The group theoretic meaning of wavelets
(6) The one-dimensional affine group and wavelets

The problem

We have seen that the canonical coherent states could be obtained by the action of a unitary irreducible representation of the Weyl-Heisenberg group on a fixed vector in the Hilbert space. The resulting resolution of the identity was a consequence, as we shall now see, a specific property of the representation, its square integrability.

The problem

We have seen that the canonical coherent states could be obtained by the action of a unitary irreducible representation of the Weyl-Heisenberg group on a fixed vector in the Hilbert space. The resulting resolution of the identity was a consequence, as we shall now see, a specific property of the representation, its square integrability.
This is a property shared by all representations, of a locally compact group, which lie in in the discrete series.

The problem

We have seen that the canonical coherent states could be obtained by the action of a unitary irreducible representation of the Weyl-Heisenberg group on a fixed vector in the Hilbert space. The resulting resolution of the identity was a consequence, as we shall now see, a specific property of the representation, its square integrability.
This is a property shared by all representations, of a locally compact group, which lie in in the discrete series.

We now study square integrable representations in general and look at such representations for a few groups. Finally, we construct families of CS using these representations and apply the general theory to construct wavelets.

The problem

We have seen that the canonical coherent states could be obtained by the action of a unitary irreducible representation of the Weyl-Heisenberg group on a fixed vector in the Hilbert space. The resulting resolution of the identity was a consequence, as we shall now see, a specific property of the representation, its square integrability.
This is a property shared by all representations, of a locally compact group, which lie in in the discrete series.
We now study square integrable representations in general and look at such representations for a few groups. Finally, we construct families of CS using these representations and apply the general theory to construct wavelets. But first we need to introduce a couple of group theoretical concepts

Notation

The following notation will be fixed, from now on:

- G : locally compact group.
- $G \ni g \longmapsto U(g)$: unitary irreducible representation of G on a Hilbert space \mathfrak{H}.
- $\mu:=\mu_{\ell}$: left invariant Haar measure of G. We shall mostly work with this measure.
- μ_{r} : right invariant Haar measure of G.
- $G \ni g \longmapsto \Delta(g)$, modular function of G, i.e., $d \mu_{\ell}=\Delta(g) d \mu_{r}$.

Left and right regular representations

There are two representations of a locally compact group G, both induced representations, which are of great importance in harmonic analysis and in the theory of CS. These are the so-called regular representations of G.

Left and right regular representations

There are two representations of a locally compact group G, both induced representations, which are of great importance in harmonic analysis and in the theory of CS. These are the so-called regular representations of G.
We start with the μ be the left Haar measure on G and consider the trivial subgroup $H=\{e\}$, consisting of just the identity element. The representation of G induced by the trivial representation of H is carried by the Hilbert space $L^{2}(G, d \mu)$. Denoting this representation by U_{ℓ}, we have for all $f \in L^{2}(G, d \mu)$,

$$
\left(U_{\ell}(g) f\right)\left(g^{\prime}\right)=f\left(g^{-1} g^{\prime}\right), \quad g, g^{\prime} \in G
$$

This representation is called the left regular representation of G.

Left and right regular representations

There are two representations of a locally compact group G, both induced representations, which are of great importance in harmonic analysis and in the theory of CS. These are the so-called regular representations of G.
We start with the μ be the left Haar measure on G and consider the trivial subgroup $H=\{e\}$, consisting of just the identity element. The representation of G induced by the trivial representation of H is carried by the Hilbert space $L^{2}(G, d \mu)$. Denoting this representation by U_{ℓ}, we have for all $f \in L^{2}(G, d \mu)$,

$$
\left(U_{\ell}(g) f\right)\left(g^{\prime}\right)=f\left(g^{-1} g^{\prime}\right), \quad g, g^{\prime} \in G
$$

This representation is called the left regular representation of G. Similarly, using the right Haar measure μ_{r} and the Hilbert space $L^{2}\left(G, d \mu_{r}\right)$, we can construct another unitary representation U_{r}, the right regular representation:

$$
\left(U_{r}(g) f\right)\left(g^{\prime}\right)=f\left(g^{\prime} g\right), \quad g, g^{\prime} \in G, \quad \forall f \in L^{2}\left(G, d \mu_{r}\right)
$$

Left and right regular representations

In general, these representations are reducible. On the other hand, U_{ℓ} and U_{r} are unitarily equivalent representations. Indeed, the map

$$
V: L^{2}(G, d \mu) \rightarrow L^{2}\left(G, d \mu_{r}\right), \quad(V f)(g)=f\left(g^{-1}\right), \quad g \in G,
$$

is easily seen to be unitary, and

$$
V U_{\ell}(g) V^{-1}=U_{r}(g), \quad g \in G .
$$

Left and right regular representations

In general, these representations are reducible. On the other hand, U_{ℓ} and U_{r} are unitarily equivalent representations. Indeed, the map

$$
V: L^{2}(G, d \mu) \rightarrow L^{2}\left(G, d \mu_{r}\right), \quad(V f)(g)=f\left(g^{-1}\right), \quad g \in G
$$

is easily seen to be unitary, and

$$
V U_{\ell}(g) V^{-1}=U_{r}(g), \quad g \in G
$$

The regular representation U_{r} can also be realized on the Hilbert space $L^{2}(G, d \mu)$ (rather than on $L^{2}\left(G, d \mu_{r}\right)$, using the fact that μ and μ_{r} are related by the modular function $\boldsymbol{\Delta}$. Thus, the map

$$
W: L^{2}\left(G, d \mu_{r}\right) \rightarrow L^{2}(G, d \mu), \quad(W f)(g)=\Delta(g)^{-\frac{1}{2}} f(g)
$$

is unitary,

Left and right regular representations

and for all $f \in L^{2}(G, d \mu)$,

$$
\left(\bar{U}_{r}(g) f\right)\left(g^{\prime}\right)=\Delta(g)^{\frac{1}{2}} f\left(g^{\prime} g\right), \quad \text { where } \quad \bar{U}_{r}(g)=W U_{r}(g) W^{-1}, \quad g \in G .
$$

Left and right regular representations

and for all $f \in L^{2}(G, d \mu)$,

$$
\left(\bar{U}_{r}(g) f\right)\left(g^{\prime}\right)=\Delta(g)^{\frac{1}{2}} f\left(g^{\prime} g\right), \quad \text { where } \quad \bar{U}_{r}(g)=W U_{r}(g) W^{-1}, \quad g \in G .
$$

From this we see that the left and right regular representations commute:

$$
\left[U \ell(g), U_{r}(g)\right]=0, \quad \forall g \in G .
$$

Left and right regular representations

and for all $f \in L^{2}(G, d \mu)$,

$$
\left(\bar{U}_{r}(g) f\right)\left(g^{\prime}\right)=\Delta(g)^{\frac{1}{2}} f\left(g^{\prime} g\right), \quad \text { where } \quad \bar{U}_{r}(g)=W U_{r}(g) W^{-1}, \quad g \in G .
$$

From this we see that the left and right regular representations commute:

$$
\left[U \ell(g), U_{r}(g)\right]=0, \quad \forall g \in G .
$$

Clearly, the two representations U_{ℓ} and \bar{U}_{r} on $L^{2}(G, d \mu)$ are also unitarily equivalent. More interesting, however, is the map $J: L^{2}(G, d \mu) \rightarrow L^{2}(G, d \mu)$,

$$
\begin{aligned}
(J f)(g) & =\overline{f\left(g^{-1}\right)} \boldsymbol{\Delta}(g)^{-\frac{1}{2}}, \quad J^{2}=1 \\
J U_{\ell}(g) J & =\bar{U}_{r}(g), \quad g \in G,
\end{aligned}
$$

Left and right regular representations

and for all $f \in L^{2}(G, d \mu)$,

$$
\left(\bar{U}_{r}(g) f\right)\left(g^{\prime}\right)=\Delta(g)^{\frac{1}{2}} f\left(g^{\prime} g\right), \quad \text { where } \quad \bar{U}_{r}(g)=W U_{r}(g) W^{-1}, \quad g \in G .
$$

From this we see that the left and right regular representations commute:

$$
\left[U \ell(g), U_{r}(g)\right]=0, \quad \forall g \in G .
$$

Clearly, the two representations U_{ℓ} and \bar{U}_{r} on $L^{2}(G, d \mu)$ are also unitarily equivalent. More interesting, however, is the map $J: L^{2}(G, d \mu) \rightarrow L^{2}(G, d \mu)$,

$$
\begin{aligned}
(J f)(g) & =\overline{f\left(g^{-1}\right)} \boldsymbol{\Delta}(g)^{-\frac{1}{2}}, \quad J^{2}=1 \\
J U_{\ell}(g) J & =\bar{U}_{r}(g), \quad g \in G,
\end{aligned}
$$

which is an antiunitary isomorphism and leads to a certain modular structure on the corresponding von Neumann algebras.

An extended Schur's lemma

In harmonic analysis, the irreducibility of a unitary group representation is usually determined by an application of Schur's lemma. For our purposes, we need an extended version of this lemma. We state below three lemmata: the classical Schur's lemma, an generalized version of it and an extended Schur's lemma.

An extended Schur's lemma

In harmonic analysis, the irreducibility of a unitary group representation is usually determined by an application of Schur's lemma. For our purposes, we need an extended version of this lemma. We state below three lemmata: the classical Schur's lemma, an generalized version of it and an extended Schur's lemma.

Lemma (Classical Schur's lemma)

Let U be a continuous unitary irreducible representation of G on the Hilbert space \mathfrak{H}. If $T \in \mathcal{L}(\mathfrak{H})$, and T commutes with $U(g)$, for all $g \in G$, then $T=\lambda I$, for some $\lambda \in \mathbb{C}$,

An extended Schur's lemma

In harmonic analysis, the irreducibility of a unitary group representation is usually determined by an application of Schur's lemma. For our purposes, we need an extended version of this lemma. We state below three lemmata: the classical Schur's lemma, an generalized version of it and an extended Schur's lemma.

Lemma (Classical Schur's lemma)

Let U be a continuous unitary irreducible representation of G on the Hilbert space \mathfrak{H}. If $T \in \mathcal{L}(\mathfrak{H})$, and T commutes with $U(g)$, for all $g \in G$, then $T=\lambda I$, for some $\lambda \in \mathbb{C}$,

In order to state the extended lemma we need an couple of additional concepts. Let U_{1} and U_{2} be two representations of G on the Hilbert spaces \mathfrak{H}_{1} and \mathfrak{H}_{2}, respectively. A linear map $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ is said to intertwine U_{1} and U_{2} if

$$
T U_{1}(g)=U_{2}(g) T, \quad \forall g \in G
$$

Generalized Schur's lemma

Given two Hilbert spaces \mathfrak{H}_{1} and \mathfrak{H}_{2}, a linear map $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ is said to be a multiple of an isometry if there exists $\lambda>0$ such that,

$$
\|T \phi\|_{\mathfrak{H}_{2}}^{2}=\lambda\|\phi\|_{\mathfrak{H}_{1}}^{2}, \quad \phi \in \mathfrak{H}_{1} .
$$

Generalized Schur's lemma

Given two Hilbert spaces \mathfrak{H}_{1} and \mathfrak{H}_{2}, a linear map $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ is said to be a multiple of an isometry if there exists $\lambda>0$ such that,

$$
\|T \phi\|_{\mathfrak{H}_{2}}^{2}=\lambda\|\phi\|_{\mathfrak{H}_{1}}^{2}, \quad \phi \in \mathfrak{H}_{1} .
$$

Lemma (Generalized Schur's lemma)

Let U_{1} be a unitary irreducible representation of G on \mathfrak{H}_{1} and U_{2} a unitary, but not necessarily irreducible, representation of G on \mathfrak{H}_{2}. Let $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ be a bounded linear map which intertwines U_{1} and U_{2}. Then T is either null or a multiple of an isometry.

Generalized Schur's lemma

Given two Hilbert spaces \mathfrak{H}_{1} and \mathfrak{H}_{2}, a linear map $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ is said to be a multiple of an isometry if there exists $\lambda>0$ such that,

$$
\|T \phi\|_{\mathfrak{H}_{2}}^{2}=\lambda\|\phi\|_{\mathfrak{H}_{1}}^{2}, \quad \phi \in \mathfrak{H}_{1} .
$$

Lemma (Generalized Schur's lemma)

Let U_{1} be a unitary irreducible representation of G on \mathfrak{H}_{1} and U_{2} a unitary, but not necessarily irreducible, representation of G on \mathfrak{H}_{2}. Let $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ be a bounded linear map which intertwines U_{1} and U_{2}. Then T is either null or a multiple of an isometry.

This is the form in which Schur's lemma is mostly used in the study of infinite dimensional representations in harmonic analysis.

Extended Schur's lemma

The next extended version of Schur's lemma is the one we shall use in our construction of coherent states from group representations.

Extended Schur's lemma

The next extended version of Schur's lemma is the one we shall use in our construction of coherent states from group representations.

Lemma (Extended Schur's lemma)

Let U_{1} be a unitary irreducible representation of G on \mathfrak{H}_{1} and U_{2} a unitary, but not necessarily irreducible, representation of G on \mathfrak{H}_{2}. Let $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ be a closed linear map, the domain $\mathcal{D}(T)$ of which is dense in \mathfrak{H}_{1} and stable under U_{1} (i.e., $U_{1}(g) \phi \in \mathcal{D}(T)$, for all $g \in G$ and $\left.\phi \in \mathcal{D}(T)\right)$, and suppose that T intertwines U_{1} and U_{2}. Then T is either null or a multiple of an isometry.

Extended Schur's lemma

The next extended version of Schur's lemma is the one we shall use in our construction of coherent states from group representations.

Lemma (Extended Schur's lemma)

Let U_{1} be a unitary irreducible representation of G on \mathfrak{H}_{1} and U_{2} a unitary, but not necessarily irreducible, representation of G on \mathfrak{H}_{2}. Let $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ be a closed linear map, the domain $\mathcal{D}(T)$ of which is dense in \mathfrak{H}_{1} and stable under U_{1} (i.e., $U_{1}(g) \phi \in \mathcal{D}(T)$, for all $g \in G$ and $\left.\phi \in \mathcal{D}(T)\right)$, and suppose that T intertwines U_{1} and U_{2}. Then T is either null or a multiple of an isometry.

As a corollary, if $\mathfrak{H}_{1}=\mathfrak{H}_{2}$ and $U_{1}=U_{2}$, then as a consequence of the classical Schur's lemma, T is a multiple of the identity.

Extended Schur's lemma

The next extended version of Schur's lemma is the one we shall use in our construction of coherent states from group representations.

Lemma (Extended Schur's lemma)

Let U_{1} be a unitary irreducible representation of G on \mathfrak{H}_{1} and U_{2} a unitary, but not necessarily irreducible, representation of G on \mathfrak{H}_{2}. Let $T: \mathfrak{H}_{1} \rightarrow \mathfrak{H}_{2}$ be a closed linear map, the domain $\mathcal{D}(T)$ of which is dense in \mathfrak{H}_{1} and stable under U_{1} (i.e., $U_{1}(g) \phi \in \mathcal{D}(T)$, for all $g \in G$ and $\left.\phi \in \mathcal{D}(T)\right)$, and suppose that T intertwines U_{1} and U_{2}. Then T is either null or a multiple of an isometry.

As a corollary, if $\mathfrak{H}_{1}=\mathfrak{H}_{2}$ and $U_{1}=U_{2}$, then as a consequence of the classical Schur's lemma, T is a multiple of the identity.
We proceed now to a systematic analysis of square integrable group representations and coherent states built out of them.

Admissible vectors

Definition (Admissible vector)
A vector $\eta \in \mathfrak{H}$ is said to be admissible if

$$
I(\eta)=\int_{G}|\langle U(g) \eta \mid \eta\rangle|^{2} d \mu(g)<\infty .
$$

Admissible vectors

Definition (Admissible vector)
A vector $\eta \in \mathfrak{H}$ is said to be admissible if

$$
I(\eta)=\int_{G}|\langle U(g) \eta \mid \eta\rangle|^{2} d \mu(g)<\infty .
$$

Note that since $d \mu_{r}(g)=d \mu\left(g^{-1}\right)$, and since $U(g)$ is unitary,

$$
I(\eta)=\int_{G}\left|\left\langle U\left(g^{-1}\right) \eta \mid \eta\right\rangle\right|^{2} d \mu_{r}(g)=\int_{G}|\langle\eta \mid U(g) \eta\rangle|^{2} d \mu_{r}(g) .
$$

Admissible vectors

Definition (Admissible vector)
A vector $\eta \in \mathfrak{H}$ is said to be admissible if

$$
I(\eta)=\int_{G}|\langle U(g) \eta \mid \eta\rangle|^{2} d \mu(g)<\infty .
$$

Note that since $d \mu_{r}(g)=d \mu\left(g^{-1}\right)$, and since $U(g)$ is unitary,

$$
I(\eta)=\int_{G}\left|\left\langle U\left(g^{-1}\right) \eta \mid \eta\right\rangle\right|^{2} d \mu_{r}(g)=\int_{G}|\langle\eta \mid U(g) \eta\rangle|^{2} d \mu_{r}(g) .
$$

Hence,

$$
I(\eta)=\int_{G}|\langle U(g) \eta \mid \eta\rangle|^{2} d \mu_{r}(g),
$$

Admissible vectors

Definition (Admissible vector)

A vector $\eta \in \mathfrak{H}$ is said to be admissible if

$$
I(\eta)=\int_{G}|\langle U(g) \eta \mid \eta\rangle|^{2} d \mu(g)<\infty
$$

Note that since $d \mu_{r}(g)=d \mu\left(g^{-1}\right)$, and since $U(g)$ is unitary,

$$
I(\eta)=\int_{G}\left|\left\langle U\left(g^{-1}\right) \eta \mid \eta\right\rangle\right|^{2} d \mu_{r}(g)=\int_{G}|\langle\eta \mid U(g) \eta\rangle|^{2} d \mu_{r}(g)
$$

Hence,

$$
I(\eta)=\int_{G}|\langle U(g) \eta \mid \eta\rangle|^{2} d \mu_{r}(g)
$$

so that it is immaterial whether the left or the right invariant Haar measure is used in the definition of admissibility. Note also that if $\eta \neq 0$, then $I(\eta) \neq 0$.

Admissible vectors

Indeed, since $g \mapsto\langle U(g) \eta \mid \eta\rangle$ is a continuous function, and the measure $d \mu$ is invariant under left translations, $I(\eta)=0$ implies $\langle U(g) \eta \mid \eta\rangle=0$, for all $g \in G$. Since $U(g) \eta, g \in G$, is a dense set of vectors in \mathfrak{H}, this implies that $\eta=0$.

Admissible vectors

Indeed, since $g \mapsto\langle U(g) \eta \mid \eta\rangle$ is a continuous function, and the measure $d \mu$ is invariant under left translations, $I(\eta)=0$ implies $\langle U(g) \eta \mid \eta\rangle=0$, for all $g \in G$. Since $U(g) \eta, g \in G$, is a dense set of vectors in \mathfrak{H}, this implies that $\eta=0$.

Lemma

If $\eta \in \mathfrak{H}$ is an admissible vector, then so also is $\eta_{g}=U(g) \eta$, for all $g \in G$.

Admissible vectors

Indeed, since $g \mapsto\langle U(g) \eta \mid \eta\rangle$ is a continuous function, and the measure $d \mu$ is invariant under left translations, $I(\eta)=0$ implies $\langle U(g) \eta \mid \eta\rangle=0$, for all $g \in G$. Since $U(g) \eta, g \in G$, is a dense set of vectors in \mathfrak{H}, this implies that $\eta=0$.

Lemma

If $\eta \in \mathfrak{H}$ is an admissible vector, then so also is $\eta_{g}=U(g) \eta$, for all $g \in G$.
Proof. Indeed,

$$
\begin{aligned}
I\left(\eta_{g}\right) & =\int_{G}\left|\left\langle U\left(g^{\prime}\right) \eta_{g} \mid \eta_{g}\right\rangle\right|^{2} d \mu\left(g^{\prime}\right)=\int_{G}\left|\left\langle U\left(g^{-1} g^{\prime} g\right) \eta \mid \eta\right\rangle\right|^{2} d \mu\left(g^{\prime}\right) \\
& =\int_{G}\left|\left\langle U\left(g^{\prime} g\right) \eta \mid \eta\right\rangle\right|^{2} d \mu\left(g^{\prime}\right) \quad \text { by the left invariance of } d \mu \\
& =\int_{G}\left|\left\langle U\left(g^{\prime}\right) \eta \mid \eta\right\rangle\right|^{2} \Delta\left(g^{-1}\right) d \mu\left(g^{\prime}\right) \\
& =\frac{1}{\boldsymbol{\Delta}(g)} \int_{G}\left|\left\langle U\left(g^{\prime}\right) \eta \mid \eta\right\rangle\right|^{2} d \mu\left(g^{\prime}\right)
\end{aligned}
$$

Admissible vectors

Thus,

$$
I\left(\eta_{g}\right)=\frac{1}{\Delta(g)} I(\eta)<\infty .
$$

Admissible vectors

Thus,

$$
I\left(\eta_{g}\right)=\frac{1}{\Delta(g)} I(\eta)<\infty .
$$

Let \mathcal{A} denote the set of all admissible vectors. Then, as a consequence of this lemma, \mathcal{A} is stable under $U(g), g \in G$. Since U is irreducible, either $\mathcal{A}=\{0\}$, i.e., it consists of the zero vector only, or \mathcal{A} is total in \mathfrak{H}. Furthermore, it turns out that

Admissible vectors

Thus,

$$
I\left(\eta_{g}\right)=\frac{1}{\Delta(g)} I(\eta)<\infty .
$$

Let \mathcal{A} denote the set of all admissible vectors. Then, as a consequence of this lemma, \mathcal{A} is stable under $U(g), g \in G$. Since U is irreducible, either $\mathcal{A}=\{0\}$, i.e., it consists of the zero vector only, or \mathcal{A} is total in \mathfrak{H}. Furthermore, it turns out that

$$
\eta \in \mathcal{A} \quad \text { iff } \quad \int_{G}|\langle U(g) \eta \mid \phi\rangle|^{2} d \mu(g)<\infty, \forall \phi \in \mathfrak{H},
$$

Admissible vectors

Thus,

$$
I\left(\eta_{g}\right)=\frac{1}{\Delta(g)} I(\eta)<\infty
$$

Let \mathcal{A} denote the set of all admissible vectors. Then, as a consequence of this lemma, \mathcal{A} is stable under $U(g), g \in G$. Since U is irreducible, either $\mathcal{A}=\{0\}$, i.e., it consists of the zero vector only, or \mathcal{A} is total in \mathfrak{H}. Furthermore, it turns out that

$$
\eta \in \mathcal{A} \quad \text { iff } \quad \int_{G}|\langle U(g) \eta \mid \phi\rangle|^{2} d \mu(g)<\infty, \forall \phi \in \mathfrak{H}
$$

and this in turn implies that $\eta_{1}+\eta_{2}$ is admissible if η_{1}, η_{2} are, i.e. \mathcal{A} is a vector subspace of \mathfrak{H}. Therefore, either $\mathcal{A}=\{0\}$, or \mathcal{A} is dense in \mathfrak{H}. For $\eta \in \mathcal{A}, \eta \neq 0$, we shall write

$$
c(\eta)=\frac{I(\eta)}{\|\eta\|^{2}}
$$

Square integrability of a group representation

Definition

The unitary, irreducible representations $G \ni g \longmapsto U(g)$ is said to be square integrable if $\mathcal{A} \neq\{0\}$.

Square integrability of a group representation

Definition

The unitary, irreducible representations $G \ni g \longmapsto U(g)$ is said to be square integrable if $\mathcal{A} \neq\{0\}$.

We then have the result

Theorem

Suppose the UIR $g \mapsto U(g)$ of the locally compact group G is square integrable. Then, for any $\eta \in \mathcal{A}$, the mapping

$$
W_{\eta}: \mathfrak{H} \rightarrow L^{2}(G, d \mu), \quad\left(W_{\eta} \phi\right)(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle, \quad \phi \in \mathfrak{H}, g \in G,
$$

is a linear isometry onto a (closed) subspace \mathfrak{H}_{η} of $L^{2}(G, d \mu)$.

Square integrability of a group representation

Definition

The unitary, irreducible representations $G \ni g \longmapsto U(g)$ is said to be square integrable if $\mathcal{A} \neq\{0\}$.

We then have the result

Theorem

Suppose the UIR $g \mapsto U(g)$ of the locally compact group G is square integrable. Then, for any $\eta \in \mathcal{A}$, the mapping

$$
W_{\eta}: \mathfrak{H} \rightarrow L^{2}(G, d \mu), \quad\left(W_{\eta} \phi\right)(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle, \quad \phi \in \mathfrak{H}, g \in G,
$$

is a linear isometry onto a (closed) subspace \mathfrak{H}_{η} of $L^{2}(G, d \mu)$.
On \mathfrak{H} on has the resolution of the identity

$$
\frac{1}{c(\eta)} \int_{G}\left|\eta_{g}\right\rangle\left\langle\eta_{g}\right| d \mu(g)=I
$$

Square integrability of a group representation

Theorem (contd.)

The subspace $\mathfrak{H}_{\eta}=W_{\eta} \mathfrak{H} \subset L^{2}(G, d \mu)$ is a reproducing kernel Hilbert space. The corresponding projection operator

$$
\mathbb{P}_{\eta}=W_{\eta} W_{\eta}^{*}, \quad \mathbb{P}_{\eta} L^{2}(G, d \mu)=\mathfrak{H}_{\eta},
$$

has the reproducing kernel K_{η} :

$$
\begin{aligned}
\left(\mathbb{P}_{\eta} \widetilde{\Phi}\right)(g) & =\int_{G} K_{\eta}\left(g, g^{\prime}\right) \widetilde{\Phi}\left(g^{\prime}\right) d \mu\left(g^{\prime}\right), \quad \widetilde{\Phi} \in L^{2}(G, d \mu) \\
K_{\eta}\left(g, g^{\prime}\right) & =\frac{1}{c(\eta)}\left\langle\eta_{g} \mid \eta_{g^{\prime}}\right\rangle
\end{aligned}
$$

as its integral kernel.

Square integrability of a group representation

Theorem (contd.)

The subspace $\mathfrak{H}_{\eta}=W_{\eta} \mathfrak{H} \subset L^{2}(G, d \mu)$ is a reproducing kernel Hilbert space. The corresponding projection operator

$$
\mathbb{P}_{\eta}=W_{\eta} W_{\eta}^{*}, \quad \mathbb{P}_{\eta} L^{2}(G, d \mu)=\mathfrak{H}_{\eta},
$$

has the reproducing kernel K_{η} :

$$
\begin{aligned}
\left(\mathbb{P}_{\eta} \widetilde{\Phi}\right)(g) & =\int_{G} K_{\eta}\left(g, g^{\prime}\right) \widetilde{\Phi}\left(g^{\prime}\right) d \mu\left(g^{\prime}\right), \quad \widetilde{\Phi} \in L^{2}(G, d \mu) \\
K_{\eta}\left(g, g^{\prime}\right) & =\frac{1}{c(\eta)}\left\langle\eta_{g} \mid \eta_{g^{\prime}}\right\rangle
\end{aligned}
$$

as its integral kernel.
Furthermore, W_{η} intertwines U and the left regular representation U_{ℓ},

$$
W_{\eta} U(g)=U_{\ell}(g) W_{\eta}, \quad g \in G .
$$

Square integrability of a group representation

Before proving this theorem, we observe that an entirely analogous result holds with the right regular representation U_{r}. Thus, for each $\eta \in \mathcal{A}$, there exists a linear isometry,

$$
W_{\eta}^{r}: \mathfrak{H} \rightarrow L^{2}\left(G, d \mu_{r}\right), \quad\left(W_{\eta}^{r} \phi\right)(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g-1} \mid \phi\right\rangle, \quad \phi \in \mathfrak{H}, g \in G .
$$

Square integrability of a group representation

Before proving this theorem, we observe that an entirely analogous result holds with the right regular representation U_{r}. Thus, for each $\eta \in \mathcal{A}$, there exists a linear isometry,

$$
W_{\eta}^{r}: \mathfrak{H} \rightarrow L^{2}\left(G, d \mu_{r}\right), \quad\left(W_{\eta}^{r} \phi\right)(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g^{-1}} \mid \phi\right\rangle, \quad \phi \in \mathfrak{H}, g \in G .
$$

The corresponding reproducing kernel is

$$
K_{\eta}^{r}\left(g, g^{\prime}\right)=\frac{1}{c(\eta)}\left\langle\eta_{g^{-1}} \mid \eta_{g^{\prime-1}}\right\rangle=K_{\eta}\left(g^{-1}, g^{\prime-1}\right)
$$

Square integrability of a group representation

Before proving this theorem, we observe that an entirely analogous result holds with the right regular representation U_{r}. Thus, for each $\eta \in \mathcal{A}$, there exists a linear isometry,

$$
W_{\eta}^{r}: \mathfrak{H} \rightarrow L^{2}\left(G, d \mu_{r}\right), \quad\left(W_{\eta}^{r} \phi\right)(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g^{-1}} \mid \phi\right\rangle, \quad \phi \in \mathfrak{H}, g \in G .
$$

The corresponding reproducing kernel is

$$
K_{\eta}^{r}\left(g, g^{\prime}\right)=\frac{1}{c(\eta)}\left\langle\eta_{g^{-1}} \mid \eta_{g^{\prime-1}}\right\rangle=K_{\eta}\left(g^{-1}, g^{\prime-1}\right)
$$

Proof of the theorem. The domain $\mathcal{D}\left(W_{\eta}\right)$ of W_{η} is the set of all vectors $\phi \in \mathfrak{H}$ such that

$$
\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g} \mid \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g)<\infty .
$$

Square integrability of a group representation

But, for any $\phi \in \mathcal{D}\left(W_{\eta}\right)$ and $g^{\prime} \in G$, we have

$$
\begin{aligned}
\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g} \mid U\left(g^{\prime}\right) \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g) & =\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g^{\prime-1}} \mid \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g) \\
& =\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g} \mid \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g),
\end{aligned}
$$

Square integrability of a group representation

But, for any $\phi \in \mathcal{D}\left(W_{\eta}\right)$ and $g^{\prime} \in G$, we have

$$
\begin{aligned}
\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g} \mid U\left(g^{\prime}\right) \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g) & =\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g^{\prime-1}} \mid \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g) \\
& =\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g} \mid \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g)
\end{aligned}
$$

the last equality following from the invariance of μ. Thus $\mathcal{D}\left(W_{\eta}\right)$ is stable under U, hence dense in \mathfrak{H}, since U is irreducible. Moreover, on $\mathcal{D}\left(W_{\eta}\right)$, intertwines the left regular representation U_{ℓ}, as is easily seen from the definitions.

Square integrability of a group representation

But, for any $\phi \in \mathcal{D}\left(W_{\eta}\right)$ and $g^{\prime} \in G$, we have

$$
\begin{aligned}
\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g} \mid U\left(g^{\prime}\right) \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g) & =\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g^{\prime-1}} \mid \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g) \\
& =\frac{1}{c(\eta)} \int_{G}\left|\left\langle\eta_{g} \mid \phi\right\rangle_{\mathfrak{H}}\right|^{2} d \mu(g)
\end{aligned}
$$

the last equality following from the invariance of μ. Thus $\mathcal{D}\left(W_{\eta}\right)$ is stable under U, hence dense in \mathfrak{H}, since U is irreducible. Moreover, on $\mathcal{D}\left(W_{\eta}\right)$, intertwines the left regular representation U_{ℓ}, as is easily seen from the definitions.
We prove next that, as a linear map, W_{η} is closed. Let $\left\{\phi_{n}\right\}_{n=1}^{\infty} \subset \mathcal{D}\left(W_{\eta}\right)$ be a sequence converging to $\phi \in \mathfrak{H}$ and let the corresponding sequence $\left\{W_{\eta} \phi_{n}\right\}_{n=1}^{\infty} \subset L^{2}(G, d \mu)$ converge to $\Phi \in L^{2}(G, d \mu)$. Then, by the continuity of the scalar product in \mathfrak{H},

Square integrability of a group representation

$$
\lim _{n \rightarrow \infty} W_{\eta} \phi_{n}(g)=\lim _{n \rightarrow \infty}\left\langle\eta_{g} \mid \phi_{n}\right\rangle=\left\langle\eta_{g} \mid \phi\right\rangle
$$

Thus, since $W_{\eta} \phi_{n} \rightarrow \Phi$ in $L^{2}(G, d \mu)$ and $W_{\eta} \phi_{n}(g) \rightarrow\left\langle\eta_{g} \mid \phi\right\rangle$ pointwise,

$$
\left\langle\eta_{g} \mid \phi\right\rangle=\Phi(g)
$$

almost everywhere (with respect to μ), whence,

Square integrability of a group representation

$$
\lim _{n \rightarrow \infty} W_{\eta} \phi_{n}(g)=\lim _{n \rightarrow \infty}\left\langle\eta_{g} \mid \phi_{n}\right\rangle=\left\langle\eta_{g} \mid \phi\right\rangle
$$

Thus, since $W_{\eta} \phi_{n} \rightarrow \Phi$ in $L^{2}(G, d \mu)$ and $W_{\eta} \phi_{n}(g) \rightarrow\left\langle\eta_{g} \mid \phi\right\rangle$ pointwise,

$$
\left\langle\eta_{g} \mid \phi\right\rangle=\Phi(g)
$$

almost everywhere (with respect to μ), whence,

$$
\int_{G}\left|\left\langle\eta_{g} \mid \phi\right\rangle\right|^{2} d \mu(g)<\infty
$$

implying that $\phi \in \mathcal{D}\left(W_{\eta}\right)$ and $W_{\eta} \phi=\Phi$, i.e., W_{η} is closed.

Square integrability of a group representation

$$
\lim _{n \rightarrow \infty} W_{n} \phi_{n}(g)=\lim _{n \rightarrow \infty}\left\langle\eta_{g} \mid \phi_{n}\right\rangle=\left\langle\eta_{g} \mid \phi\right\rangle
$$

Thus, since $W_{\eta} \phi_{n} \rightarrow \Phi$ in $L^{2}(G, d \mu)$ and $W_{\eta} \phi_{n}(g) \rightarrow\left\langle\eta_{g} \mid \phi\right\rangle$ pointwise,

$$
\left\langle\eta_{g} \mid \phi\right\rangle=\Phi(g),
$$

almost everywhere (with respect to μ), whence,

$$
\int_{G}\left|\left\langle\eta_{g} \mid \phi\right\rangle\right|^{2} d \mu(g)<\infty,
$$

implying that $\phi \in \mathcal{D}\left(W_{\eta}\right)$ and $W_{\eta} \phi=\Phi$, i.e., W_{η} is closed.
Using the extended Schur's lemma, we establish the boundedness of
$W_{\eta}: \mathcal{D}\left(W_{\eta}\right) \rightarrow L^{2}(G, d \mu)$. Hence $\mathcal{D}\left(W_{\eta}\right)=\mathfrak{H}$, and furthermore, W_{η} is a multiple of the isometry:

$$
\left\|W_{\eta} \phi\right\|_{L^{2}(G, d \mu)}^{2}=\lambda\|\phi\|_{\mathfrak{H}}^{2}, \quad \phi \in \mathfrak{H}, \quad \lambda \in \mathbb{R}^{+} .
$$

Square integrability of a group representation

To fix λ, take $\phi=\eta$. Then

$$
\lambda=\frac{\left\|W_{\eta} \eta\right\|_{L^{2}(G, d \mu)}^{2}}{\|\eta\|^{2}}=\frac{I(\eta)}{c(\eta)\|\eta\|^{2}}=1
$$

Square integrability of a group representation

To fix λ, take $\phi=\eta$. Then

$$
\lambda=\frac{\left\|W_{\eta} \eta\right\|_{L^{2}(G, d \mu)}^{2}}{\|\eta\|^{2}}=\frac{I(\eta)}{c(\eta)\|\eta\|^{2}}=1,
$$

Thus, W_{η} is an isometry, i.e. $W_{\eta}^{*} W_{\eta}=I$, which implies that the resolution of the identity holds. Therefore, the range of W_{η} is a closed subspace of $L^{2}(G, d \mu)$, and the projection on it is $\mathbb{P}_{\eta}=W_{\eta} W_{\eta}^{*}$. Then the expression for the reproducing kernel and the intertwining property follow from immediately.

Square integrability of a group representation

To fix λ, take $\phi=\eta$. Then

$$
\lambda=\frac{\left\|W_{\eta} \eta\right\|_{L^{2}(G, d \mu)}^{2}}{\|\eta\|^{2}}=\frac{I(\eta)}{c(\eta)\|\eta\|^{2}}=1,
$$

Thus, W_{η} is an isometry, i.e. $W_{\eta}^{*} W_{\eta}=I$, which implies that the resolution of the identity holds. Therefore, the range of W_{η} is a closed subspace of $L^{2}(G, d \mu)$, and the projection on it is $\mathbb{P}_{\eta}=W_{\eta} W_{\eta}^{*}$. Then the expression for the reproducing kernel and the intertwining property follow from immediately.
An immediate consequence of this theorem is the following important result.

Corollary

Every square integrable representation of a locally compact group G is unitarily equivalent to a subrepresentation of its left regular representation (and hence also of its right regular representation).

Square integrability of a group representation

The proof of this corollary consists simply in showing that the projection \mathbb{P}_{η} on the range of W_{η} commutes with the left regular representation. Indeed:

$$
\begin{aligned}
\mathbb{P}_{\eta} U_{\ell}(g) & =W_{\eta} W_{\eta}^{*} U_{\ell}(g)=W_{\eta}\left(U_{\ell}\left(g^{-1}\right) W_{\eta}\right)^{*}=W_{\eta}\left(W_{\eta} U\left(g^{-1}\right)\right)^{*} \\
& =W_{\eta} U(g) W_{\eta}^{*}=U_{\ell}(g) W_{\eta} W_{\eta}^{*}=U_{\ell}(g) \mathbb{P}_{\eta}
\end{aligned}
$$

Square integrability of a group representation

The proof of this corollary consists simply in showing that the projection \mathbb{P}_{η} on the range of W_{η} commutes with the left regular representation. Indeed:

$$
\begin{aligned}
\mathbb{P}_{\eta} U_{\ell}(g) & =W_{\eta} W_{\eta}^{*} U_{\ell}(g)=W_{\eta}\left(U_{\ell}\left(g^{-1}\right) W_{\eta}\right)^{*}=W_{\eta}\left(W_{\eta} U\left(g^{-1}\right)\right)^{*} \\
& =W_{\eta} U(g) W_{\eta}^{*}=U_{\ell}(g) W_{\eta} W_{\eta}^{*}=U_{\ell}(g) \mathbb{P}_{\eta}
\end{aligned}
$$

Since W_{η} is an isometry, its inverse is equal to its adjoint on its range, i.e. $W_{\eta}^{-1}=W_{\eta}^{*}$ on \mathfrak{H}_{η}. Then, applying both sides of the resolution of the identity to an arbitrary vector $\phi \in \mathfrak{H}$, we obtain the reconstruction formula

$$
\phi=W_{\eta}^{*} \Phi=\frac{1}{[c(\eta)]^{\frac{1}{2}}} \int_{G} \Phi(g) \eta_{g} d \mu(g)
$$

Square integrability of a group representation

The proof of this corollary consists simply in showing that the projection \mathbb{P}_{η} on the range of W_{η} commutes with the left regular representation. Indeed:

$$
\begin{aligned}
\mathbb{P}_{\eta} U_{\ell}(g) & =W_{\eta} W_{\eta}^{*} U_{\ell}(g)=W_{\eta}\left(U_{\ell}\left(g^{-1}\right) W_{\eta}\right)^{*}=W_{\eta}\left(W_{\eta} U\left(g^{-1}\right)\right)^{*} \\
& =W_{\eta} U(g) W_{\eta}^{*}=U_{\ell}(g) W_{\eta} W_{\eta}^{*}=U_{\ell}(g) \mathbb{P}_{\eta}
\end{aligned}
$$

Since W_{η} is an isometry, its inverse is equal to its adjoint on its range, i.e. $W_{\eta}^{-1}=W_{\eta}^{*}$ on \mathfrak{H}_{η}. Then, applying both sides of the resolution of the identity to an arbitrary vector $\phi \in \mathfrak{H}$, we obtain the reconstruction formula

$$
\phi=W_{\eta}^{*} \Phi=\frac{1}{[c(\eta)]^{\frac{1}{2}}} \int_{G} \Phi(g) \eta_{g} d \mu(g)
$$

Later we shall obtain a generalized version of this reconstruction formula using two different admissible vectors.

Square integrability of a group representation

A consequence of the above theorem is that we may obtain total set of CS indexed by the points of the group G itself, i.e., if ϕ is an admissible vector then every vector in the set

$$
\mathfrak{S}_{\phi}=\left\{\phi_{g}=U(g) \phi \mid g \in G\right\}
$$

is a coherent state and this is a total set in the Hilbert space \mathfrak{H} of the unitary irreducible representation U of the group G.

Square integrability of a group representation

A consequence of the above theorem is that we may obtain total set of CS indexed by the points of the group G itself, i.e., if ϕ is an admissible vector then every vector in the set

$$
\mathfrak{S}_{\phi}=\left\{\phi_{g}=U(g) \phi \mid g \in G\right\}
$$

is a coherent state and this is a total set in the Hilbert space \mathfrak{H} of the unitary irreducible representation U of the group G.
While this does happen in simple examples, it is rather rare. A case in point are the one-dimensional wavelets, that we shall discuss in some detail later.

Square integrability of a group representation

A consequence of the above theorem is that we may obtain total set of CS indexed by the points of the group G itself, i.e., if ϕ is an admissible vector then every vector in the set

$$
\mathfrak{S}_{\phi}=\left\{\phi_{g}=U(g) \phi \mid g \in G\right\}
$$

is a coherent state and this is a total set in the Hilbert space \mathfrak{H} of the unitary irreducible representation U of the group G.
While this does happen in simple examples, it is rather rare. A case in point are the one-dimensional wavelets, that we shall discuss in some detail later.

Another, rather exotic, example comes from the group $S U(1,1)$.

Square integrability of a group representation

A consequence of the above theorem is that we may obtain total set of CS indexed by the points of the group G itself, i.e., if ϕ is an admissible vector then every vector in the set

$$
\mathfrak{S}_{\phi}=\left\{\phi_{g}=U(g) \phi \mid g \in G\right\}
$$

is a coherent state and this is a total set in the Hilbert space \mathfrak{H} of the unitary irreducible representation U of the group G.
While this does happen in simple examples, it is rather rare. A case in point are the one-dimensional wavelets, that we shall discuss in some detail later.

Another, rather exotic, example comes from the group $\operatorname{SU}(1,1)$. However, in general, the CS systems of physical interest are supported by a quotient manifold $X=G / H$. We shall study this situation in some detail later.

Square integrability of a group representation

We note that a vector $\Phi \in W_{\eta} \mathfrak{H}=\mathfrak{H}_{\eta}=\mathbb{P}_{\eta} L^{2}(G, d \mu)$, if and only if there exists a vector $\phi \in \mathfrak{H}$ such that $\Phi(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle$ for almost all $g \in G$ (with respect to the measure μ).

Square integrability of a group representation

We note that a vector $\Phi \in W_{\eta} \mathfrak{H}=\mathfrak{H}_{\eta}=\mathbb{P}_{\eta} L^{2}(G, d \mu)$, if and only if there exists a vector $\phi \in \mathfrak{H}$ such that $\Phi(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle$ for almost all $g \in G$ (with respect to the measure μ).
This also means, in view of the strong continuity of the representation $g \mapsto U(g)$, that $\Phi(g)$ can be identified with the bounded continuous function of G,

$$
\begin{aligned}
g & \mapsto[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle=\langle U(g) \eta \mid \phi\rangle \\
\sup _{g \in G}\left|\left\langle\eta_{g} \mid \phi\right\rangle\right| & \leq \sup _{g \in G}\|U(g) \eta\|\|\phi\|=\|\eta\|\|\phi\| .
\end{aligned}
$$

Square integrability of a group representation

We note that a vector $\Phi \in W_{\eta} \mathfrak{H}=\mathfrak{H}_{\eta}=\mathbb{P}_{\eta} L^{2}(G, d \mu)$, if and only if there exists a vector $\phi \in \mathfrak{H}$ such that $\Phi(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle$ for almost all $g \in G$ (with respect to the measure μ).
This also means, in view of the strong continuity of the representation $g \mapsto U(g)$, that $\Phi(g)$ can be identified with the bounded continuous function of G,

$$
\begin{aligned}
g & \mapsto[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle=\langle U(g) \eta \mid \phi\rangle \\
\sup _{g \in G}\left|\left\langle\eta_{g} \mid \phi\right\rangle\right| & \leq \sup _{g \in G}\|U(g) \eta\|\|\phi\|=\|\eta\|\|\phi\| .
\end{aligned}
$$

Hence the reproducing kernel subspace \mathfrak{H}_{η} can be identified with a space of bounded, continuous functions on the group G.

Square integrability of a group representation

We note that a vector $\Phi \in W_{\eta} \mathfrak{H}=\mathfrak{H}_{\eta}=\mathbb{P}_{\eta} L^{2}(G, d \mu)$, if and only if there exists a vector $\phi \in \mathfrak{H}$ such that $\Phi(g)=[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle$ for almost all $g \in G$ (with respect to the measure μ).
This also means, in view of the strong continuity of the representation $g \mapsto U(g)$, that $\Phi(g)$ can be identified with the bounded continuous function of G,

$$
\begin{aligned}
g & \mapsto[c(\eta)]^{-\frac{1}{2}}\left\langle\eta_{g} \mid \phi\right\rangle=\langle U(g) \eta \mid \phi\rangle \\
\sup _{g \in G}\left|\left\langle\eta_{g} \mid \phi\right\rangle\right| & \leq \sup _{g \in G}\|U(g) \eta\|\|\phi\|=\|\eta\|\|\phi\| .
\end{aligned}
$$

Hence the reproducing kernel subspace \mathfrak{H}_{η} can be identified with a space of bounded, continuous functions on the group G.
In addition, the reproducing kernel $K_{\eta}\left(g, g^{\prime}\right)$ is in the present case a convolution kernel on G : $K_{\eta}\left(g, g^{\prime}\right)=\left\langle\eta \mid U\left(g^{-1} g^{\prime}\right) \eta\right\rangle$. This implies that K_{η} has a regularizing effect.

Square integrability of a group representation

For instance, if G is a Lie group, and η is appropriately chosen, the elements of \mathfrak{H}_{η} can be made to be infinitely differentiable functions, which extend to holomorphic functions on the complexified group G^{c}.

Square integrability of a group representation

For instance, if G is a Lie group, and η is appropriately chosen, the elements of \mathfrak{H}_{η} can be made to be infinitely differentiable functions, which extend to holomorphic functions on the complexified group G^{c}.
This gives rise to some of the attractive holomorphic properties of CS, and their geometrical implications. Another consequence of the convolution character of K_{η} is that the kernel, and hence the elements of \mathfrak{H}_{η}, have interpolation properties which prove useful in practical computations.

Square integrability of a group representation

For instance, if G is a Lie group, and η is appropriately chosen, the elements of \mathfrak{H}_{η} can be made to be infinitely differentiable functions, which extend to holomorphic functions on the complexified group G^{c}.
This gives rise to some of the attractive holomorphic properties of CS, and their geometrical implications. Another consequence of the convolution character of K_{η} is that the kernel, and hence the elements of \mathfrak{H}_{η}, have interpolation properties which prove useful in practical computations.
Finally, it should be emphasized that the reproducing kernel K_{η} is the main tool for computing the efficiency or resolving power of the transform W_{η}, in wavelet analysis. Notice that each admissible vector η determines its own reproducing kernel K_{η} and reproducing kernel subspace \mathfrak{H}_{η}.

Square integrability of a group representation

For instance, if G is a Lie group, and η is appropriately chosen, the elements of \mathfrak{H}_{η} can be made to be infinitely differentiable functions, which extend to holomorphic functions on the complexified group G^{c}.
This gives rise to some of the attractive holomorphic properties of CS, and their geometrical implications. Another consequence of the convolution character of K_{η} is that the kernel, and hence the elements of \mathfrak{H}_{η}, have interpolation properties which prove useful in practical computations.
Finally, it should be emphasized that the reproducing kernel K_{η} is the main tool for computing the efficiency or resolving power of the transform W_{η}, in wavelet analysis. Notice that each admissible vector η determines its own reproducing kernel K_{η} and reproducing kernel subspace \mathfrak{H}_{η}.
In our discussion of square integrable representations so far, the representation U has been assumed to be irreducible. This requirement may be weakened in several ways.

Square integrability of a group representation

A first possibility is to take a direct sum of square integrable representations. In this case one may prove:

Square integrability of a group representation

A first possibility is to take a direct sum of square integrable representations. In this case one may prove:

Theorem

Let G be a locally compact group, with left Haar measure μ. Let U be a strongly continuous unitary representation of G into a Hilbert space \mathfrak{H}, and assume that U is a direct sum of disjoint square integrable representations U_{i} :

$$
U=\bigoplus_{i} U_{i}, \quad \text { in } \quad \mathfrak{H}=\bigoplus_{i} \mathfrak{H}_{i} .
$$

Let η be an admissible vector. Then,

$$
\int_{G}|\langle U(g) \eta \mid \phi\rangle|^{2} d \mu(g)=\sum_{i} c_{i}\left\|\mathbb{P}_{i} \phi\right\|^{2}, \quad \phi \in \mathfrak{H}
$$

where \mathbb{P}_{i} is the projection on \mathfrak{H}_{i} and

Square integrability of a group representation

Theorem (Contd.)

$$
c_{i}=\left\|\mathbb{P}_{i} \eta\right\|^{-2} \int_{G}\left|\left\langle U_{i}(g) \mathbb{P}_{i} \eta \mid \mathbb{P}_{i} \eta\right\rangle\right|^{2} d \mu(g) .
$$

If, in addition, all the constants c_{i} are equal, then the map $W_{\eta}: \phi \mapsto\langle U(g) \eta \mid \phi\rangle$ is an isometry (up to a constant) from \mathfrak{H} into $L^{2}(G, d \mu)$.

Square integrability of a group representation

Theorem (Contd.)

$$
c_{i}=\left\|\mathbb{P}_{i} \eta\right\|^{-2} \int_{G}\left|\left\langle U_{i}(g) \mathbb{P}_{i} \eta \mid \mathbb{P}_{i} \eta\right\rangle\right|^{2} d \mu(g) .
$$

If, in addition, all the constants c_{i} are equal, then the map $W_{\eta}: \phi \mapsto\langle U(g) \eta \mid \phi\rangle$ is an isometry (up to a constant) from \mathfrak{H} into $L^{2}(G, d \mu)$.

Thus, when the conditions of this theorem are satisfied, CS may be built in the usual way. By similar arguments, the same is true if some of the components U_{i} are mutually unitarily equivalent.

Square integrability of a group representation

Theorem (Contd.)

$$
c_{i}=\left\|\mathbb{P}_{i} \eta\right\|^{-2} \int_{G} \mid\left.\left\langle U_{i}(g) \mathbb{P}_{i} \eta\right| \mathbb{P}_{i} \eta\right|^{2} d \mu(g) .
$$

If, in addition, all the constants c_{i} are equal, then the map $W_{\eta}: \phi \mapsto\langle U(g) \eta \mid \phi\rangle$ is an isometry (up to a constant) from \mathfrak{H} into $L^{2}(G, d \mu)$.

Thus, when the conditions of this theorem are satisfied, CS may be built in the usual way. By similar arguments, the same is true if some of the components U_{i} are mutually unitarily equivalent.
Another generalization is to take for U a cyclic representation, with η a cyclic vector. In this case, assuming the admissibility condition, all the assertions of the above theorem may be recovered.

Square integrability of a group representation

Theorem (Contd.)

$$
c_{i}=\left\|\mathbb{P}_{i} \eta\right\|^{-2} \int_{G}\left|\left\langle U_{i}(g) \mathbb{P}_{i} \eta \mid \mathbb{P}_{i} \eta\right\rangle\right|^{2} d \mu(g) .
$$

If, in addition, all the constants c_{i} are equal, then the map $W_{\eta}: \phi \mapsto\langle U(g) \eta \mid \phi\rangle$ is an isometry (up to a constant) from \mathfrak{H} into $L^{2}(G, d \mu)$.

Thus, when the conditions of this theorem are satisfied, CS may be built in the usual way. By similar arguments, the same is true if some of the components U_{i} are mutually unitarily equivalent.
Another generalization is to take for U a cyclic representation, with η a cyclic vector. In this case, assuming the admissibility condition, all the assertions of the above theorem may be recovered.
A more radical approach is to take a direct integral over irreducible representations from thecontinuous series.

Orthogonality relations

If G is a compact group and U a unitary irreducible representation of G, then according to the Peter-Weyl theorem, the matrix elements $\langle U(g) \psi \mid \phi\rangle$ of U satisfy certain orthogonality relations, and one may construct an orthonormal basis of $L^{2}(G, d \mu)$ consisting of such matrix elements.

Orthogonality relations

If G is a compact group and U a unitary irreducible representation of G, then according to the Peter-Weyl theorem, the matrix elements $\langle U(g) \psi \mid \phi\rangle$ of U satisfy certain orthogonality relations, and one may construct an orthonormal basis of $L^{2}(G, d \mu)$ consisting of such matrix elements.
When G is only locally compact, square integrable representations have the same property. Thus, among all UIR's, the square integrable representations are the direct generalizations of the irreducible representations of compact groups. These orthogonality relations, well-known when G is unimodular, extend to non-unimodular groups as well.

Orthogonality relations

If G is a compact group and U a unitary irreducible representation of G, then according to the Peter-Weyl theorem, the matrix elements $\langle U(g) \psi \mid \phi\rangle$ of U satisfy certain orthogonality relations, and one may construct an orthonormal basis of $L^{2}(G, d \mu)$ consisting of such matrix elements.
When G is only locally compact, square integrable representations have the same property. Thus, among all UIR's, the square integrable representations are the direct generalizations of the irreducible representations of compact groups. These orthogonality relations, well-known when G is unimodular, extend to non-unimodular groups as well.

Theorem (Orthogonality relations)

Let G be a locally compact group, U a square integrable representation of G on the Hilbert space \mathfrak{H}. Then there exists a unique positive, self-adjoint, invertible operator C in \mathfrak{H}, the domain $\mathcal{D}(C)$ of which is dense in \mathfrak{H} and is equal to \mathcal{A}, the set of all admissible vectors;

Orthogonality relations

Theorem (Contd.)

if η and η^{\prime} are any two admissible vectors and ϕ, ϕ^{\prime} are arbitrary vectors in \mathfrak{H}, then

Furthermore $C=\lambda I, \lambda>0$, if and only if G is unimodular.

Orthogonality relations

Theorem (Contd.)

if η and η^{\prime} are any two admissible vectors and ϕ, ϕ^{\prime} are arbitrary vectors in \mathfrak{H}, then

$$
\int_{G} \overline{\left\langle\eta_{g}^{\prime} \mid \phi^{\prime}\right\rangle}\left\langle\eta_{g} \mid \phi\right\rangle d \mu(g)=\left\langle C \eta \mid C \eta^{\prime}\right\rangle\left\langle\phi^{\prime} \mid \phi\right\rangle .
$$

Furthermore $C=\lambda I, \lambda>0$, if and only if G is unimodular.
Proof. Let $\eta, \eta^{\prime} \in \mathcal{A}$, and consider the corresponding isometries $W_{\eta}, W_{\eta^{\prime}}$, defined as in (??). With $W_{\eta}^{*}: L^{2}(G, d \mu) \rightarrow \mathfrak{H}$ denoting, as before, the adjoint of the linear map $W_{\eta}: \mathfrak{H} \rightarrow L^{2}(G, d \mu)$, the operator $W_{\eta^{\prime}}^{*} W_{\eta}$ is bounded on \mathfrak{H}.

Orthogonality relations

Theorem (Contd.)

if η and η^{\prime} are any two admissible vectors and ϕ, ϕ^{\prime} are arbitrary vectors in \mathfrak{H}, then

$$
\int_{G} \overline{\left\langle\eta_{g}^{\prime} \mid \phi^{\prime}\right\rangle}\left\langle\eta_{g} \mid \phi\right\rangle d \mu(g)=\left\langle C \eta \mid C \eta^{\prime}\right\rangle\left\langle\phi^{\prime} \mid \phi\right\rangle .
$$

Furthermore $C=\lambda I, \lambda>0$, if and only if G is unimodular.
Proof. Let $\eta, \eta^{\prime} \in \mathcal{A}$, and consider the corresponding isometries $W_{\eta}, W_{\eta^{\prime}}$, defined as in (??). With $W_{\eta}^{*}: L^{2}(G, d \mu) \rightarrow \mathfrak{H}$ denoting, as before, the adjoint of the linear map $W_{\eta}: \mathfrak{H} \rightarrow L^{2}(G, d \mu)$, the operator $W_{\eta^{\prime}}^{*} W_{\eta}$ is bounded on \mathfrak{H}.
Next, for all $g \in G$,

$$
\begin{aligned}
W_{\eta^{\prime}}^{*} W_{\eta} U(g) & =W_{\eta^{\prime}}^{*} U_{\ell}(g) W_{\eta}, \quad \text { by }(? ?), \\
& =\left[U_{\ell}\left(g^{-1}\right) W_{\eta^{\prime}}\right]^{*} W_{\eta}=\left[W_{\eta^{\prime}} U\left(g^{-1}\right)\right]^{*} W_{\eta} \\
& =U(g) W_{\eta^{\prime}}^{*} W_{\eta}
\end{aligned}
$$

Orthogonality relations

By Schur's lemma, $W_{\eta^{\prime}}^{*} W_{\eta}$ is therefore a multiple of the identity on \mathfrak{H} :

$$
W_{\eta^{\prime}}^{*} W_{\eta}=\lambda\left(\eta, \eta^{\prime}\right) I, \quad \lambda\left(\eta, \eta^{\prime}\right) \in \mathbb{C}
$$

($\lambda\left(\eta, \eta^{\prime}\right)$ is antilinear in η and linear in $\left.\eta^{\prime}\right)$. Applying the square-integrability theorem, we find, for $\eta=\eta^{\prime}$,

$$
\lambda(\eta, \eta)=1, \quad \eta \in \mathcal{A}
$$

Orthogonality relations

By Schur's lemma, $W_{\eta^{\prime}}^{*} W_{\eta}$ is therefore a multiple of the identity on \mathfrak{H} :

$$
W_{\eta^{\prime}}^{*} W_{\eta}=\lambda\left(\eta, \eta^{\prime}\right) I, \quad \lambda\left(\eta, \eta^{\prime}\right) \in \mathbb{C}
$$

($\lambda\left(\eta, \eta^{\prime}\right)$ is antilinear in η and linear in $\left.\eta^{\prime}\right)$. Applying the square-integrability theorem, we find, for $\eta=\eta^{\prime}$,

$$
\lambda(\eta, \eta)=1, \quad \eta \in \mathcal{A}
$$

Set

$$
q\left(\eta, \eta^{\prime}\right)=\left[c(\eta) c\left(\eta^{\prime}\right)\right]^{\frac{1}{2}} \lambda\left(\eta, \eta^{\prime}\right)
$$

with $c(\eta)$ as previously defined. Thus,

Orthogonality relations

By Schur's lemma, $W_{\eta^{\prime}}^{*} W_{\eta}$ is therefore a multiple of the identity on \mathfrak{H} :

$$
W_{\eta^{\prime}}^{*} W_{\eta}=\lambda\left(\eta, \eta^{\prime}\right) I, \quad \lambda\left(\eta, \eta^{\prime}\right) \in \mathbb{C}
$$

($\lambda\left(\eta, \eta^{\prime}\right)$ is antilinear in η and linear in $\left.\eta^{\prime}\right)$. Applying the square-integrability theorem, we find, for $\eta=\eta^{\prime}$,

$$
\lambda(\eta, \eta)=1, \quad \eta \in \mathcal{A}
$$

Set

$$
q\left(\eta, \eta^{\prime}\right)=\left[c(\eta) c\left(\eta^{\prime}\right)\right]^{\frac{1}{2}} \lambda\left(\eta, \eta^{\prime}\right)
$$

with $c(\eta)$ as previously defined. Thus,

$$
\begin{aligned}
\int_{G} \overline{\left\langle\eta_{g}^{\prime} \mid \phi^{\prime}\right\rangle}\left\langle\eta_{g} \mid \phi\right\rangle d \mu(g) & =\left[c(\eta) c\left(\eta^{\prime}\right)\right]^{\frac{1}{2}} \int_{G} \overline{\left(W_{\eta^{\prime}} \phi^{\prime}\right)(g)}\left(W_{\eta} \phi\right)(g) d \mu(g) \\
& =\left[c(\eta) c\left(\eta^{\prime}\right)\right]^{\frac{1}{2}}\left\langle W_{\eta^{\prime}} \phi^{\prime} \mid W_{\eta} \phi\right\rangle_{L^{2}(G, d \mu)} \\
& =\left[c(\eta) c\left(\eta^{\prime}\right)\right]^{\frac{1}{2}}\left\langle\phi^{\prime} \mid W_{\eta^{\prime}}^{*} W_{\eta} \phi\right\rangle_{\mathfrak{H}}
\end{aligned}
$$

Orthogonality relations

for all $\eta, \eta^{\prime} \in \mathcal{A}$ and $\phi, \phi^{\prime} \in \mathfrak{H}$. Hence,

$$
\int_{G} \overline{\left\langle\eta_{g}^{\prime} \mid \phi^{\prime}\right\rangle}\left\langle\eta_{g} \mid \phi\right\rangle d \mu(g)=q\left(\eta, \eta^{\prime}\right)\left\langle\phi^{\prime} \mid \phi\right\rangle_{\mathfrak{5}} .
$$

Orthogonality relations

for all $\eta, \eta^{\prime} \in \mathcal{A}$ and $\phi, \phi^{\prime} \in \mathfrak{H}$. Hence,

$$
\int_{G} \overline{\left\langle\eta_{g}^{\prime} \mid \phi^{\prime}\right\rangle}\left\langle\eta_{g} \mid \phi\right\rangle d \mu(g)=q\left(\eta, \eta^{\prime}\right)\left\langle\phi^{\prime} \mid \phi\right\rangle_{\mathfrak{H}} .
$$

But we also have from the above,

$$
W_{\eta^{\prime}}^{*} W_{\eta}=\frac{1}{\left[c(\eta) c\left(\eta^{\prime}\right)\right]^{\frac{1}{2}}} \int_{G}\left|\eta_{g}^{\prime}\right\rangle\left\langle\eta_{g}\right| d \mu(g)
$$

Also, we see that $q: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{C}$ is a positive, symmetric, sesquilinear form on the dense domain \mathcal{A}.

Orthogonality relations

for all $\eta, \eta^{\prime} \in \mathcal{A}$ and $\phi, \phi^{\prime} \in \mathfrak{H}$. Hence,

$$
\int_{G} \overline{\left\langle\eta_{g}^{\prime} \mid \phi^{\prime}\right\rangle}\left\langle\eta_{g} \mid \phi\right\rangle d \mu(g)=q\left(\eta, \eta^{\prime}\right)\left\langle\phi^{\prime} \mid \phi\right\rangle_{\mathfrak{H}} .
$$

But we also have from the above,

$$
W_{\eta^{\prime}}^{*} W_{\eta}=\frac{1}{\left[c(\eta) c\left(\eta^{\prime}\right)\right]^{\frac{1}{2}}} \int_{G}\left|\eta_{g}^{\prime}\right\rangle\left\langle\eta_{g}\right| d \mu(g)
$$

Also, we see that $q: \mathcal{A} \times \mathcal{A} \rightarrow \mathbb{C}$ is a positive, symmetric, sesquilinear form on the dense domain \mathcal{A}.
Moreover, since q is independent of ϕ, ϕ^{\prime}, taking $\phi=\phi^{\prime} \neq 0$ we obtain

$$
q\left(\eta, \eta^{\prime}\right)=\frac{1}{\|\phi\|^{2}} \int_{G} \overline{\left\langle U(g) \eta^{\prime} \mid \phi\right\rangle}\langle U(g) \eta \mid \phi\rangle d \mu(g)
$$

Orthogonality relations

We next prove that as a sesquilinear form q is closed on its form domain \mathcal{A}. Indeed, on \mathcal{A} consider the scalar product and associated norm:

$$
\left\langle\eta \mid \eta^{\prime}\right\rangle_{q}=\left\langle\eta \mid \eta^{\prime}\right\rangle_{\mathfrak{H}}+q\left(\eta, \eta^{\prime}\right), \quad\|\eta\|_{q}^{2}=\|\eta\|_{\mathfrak{H}}^{2}+q(\eta, \eta), \quad \eta, \eta^{\prime} \in \mathcal{A}
$$

Orthogonality relations

We next prove that as a sesquilinear form q is closed on its form domain \mathcal{A}. Indeed, on \mathcal{A} consider the scalar product and associated norm:

$$
\left\langle\eta \mid \eta^{\prime}\right\rangle_{q}=\left\langle\eta \mid \eta^{\prime}\right\rangle_{\mathfrak{H}}+q\left(\eta, \eta^{\prime}\right), \quad\|\eta\|_{q}^{2}=\|\eta\|_{\mathfrak{S}}^{2}+q(\eta, \eta), \quad \eta, \eta^{\prime} \in \mathcal{A} .
$$

Let $\left\{\eta_{k}\right\}_{k=1}^{\infty} \subset \mathcal{A}$ be a Cauchy sequence in the $\|\ldots\|_{q}$-norm. Clearly, $\left\{\eta_{k}\right\}_{k=1}^{\infty}$ is also a Cauchy sequence in the norm of \mathfrak{H}, implying that there exists a vector $\eta \in \mathfrak{H}$ such that $\lim _{k \rightarrow \infty}\left\|\eta_{k}-\eta\right\|_{\mathfrak{S}}=0$. Also, since the sequence is Cauchy in the $\|\ldots\|_{q}$-norm, $q\left(\eta_{j}-\eta_{k}, \eta_{j}-\eta_{k}\right) \rightarrow 0$ for $j, k \rightarrow \infty$.

Orthogonality relations

We next prove that as a sesquilinear form q is closed on its form domain \mathcal{A}. Indeed, on \mathcal{A} consider the scalar product and associated norm:

$$
\left\langle\eta \mid \eta^{\prime}\right\rangle_{q}=\left\langle\eta \mid \eta^{\prime}\right\rangle_{\mathfrak{H}}+q\left(\eta, \eta^{\prime}\right), \quad\|\eta\|_{q}^{2}=\|\eta\|_{\mathfrak{S}}^{2}+q(\eta, \eta), \quad \eta, \eta^{\prime} \in \mathcal{A} .
$$

Let $\left\{\eta_{k}\right\}_{k=1}^{\infty} \subset \mathcal{A}$ be a Cauchy sequence in the $\|\ldots\|_{q}$-norm. Clearly, $\left\{\eta_{k}\right\}_{k=1}^{\infty}$ is also a Cauchy sequence in the norm of \mathfrak{H}, implying that there exists a vector $\eta \in \mathfrak{H}$ such that $\lim _{k \rightarrow \infty}\left\|\eta_{k}-\eta\right\|_{\mathfrak{H}}=0$. Also, since the sequence is Cauchy in the $\|\ldots\|_{q}$-norm, $q\left(\eta_{j}-\eta_{k}, \eta_{j}-\eta_{k}\right) \rightarrow 0$ for $j, k \rightarrow \infty$. From the equation above we infer that the sequence of functions,

$$
\left\{\widetilde{\Phi}_{k}\right\}_{k=1}^{\infty} \subset L^{2}(G, d \mu), \quad \widetilde{\Phi}_{k}(g)=\left\langle U(g) \eta_{k} \mid \phi\right\rangle_{\mathfrak{H}}
$$

is a Cauchy sequence in $L^{2}(G, d \mu)$. Thus there exists a vector $\widetilde{\Phi} \in L^{2}(G, d \mu)$ satisfying

$$
\lim _{k \rightarrow \infty}\left\|\widetilde{\Phi}_{k}-\widetilde{\Phi}\right\|_{L^{2}(G, d \mu)}=0
$$

Orthogonality relations

and therefore, the sequence $\left\{\widetilde{\Phi}_{k}\right\}_{k=1}^{\infty}$ also converges to $\widetilde{\Phi}$ weakly, with the sequence of norms $\left\{\left\|\widetilde{\Phi}_{k}\right\|_{L^{2}(G, d \mu)}\right\}_{k=1}^{\infty}$ remaining bounded.

Orthogonality relations

and therefore, the sequence $\left\{\widetilde{\Phi}_{k}\right\}_{k=1}^{\infty}$ also converges to $\widetilde{\Phi}$ weakly, with the sequence of norms $\left\{\left\|\widetilde{\Phi}_{k}\right\|_{L^{2}(G, d \mu)}\right\}_{k=1}^{\infty}$ remaining bounded. Moreover, for any $g \in G$,

$$
\lim _{k \rightarrow \infty}\left\langle U(g) \eta_{k} \mid \phi\right\rangle_{\mathfrak{H}}=\langle U(g) \eta \mid \phi\rangle_{\mathfrak{H}} \Rightarrow \lim _{k \rightarrow \infty}\left|\widetilde{\Phi}_{k}(g)-\widetilde{\Phi}(g)\right|=0
$$

Thus, $\widetilde{\Phi}(g)=\langle U(g) \eta \mid \phi\rangle_{\mathfrak{H}}$, for all $g \in G$ and all $\phi \in \mathfrak{H}$, so that $g \mapsto\langle U(g) \eta \mid \phi\rangle_{\mathfrak{H}}$ defines a vector in $L^{2}(G, d \mu)$. Taking $\phi=\eta$, we see that this implies $\eta \in \mathcal{A}$. Next,

Orthogonality relations

and therefore, the sequence $\left\{\widetilde{\Phi}_{k}\right\}_{k=1}^{\infty}$ also converges to $\widetilde{\Phi}$ weakly, with the sequence of norms $\left\{\left\|\widetilde{\Phi}_{k}\right\|_{L^{2}(G, d \mu)}\right\}_{k=1}^{\infty}$ remaining bounded. Moreover, for any $g \in G$,

$$
\lim _{k \rightarrow \infty}\left\langle U(g) \eta_{k} \mid \phi\right\rangle_{\mathfrak{H}}=\langle U(g) \eta \mid \phi\rangle_{\mathfrak{H}} \Rightarrow \lim _{k \rightarrow \infty}\left|\widetilde{\Phi}_{k}(g)-\widetilde{\Phi}(g)\right|=0 .
$$

Thus, $\widetilde{\Phi}(g)=\langle U(g) \eta \mid \phi\rangle_{\mathfrak{S}}$, for all $g \in G$ and all $\phi \in \mathfrak{H}$, so that $g \mapsto\langle U(g) \eta \mid \phi\rangle_{\mathfrak{F}}$ defines a vector in $L^{2}(G, d \mu)$. Taking $\phi=\eta$, we see that this implies $\eta \in \mathcal{A}$. Next,

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|\eta_{k}-\eta\right\|_{q}^{2} & =\lim _{k \rightarrow \infty}\left\|\eta_{k}-\eta\right\|_{\mathfrak{H}}^{2}+\lim _{k \rightarrow \infty} q\left(\eta_{k}-\eta, \eta_{k}-\eta\right) \\
& =0+\lim _{k \rightarrow \infty} \frac{1}{\|\phi\|^{2}}\left\|\widetilde{\Phi}_{k}-\widetilde{\Phi}\right\|_{L^{2}(G, d \mu)}^{2}, \quad \text { by }(? ?) \\
& =0
\end{aligned}
$$

Orthogonality relations

and therefore, the sequence $\left\{\widetilde{\Phi}_{k}\right\}_{k=1}^{\infty}$ also converges to $\widetilde{\Phi}$ weakly, with the sequence of norms $\left\{\left\|\widetilde{\Phi}_{k}\right\|_{L^{2}(G, d \mu)}\right\}_{k=1}^{\infty}$ remaining bounded. Moreover, for any $g \in G$,

$$
\lim _{k \rightarrow \infty}\left\langle U(g) \eta_{k} \mid \phi\right\rangle_{\mathfrak{H}}=\langle U(g) \eta \mid \phi\rangle_{\mathfrak{H}} \Rightarrow \lim _{k \rightarrow \infty}\left|\widetilde{\Phi}_{k}(g)-\widetilde{\Phi}(g)\right|=0
$$

Thus, $\widetilde{\Phi}(g)=\langle U(g) \eta \mid \phi\rangle_{\mathfrak{H}}$, for all $g \in G$ and all $\phi \in \mathfrak{H}$, so that $g \mapsto\langle U(g) \eta \mid \phi\rangle_{\mathfrak{H}}$ defines a vector in $L^{2}(G, d \mu)$. Taking $\phi=\eta$, we see that this implies $\eta \in \mathcal{A}$. Next,

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|\eta_{k}-\eta\right\|_{q}^{2} & =\lim _{k \rightarrow \infty}\left\|\eta_{k}-\eta\right\|_{\mathfrak{H}}^{2}+\lim _{k \rightarrow \infty} q\left(\eta_{k}-\eta, \eta_{k}-\eta\right) \\
& =0+\lim _{k \rightarrow \infty} \frac{1}{\|\phi\|^{2}}\left\|\widetilde{\Phi}_{k}-\widetilde{\Phi}\right\|_{L^{2}(G, d \mu)}^{2}, \quad \text { by }(? ?) \\
& =0
\end{aligned}
$$

Consequently, \mathcal{A} is complete in the $\|\ldots\|_{q}$-norm, so that q is closed.

Orthogonality relations

Since q is a closed, symmetric, positive form, the well known second representation theorem implies that there exists a unique positive self-adjoint operator C, with domain \mathcal{A}, such that

$$
q\left(\eta, \eta^{\prime}\right)=\left\langle C \eta \mid C \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

Orthogonality relations

Since q is a closed, symmetric, positive form, the well known second representation theorem implies that there exists a unique positive self-adjoint operator C, with domain \mathcal{A}, such that

$$
q\left(\eta, \eta^{\prime}\right)=\left\langle C \eta \mid C \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

Next, if $\eta \neq 0$, then

$$
\|C \eta\|^{2}=c(\eta)=\frac{I(\eta)}{\|\eta\|^{2}} \neq 0
$$

Orthogonality relations

Since q is a closed, symmetric, positive form, the well known second representation theorem implies that there exists a unique positive self-adjoint operator C, with domain \mathcal{A}, such that

$$
q\left(\eta, \eta^{\prime}\right)=\left\langle C \eta \mid C \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

Next, if $\eta \neq 0$, then

$$
\|C \eta\|^{2}=c(\eta)=\frac{I(\eta)}{\|\eta\|^{2}} \neq 0
$$

So C is injective and consequently it is invertible. Moreover, its inverse C^{-1} is densely defined, as the inverse of an invertible self-adjoint operator (indeed it is easily seen that $\operatorname{Ran}(C)$ (the range of C) is dense in \mathfrak{H}.

Orthogonality relations

Since q is a closed, symmetric, positive form, the well known second representation theorem implies that there exists a unique positive self-adjoint operator C, with domain \mathcal{A}, such that

$$
q\left(\eta, \eta^{\prime}\right)=\left\langle C \eta \mid C \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

Next, if $\eta \neq 0$, then

$$
\|C \eta\|^{2}=c(\eta)=\frac{I(\eta)}{\|\eta\|^{2}} \neq 0
$$

So C is injective and consequently it is invertible. Moreover, its inverse C^{-1} is densely defined, as the inverse of an invertible self-adjoint operator (indeed it is easily seen that $\operatorname{Ran}(C)$ (the range of C) is dense in \mathfrak{H}.
It remains to prove the last statement. Now, for all $g \in G$,

$$
\begin{aligned}
q\left(U(g) \eta, U(g) \eta^{\prime}\right) & =\frac{1}{\|\phi\|^{2}} \int_{G} \overline{\left\langle U\left(g^{\prime} g\right) \eta^{\prime} \mid \phi\right\rangle}\left\langle U\left(g^{\prime} g\right) \eta \mid \phi\right\rangle d \mu\left(g^{\prime}\right) \\
& =\frac{\boldsymbol{\Delta}\left(g^{-1}\right)}{\|\phi\|^{2}} \int_{G} \overline{\left\langle U\left(g^{\prime}\right) \eta^{\prime} \mid \phi\right\rangle}\left\langle U\left(g^{\prime}\right) \eta \mid \phi\right\rangle d \mu\left(g^{\prime}\right)
\end{aligned}
$$

Orthogonality relations

so that finally,

$$
q\left(U(g) \eta, U(g) \eta^{\prime}\right)=\boldsymbol{\Delta}\left(g^{-1}\right) q\left(\eta, \eta^{\prime}\right)
$$

Orthogonality relations

so that finally,

$$
q\left(U(g) \eta, U(g) \eta^{\prime}\right)=\Delta\left(g^{-1}\right) q\left(\eta, \eta^{\prime}\right)
$$

Hence, for all $\eta, \eta^{\prime} \in \mathcal{A}$,

$$
\left\langle C U(g) \eta \mid C U(g) \eta^{\prime}\right\rangle_{\mathfrak{H}}=\frac{1}{\Delta(g)}\left\langle C \eta \mid C \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

Orthogonality relations

so that finally,

$$
q\left(U(g) \eta, U(g) \eta^{\prime}\right)=\Delta\left(g^{-1}\right) q\left(\eta, \eta^{\prime}\right)
$$

Hence, for all $\eta, \eta^{\prime} \in \mathcal{A}$,

$$
\left\langle C U(g) \eta \mid C U(g) \eta^{\prime}\right\rangle_{\mathfrak{H}}=\frac{1}{\Delta(g)}\left\langle C \eta \mid C \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

Now C^{2} is positive and densely defined in \mathfrak{H}. In addition, its domain is invariant under U. Indeed, let $\eta^{\prime} \in \mathcal{D}\left(C^{2}\right)$, which implies that $\eta^{\prime} \in \mathcal{D}(C), C \eta^{\prime} \in \mathcal{D}(C)$ and $\eta_{g}^{\prime} \in \mathcal{D}(C)$. Then the above equation becomes

$$
\left\langle C \eta_{g} \mid C \eta_{g}^{\prime}\right\rangle_{\mathfrak{H}}=\frac{1}{\Delta(g)}\left\langle\eta \mid C^{2} \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

Orthogonality relations

so that finally,

$$
q\left(U(g) \eta, U(g) \eta^{\prime}\right)=\boldsymbol{\Delta}\left(g^{-1}\right) q\left(\eta, \eta^{\prime}\right)
$$

Hence, for all $\eta, \eta^{\prime} \in \mathcal{A}$,

$$
\left\langle C U(g) \eta \mid C U(g) \eta^{\prime}\right\rangle_{\mathfrak{H}}=\frac{1}{\Delta(g)}\left\langle C \eta \mid C \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

Now C^{2} is positive and densely defined in \mathfrak{H}. In addition, its domain is invariant under U. Indeed, let $\eta^{\prime} \in \mathcal{D}\left(C^{2}\right)$, which implies that $\eta^{\prime} \in \mathcal{D}(C), C \eta^{\prime} \in \mathcal{D}(C)$ and $\eta_{g}^{\prime} \in \mathcal{D}(C)$. Then the above equation becomes

$$
\left\langle C \eta_{g} \mid C \eta_{g}^{\prime}\right\rangle_{\mathfrak{H}}=\frac{1}{\Delta(g)}\left\langle\eta \mid C^{2} \eta^{\prime}\right\rangle_{\mathfrak{H}}
$$

which shows that $C \eta_{g}^{\prime} \in \mathcal{D}(C)$ as well, i.e. $\eta_{g}^{\prime} \in \mathcal{D}\left(C^{2}\right)$. Thus, on the dense invariant domain $\mathcal{D}\left(C^{2}\right)$:

$$
C^{2} U(g)=\frac{1}{\Delta(g)} U(g) C^{2}
$$

Orthogonality relations

Using the Extended Schur's Lemma, with $U_{1}=U_{2}$, we see that $\boldsymbol{\Delta}(g)=1$, for all $g \in G$, that is, G is unimodular if and only if $C=\lambda I, \lambda>0$.

Orthogonality relations

Using the Extended Schur's Lemma, with $U_{1}=U_{2}$, we see that $\boldsymbol{\Delta}(g)=1$, for all $g \in G$, that is, G is unimodular if and only if $C=\lambda I, \lambda>0$.
The operator C is known in the mathematical literature as the Duflo-Moore operator, often denoted $C=K^{-1 / 2}$. Actually, it can be shown that if G is compact, then

$$
C=[\operatorname{dim} \mathfrak{H}]^{-\frac{1}{2}} / .
$$

Orthogonality relations

Using the Extended Schur's Lemma, with $U_{1}=U_{2}$, we see that $\boldsymbol{\Delta}(g)=1$, for all $g \in G$, that is, G is unimodular if and only if $C=\lambda I, \lambda>0$.
The operator C is known in the mathematical literature as the Duflo-Moore operator, often denoted $C=K^{-1 / 2}$. Actually, it can be shown that if G is compact, then

$$
C=[\operatorname{dim} \mathfrak{H}]^{-\frac{1}{2}} / .
$$

(Note that with G compact and U irreducible, $\operatorname{dim} \mathfrak{H}$ is finite.) If G is not compact, but just unimodular, then with $\|\eta\|=1$,

$$
C=[c(\eta)]^{\frac{1}{2}} I
$$

so that the value of $c(\eta)$ does not depend of $\eta \in \mathcal{A}$.

Orthogonality relations

Using the Extended Schur's Lemma, with $U_{1}=U_{2}$, we see that $\boldsymbol{\Delta}(g)=1$, for all $g \in G$, that is, G is unimodular if and only if $C=\lambda I, \lambda>0$.
The operator C is known in the mathematical literature as the Duflo-Moore operator, often denoted $C=K^{-1 / 2}$. Actually, it can be shown that if G is compact, then

$$
C=[\operatorname{dim} \mathfrak{H}]^{-\frac{1}{2}} / .
$$

(Note that with G compact and U irreducible, $\operatorname{dim} \mathfrak{H}$ is finite.) If G is not compact, but just unimodular, then with $\|\eta\|=1$,

$$
C=[c(\eta)]^{\frac{1}{2}} I,
$$

so that the value of $c(\eta)$ does not depend of $\eta \in \mathcal{A}$. In that case, we call $d_{u} \equiv c(\eta)^{-1}$ the formal dimension of the representation U. In this terminology, when G is a nonunimodular group, the formal dimension of a square integrable representation U is the positive self-adjoint (possibly unbounded) operator C^{-2}.

Orthogonality relations

Finally, we derive a generalized version of the resolution of the identity.

Corollary

Let U be a square integrable representation of the locally compact group G. If η and η^{\prime} are any two nonzero admissible vectors, then, provided $\left\langle C \eta \mid C \eta^{\prime}\right\rangle \neq 0$,

$$
\frac{1}{\left\langle C \eta \mid C \eta^{\prime}\right\rangle} \int_{G}\left|\eta_{g}^{\prime}\right\rangle\left\langle\eta_{g}\right| d \mu(g)=1 .
$$

Orthogonality relations

Finally, we derive a generalized version of the resolution of the identity.

Corollary

Let U be a square integrable representation of the locally compact group G. If η and η^{\prime} are any two nonzero admissible vectors, then, provided $\left\langle C \eta \mid C \eta^{\prime}\right\rangle \neq 0$,

$$
\frac{1}{\left\langle C \eta \mid C \eta^{\prime}\right\rangle} \int_{G}\left|\eta_{g}^{\prime}\right\rangle\left\langle\eta_{g}\right| d \mu(g)=1 .
$$

Proof. This is mere restatement of the orthogonality relation, since the vectors ϕ and ϕ^{\prime} are arbitrary.

Orthogonality relations

Finally, we derive a generalized version of the resolution of the identity.

Corollary

Let U be a square integrable representation of the locally compact group G. If η and η^{\prime} are any two nonzero admissible vectors, then, provided $\left\langle C \eta \mid C \eta^{\prime}\right\rangle \neq 0$,

$$
\frac{1}{\left\langle C \eta \mid C \eta^{\prime}\right\rangle} \int_{G}\left|\eta_{g}^{\prime}\right\rangle\left\langle\eta_{g}\right| d \mu(g)=1 .
$$

Proof. This is mere restatement of the orthogonality relation, since the vectors ϕ and ϕ^{\prime} are arbitrary.
From here we get the reconstruction formula

$$
\phi=\frac{\left[c\left(\eta^{\prime}\right)\right]^{\frac{1}{2}}}{\left\langle C \eta \mid C \eta^{\prime}\right\rangle} \int_{G} \Phi(g) \eta_{g}^{\prime} d \mu(g), \quad \phi \in \mathfrak{H}
$$

provided $\left\langle C \eta \mid C \eta^{\prime}\right\rangle \neq 0$.

Orthogonality relations

This generalizes our earlier reconstruction formula. Here η is called the analyzing vector and η^{\prime} the synthesizing vector.

Orthogonality relations

This generalizes our earlier reconstruction formula. Here η is called the analyzing vector and η^{\prime} the synthesizing vector. An important consequence of the above formula is that there are many kernels associated to a given η, namely all the functions

$$
K_{\eta \eta^{\prime}}\left(g, g^{\prime}\right)=\frac{1}{\left\langle C \eta \mid C \eta^{\prime}\right\rangle}\left\langle\eta_{g} \mid \eta_{g^{\prime}}^{\prime}\right\rangle
$$

Orthogonality relations

This generalizes our earlier reconstruction formula. Here η is called the analyzing vector and η^{\prime} the synthesizing vector. An important consequence of the above formula is that there are many kernels associated to a given η, namely all the functions

$$
K_{\eta \eta^{\prime}}\left(g, g^{\prime}\right)=\frac{1}{\left\langle C \eta \mid C \eta^{\prime}\right\rangle}\left\langle\eta_{g} \mid \eta_{g^{\prime}}^{\prime}\right\rangle
$$

each one of which defines the evaluation map on $\mathfrak{H}_{\eta} \in L^{2}(G, d \mu)$:

$$
\int_{G} K_{\eta \eta^{\prime}}\left(g, g^{\prime}\right) \Phi\left(g^{\prime}\right) d \mu\left(g^{\prime}\right)=\Phi(g), \quad \Phi \in \mathfrak{H}_{\eta}=W_{\eta}(\mathfrak{H})
$$

Orthogonality relations

This generalizes our earlier reconstruction formula. Here η is called the analyzing vector and η^{\prime} the synthesizing vector. An important consequence of the above formula is that there are many kernels associated to a given η, namely all the functions

$$
K_{\eta \eta^{\prime}}\left(g, g^{\prime}\right)=\frac{1}{\left\langle C \eta \mid C \eta^{\prime}\right\rangle}\left\langle\eta_{g} \mid \eta_{g^{\prime}}^{\prime}\right\rangle
$$

each one of which defines the evaluation map on $\mathfrak{H}_{\eta} \in L^{2}(G, d \mu)$:

$$
\int_{G} K_{\eta \eta^{\prime}}\left(g, g^{\prime}\right) \Phi\left(g^{\prime}\right) d \mu\left(g^{\prime}\right)=\Phi(g), \quad \Phi \in \mathfrak{H}_{\eta}=W_{\eta}(\mathfrak{H})
$$

It ought to be noted, however, that if $\eta \neq \eta^{\prime}, K_{\eta \eta^{\prime}}$ is not a positive definite kernel, and hence not a reproducing kernel, although, as an integral operator on $L^{2}(G, d \mu)$, it is idempotent:

$$
\int_{G} K_{\eta \eta^{\prime}}\left(g, g^{\prime \prime}\right) K_{\eta \eta^{\prime}}\left(g^{\prime \prime}, g^{\prime}\right) d \mu\left(g^{\prime \prime}\right)=K_{\eta \eta^{\prime}}\left(g, g^{\prime}\right)
$$

Wavelets as coherent states

The continuous wavelet transform, as presently used extensively in signal analysis and image processing, is a joint time frequency transform. This is in sharp contrast to the Fourier transform, which can be used either to analyze the frequency content of a signal, or its time profile, but not both at the same time.

Wavelets as coherent states

The continuous wavelet transform, as presently used extensively in signal analysis and image processing, is a joint time frequency transform. This is in sharp contrast to the Fourier transform, which can be used either to analyze the frequency content of a signal, or its time profile, but not both at the same time.
Interestingly, the continuous wavelet transform is built out of the coherent states obtained from a representation of the one-dimensional affine group, a group of translations and dilations of the real line. This group is also one of the simplest examples of a group which has a square integrable representation.

Wavelets as coherent states

The continuous wavelet transform, as presently used extensively in signal analysis and image processing, is a joint time frequency transform. This is in sharp contrast to the Fourier transform, which can be used either to analyze the frequency content of a signal, or its time profile, but not both at the same time.
Interestingly, the continuous wavelet transform is built out of the coherent states obtained from a representation of the one-dimensional affine group, a group of translations and dilations of the real line. This group is also one of the simplest examples of a group which has a square integrable representation.
So what follows will be a straightforward application of the theory just developed to this simple, but highly practical situation.

Wavelets as coherent states

The continuous wavelet transform, as presently used extensively in signal analysis and image processing, is a joint time frequency transform. This is in sharp contrast to the Fourier transform, which can be used either to analyze the frequency content of a signal, or its time profile, but not both at the same time.
Interestingly, the continuous wavelet transform is built out of the coherent states obtained from a representation of the one-dimensional affine group, a group of translations and dilations of the real line. This group is also one of the simplest examples of a group which has a square integrable representation.
So what follows will be a straightforward application of the theory just developed to this simple, but highly practical situation.
We ought to point out, however, that in actual practice, for computational purposes, one uses a discretized version of the transform that we shall obtain here. But the advantage of working with the continuous wavelet transform is that starting with it, one can obtain many more than one discrete transform.

Wavelets as coherent states

For our purposes, we shall identify a signal with an element $f \in L^{2}(\mathbb{R}, d x)$. Its L^{2}-norm squared, $\|f\|^{2}$, will be identified with the energy of the signal.

Wavelets as coherent states

For our purposes, we shall identify a signal with an element $f \in L^{2}(\mathbb{R}, d x)$. Its L^{2}-norm squared, $\|f\|^{2}$, will be identified with the energy of the signal.
Consequently, the wavelet transform will be built out of a single element $\psi \in L^{2}(\mathbb{R}, d x)$ and it will have to be an admissible vector in the sense of square-integrable representations. In the singnal analysis literature, such a vector is called a mother wavelet.

Wavelets as coherent states

For our purposes, we shall identify a signal with an element $f \in L^{2}(\mathbb{R}, d x)$. Its L^{2}-norm squared, $\|f\|^{2}$, will be identified with the energy of the signal.
Consequently, the wavelet transform will be built out of a single element $\psi \in L^{2}(\mathbb{R}, d x)$ and it will have to be an admissible vector in the sense of square-integrable representations. In the singnal analysis literature, such a vector is called a mother wavelet.
The resulting resolution of the identity will enable us to reconstruct the signal from its wavelet, ie., its joint time frequency, transform.

Wavelets as coherent states

For our purposes, we shall identify a signal with an element $f \in L^{2}(\mathbb{R}, d x)$. Its L^{2}-norm squared, $\|f\|^{2}$, will be identified with the energy of the signal.
Consequently, the wavelet transform will be built out of a single element $\psi \in L^{2}(\mathbb{R}, d x)$ and it will have to be an admissible vector in the sense of square-integrable representations. In the singnal analysis literature, such a vector is called a mother wavelet.
The resulting resolution of the identity will enable us to reconstruct the signal from its wavelet, ie., its joint time frequency, transform.
The orthogonality relations then allow one to decompose an arbitrary time frequency transform into orthogonal sums of wavelet transforms, corresponding to different mother wavelets.

Wavelets as coherent states

For our purposes, we shall identify a signal with an element $f \in L^{2}(\mathbb{R}, d x)$. Its L^{2}-norm squared, $\|f\|^{2}$, will be identified with the energy of the signal.
Consequently, the wavelet transform will be built out of a single element $\psi \in L^{2}(\mathbb{R}, d x)$ and it will have to be an admissible vector in the sense of square-integrable representations. In the singnal analysis literature, such a vector is called a mother wavelet.
The resulting resolution of the identity will enable us to reconstruct the signal from its wavelet, ie., its joint time frequency, transform.
The orthogonality relations then allow one to decompose an arbitrary time frequency transform into orthogonal sums of wavelet transforms, corresponding to different mother wavelets.
We shall also be able to choose a mother wavelet in a way such that the resulting wavelet transform consists of holomorphic functions in a certain Hardy space.

Transformations on signals

Let $\psi \in L^{2}(\mathbb{R}, d x)$ and consider start the basic 1-D transformation:

$$
\psi(x) \mapsto \psi_{b, a}(x)=|a|^{-1 / 2} \psi\left(\frac{x-b}{a}\right), \quad b \in \mathbb{R}, a \neq 0,
$$

Transformations on signals

Let $\psi \in L^{2}(\mathbb{R}, d x)$ and consider start the basic 1-D transformation:

$$
\psi(x) \mapsto \psi_{b, a}(x)=|a|^{-1 / 2} \psi\left(\frac{x-b}{a}\right), \quad b \in \mathbb{R}, a \neq 0,
$$

and rewrite it in the form

$$
\psi_{b, a}(x)=|a|^{-1 / 2} \psi\left((b, a)^{-1} x\right),
$$

Transformations on signals

Let $\psi \in L^{2}(\mathbb{R}, d x)$ and consider start the basic 1-D transformation:

$$
\psi(x) \mapsto \psi_{b, a}(x)=|a|^{-1 / 2} \psi\left(\frac{x-b}{a}\right), \quad b \in \mathbb{R}, a \neq 0,
$$

and rewrite it in the form

$$
\psi_{b, a}(x)=|a|^{-1 / 2} \psi\left((b, a)^{-1} x\right),
$$

where we have introduced the affine transformation of the line, consisting of a dilation (or scaling) by $a \neq 0$ and a (rigid) translation by $b \in \mathbb{R}$:

$$
x=(b, a) y=a y+b,
$$

Transformations on signals

Let $\psi \in L^{2}(\mathbb{R}, d x)$ and consider start the basic 1-D transformation:

$$
\psi(x) \mapsto \psi_{b, a}(x)=|a|^{-1 / 2} \psi\left(\frac{x-b}{a}\right), \quad b \in \mathbb{R}, a \neq 0,
$$

and rewrite it in the form

$$
\psi_{b, a}(x)=|a|^{-1 / 2} \psi\left((b, a)^{-1} x\right),
$$

where we have introduced the affine transformation of the line, consisting of a dilation (or scaling) by $a \neq 0$ and a (rigid) translation by $b \in \mathbb{R}$:

$$
x=(b, a) y=a y+b,
$$

and its inverse

$$
y=(b, a)^{-1} x=\frac{x-b}{a}
$$

Transformations on signals

Writing $\phi=\psi_{b, a}$ and making a second transformation on ϕ we get

$$
\begin{aligned}
\phi(x) \mapsto \phi_{b^{\prime}, a^{\prime}}(x) & =\left|a^{\prime}\right|^{-\frac{1}{2}} \phi\left(\left(b^{\prime}, a^{\prime}\right)^{-1} x\right) \\
& =\left|a a^{\prime}\right|^{-\frac{1}{2}} \psi\left(\left(b^{\prime}, a^{\prime}\right)^{-1}(b, a)^{-1} x\right) \\
& =\left|a a^{\prime}\right|^{-\frac{1}{2}} \psi\left(\frac{x-\left(b+a b^{\prime}\right)}{a a^{\prime}}\right)
\end{aligned}
$$

Transformations on signals

Writing $\phi=\psi_{b, a}$ and making a second transformation on ϕ we get

$$
\begin{aligned}
\phi(x) \mapsto \phi_{b^{\prime}, a^{\prime}}(x) & =\left|a^{\prime}\right|^{-\frac{1}{2}} \phi\left(\left(b^{\prime}, a^{\prime}\right)^{-1} x\right) \\
& =\left|a a^{\prime}\right|^{-\frac{1}{2}} \psi\left(\left(b^{\prime}, a^{\prime}\right)^{-1}(b, a)^{-1} x\right) \\
& =\left|a a^{\prime}\right|^{-\frac{1}{2}} \psi\left(\frac{x-\left(b+a b^{\prime}\right)}{a a^{\prime}}\right) .
\end{aligned}
$$

Thus, the effect of two successive transformations is captured in the composition rule

$$
(b, a)\left(b^{\prime}, a^{\prime}\right)=\left(b+a b^{\prime}, a a^{\prime}\right)
$$

Transformations on signals

Writing $\phi=\psi_{b, a}$ and making a second transformation on ϕ we get

$$
\begin{aligned}
\phi(x) \mapsto \phi_{b^{\prime}, a^{\prime}}(x) & =\left|a^{\prime}\right|^{-\frac{1}{2}} \phi\left(\left(b^{\prime}, a^{\prime}\right)^{-1} x\right) \\
& =\left|a a^{\prime}\right|^{-\frac{1}{2}} \psi\left(\left(b^{\prime}, a^{\prime}\right)^{-1}(b, a)^{-1} x\right) \\
& =\left|a a^{\prime}\right|^{-\frac{1}{2}} \psi\left(\frac{x-\left(b+a b^{\prime}\right)}{a a^{\prime}}\right)
\end{aligned}
$$

Thus, the effect of two successive transformations is captured in the composition rule

$$
(b, a)\left(b^{\prime}, a^{\prime}\right)=\left(b+a b^{\prime}, a a^{\prime}\right)
$$

which, if we represent these transformations by 2×2 matrices of the type

$$
(b, a) \equiv\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right), \quad a \neq 0, \quad b \in \mathbb{R}
$$

The 1-D affine group

is reproduced by ordinary matrix multiplication.

The 1-D affine group

is reproduced by ordinary matrix multiplication. The point to be noted about these matrices is that the product of two of them is again a matrix of the same type and so also is the inverse,

$$
(b, a)^{-1}=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a^{-1} & -a^{-1} b \\
0 & 1
\end{array}\right)
$$

of such a matrix.

The 1-D affine group

is reproduced by ordinary matrix multiplication. The point to be noted about these matrices is that the product of two of them is again a matrix of the same type and so also is the inverse,

$$
(b, a)^{-1}=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a^{-1} & -a^{-1} b \\
0 & 1
\end{array}\right)
$$

of such a matrix. Furthermore, the 2×2 identity matrix is also in this class. In other words, this class of matrices constitute a group, called the (full) affine group and denoted $G_{\text {aff }}$.

The 1-D affine group

is reproduced by ordinary matrix multiplication. The point to be noted about these matrices is that the product of two of them is again a matrix of the same type and so also is the inverse,

$$
(b, a)^{-1}=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a^{-1} & -a^{-1} b \\
0 & 1
\end{array}\right)
$$

of such a matrix. Furthermore, the 2×2 identity matrix is also in this class. In other words, this class of matrices constitute a group, called the (full) affine group and denoted $G_{\text {aff }}$. Note also, that if we consider only those matrices in for which $a>0$, then this set is a subgroup of $G_{\text {aff }}$, denoted $G_{\text {aff }}^{+}$.

The 1-D affine group

is reproduced by ordinary matrix multiplication. The point to be noted about these matrices is that the product of two of them is again a matrix of the same type and so also is the inverse,

$$
(b, a)^{-1}=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{cc}
a^{-1} & -a^{-1} b \\
0 & 1
\end{array}\right)
$$

of such a matrix. Furthermore, the 2×2 identity matrix is also in this class. In other words, this class of matrices constitute a group, called the (full) affine group and denoted $G_{\text {aff }}$. Note also, that if we consider only those matrices in for which $a>0$, then this set is a subgroup of $G_{\text {aff }}$, denoted $G_{\text {aff }}^{+}$. From the action on signals, we observe that $G_{\text {aff }}$ or $G_{\text {aff }}^{+}$ consists precisely of the transformations we apply to a signal: translation (time-shift) by an amount b and zooming in or out by the factor a. Hence, the group $G_{\text {aff }}$ relates to the geometry of the signals.

A representation of the group

Next let us study the effect of the transformation given by the group element (b, a) on the signal itself.

A representation of the group

Next let us study the effect of the transformation given by the group element (b, a) on the signal itself. Writing,

$$
\psi \mapsto U(b, a) \psi \equiv \psi_{b, a},
$$

we may interpret $U(b, a)$ as a linear operator on the space $L^{2}(\mathbb{R}, d x)$ of finite energy signals, with the explicit action,

A representation of the group

Next let us study the effect of the transformation given by the group element (b, a) on the signal itself. Writing,

$$
\psi \mapsto U(b, a) \psi \equiv \psi_{b, a},
$$

we may interpret $U(b, a)$ as a linear operator on the space $L^{2}(\mathbb{R}, d x)$ of finite energy signals, with the explicit action,

$$
(U(b, a) \psi)(x)=|a|^{-1 / 2} \psi\left(\frac{x-b}{a}\right) .
$$

A representation of the group

Next let us study the effect of the transformation given by the group element (b, a) on the signal itself. Writing,

$$
\psi \mapsto U(b, a) \psi \equiv \psi_{b, a},
$$

we may interpret $U(b, a)$ as a linear operator on the space $L^{2}(\mathbb{R}, d x)$ of finite energy signals, with the explicit action,

$$
(U(b, a) \psi)(x)=|a|^{-1 / 2} \psi\left(\frac{x-b}{a}\right) .
$$

Additionally, for each (b, a), the operator $U(b, a)$ is unitary, i.e., it preserves the Hilbert space norm of the signal:

$$
\left\|\psi_{b, a}\right\|^{2}=\|\psi\|^{2}=\int_{-\infty}^{\infty} d x|\psi(x)|^{2} .
$$

A representation of the group

More interestingly, the association, $(b, a) \mapsto U(b, a)$ is a group homomorphism, preserving all the group properties. Indeed, the following relations are easily verified:

$$
\begin{aligned}
& U(b, a) U\left(b^{\prime}, a^{\prime}\right)=U\left(b+a b^{\prime}, a a^{\prime}\right) \\
& U\left((b, a)^{-1}\right)=U(b, a)^{-1}=U(b, a)^{\dagger} \\
& U(e)=I, \text { with } e=(0,1), \text { the unit element. }
\end{aligned}
$$

A representation of the group

More interestingly, the association, $(b, a) \mapsto U(b, a)$ is a group homomorphism, preserving all the group properties. Indeed, the following relations are easily verified:

$$
\begin{aligned}
& U(b, a) U\left(b^{\prime}, a^{\prime}\right)=U\left(b+a b^{\prime}, a a^{\prime}\right) \\
& U\left((b, a)^{-1}\right)=U(b, a)^{-1}=U(b, a)^{\dagger} \\
& U(e)=I, \text { with } e=(0,1), \text { the unit element. }
\end{aligned}
$$

We say that the association $(b, a) \mapsto U(b, a)$ provides us with a unitary representation of $G_{\text {aff }}$. Note that we may also write,

$$
U(b, a)=T_{b} D_{a},
$$

A representation of the group

More interestingly, the association, $(b, a) \mapsto U(b, a)$ is a group homomorphism, preserving all the group properties. Indeed, the following relations are easily verified:

$$
\begin{aligned}
& U(b, a) U\left(b^{\prime}, a^{\prime}\right)=U\left(b+a b^{\prime}, a a^{\prime}\right) \\
& U\left((b, a)^{-1}\right)=U(b, a)^{-1}=U(b, a)^{\dagger} \\
& U(e)=I, \text { with } e=(0,1), \text { the unit element. }
\end{aligned}
$$

We say that the association $(b, a) \mapsto U(b, a)$ provides us with a unitary representation of $G_{\text {aff }}$. Note that we may also write,

$$
U(b, a)=T_{b} D_{a},
$$

where T_{a}, D_{b} are the well known shift and dilation operators, familiar from standard time-frequency analysis:

$$
\left(T_{b} s\right)(x)=s(x-b), \quad\left(D_{a} s\right)(x)=|a|^{-\frac{1}{2}} s\left(a^{-1} x\right) .
$$

A representation of the group

We shall see later that the representation $U(b, a)$ is in a sense minimal or irreducible, in that the entire Hilbert space of finite energy signals $L^{2}(\mathbb{R}, d x)$ is needed to realize it completely.

A representation of the group

We shall see later that the representation $U(b, a)$ is in a sense minimal or irreducible, in that the entire Hilbert space of finite energy signals $L^{2}(\mathbb{R}, d x)$ is needed to realize it completely.

But let us first attend to another question which is pertinent here, namely, why is it that $G_{\text {aff }}$ is made to act as a transformation group on \mathbb{R} even without manifestly identifying \mathbb{R} with any set of signal parameters?

A representation of the group

We shall see later that the representation $U(b, a)$ is in a sense minimal or irreducible, in that the entire Hilbert space of finite energy signals $L^{2}(\mathbb{R}, d x)$ is needed to realize it completely.

But let us first attend to another question which is pertinent here, namely, why is it that $G_{\text {aff }}$ is made to act as a transformation group on \mathbb{R} even without manifestly identifying \mathbb{R} with any set of signal parameters?
The answer to the above question lies in realizing that this space is intrinsic to the group itself. Indeed, let us factor an element $(b, a) \in G_{\text {aff }}$ in the manner

$$
(b, a)=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
$$

A representation of the group

We shall see later that the representation $U(b, a)$ is in a sense minimal or irreducible, in that the entire Hilbert space of finite energy signals $L^{2}(\mathbb{R}, d x)$ is needed to realize it completely.
But let us first attend to another question which is pertinent here, namely, why is it that $G_{\text {aff }}$ is made to act as a transformation group on \mathbb{R} even without manifestly identifying \mathbb{R} with any set of signal parameters?
The answer to the above question lies in realizing that this space is intrinsic to the group itself. Indeed, let us factor an element $(b, a) \in G_{\text {aff }}$ in the manner

$$
(b, a)=\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
$$

and note that the first matrix on the right hand side of this equation basically represents a point in \mathbb{R}. We also note that the set of matrices of the type appearing in the second term of the above product is a subgroup of $G_{\text {aff }}$.

A representation of the group

Dividing out by this matrix, we get $(b, a)(0, a)^{-1}=(b, 0)$, which enables us to identify the point $b \in \mathbb{R}$ with an element of the quotient space $G_{\text {aff }} / H$, (where H is the subgroup of matrices $(0, a), a \neq 0)$.

A representation of the group

Dividing out by this matrix, we get $(b, a)(0, a)^{-1}=(b, 0)$, which enables us to identify the point $b \in \mathbb{R}$ with an element of the quotient space $G_{\text {aff }} / H$, (where H is the subgroup of matrices $(0, a), a \neq 0)$. Next we see that, since

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & a x+b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a x+b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right),
$$

A representation of the group

Dividing out by this matrix, we get $(b, a)(0, a)^{-1}=(b, 0)$, which enables us to identify the point $b \in \mathbb{R}$ with an element of the quotient space $G_{\text {aff }} / H$, (where H is the subgroup of matrices $(0, a), a \neq 0)$. Next we see that, since

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & a x+b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a x+b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
$$

the action of the group $G_{\text {aff }}$ on its quotient space $G_{\text {aff }} / H$ is exactly the same as its action on \mathbb{R} as given earlier. Thus, the parameter space \mathbb{R} on which the signals $\psi(x)$ are defined is a quotient space of the group and hence intrinsic to the set of signal symmetries.

A representation of the group

Dividing out by this matrix, we get $(b, a)(0, a)^{-1}=(b, 0)$, which enables us to identify the point $b \in \mathbb{R}$ with an element of the quotient space $G_{\text {aff }} / H$, (where H is the subgroup of matrices $(0, a), a \neq 0)$. Next we see that, since

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & a x+b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a x+b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
$$

the action of the group $G_{\text {aff }}$ on its quotient space $G_{\text {aff }} / H$ is exactly the same as its action on \mathbb{R} as given earlier. Thus, the parameter space \mathbb{R} on which the signals $\psi(x)$ are defined is a quotient space of the group and hence intrinsic to the set of signal symmetries. We shall see below that the parameter space on which the wavelet transform of ψ is defined can also be identified with a quotient space of the group. In fact this space will turn out to be a phase space, in a sense to be specified later.

A representation of the group

Dividing out by this matrix, we get $(b, a)(0, a)^{-1}=(b, 0)$, which enables us to identify the point $b \in \mathbb{R}$ with an element of the quotient space $G_{\text {aff }} / H$, (where H is the subgroup of matrices $(0, a), a \neq 0)$. Next we see that, since

$$
\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & a x+b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a x+b \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)
$$

the action of the group $G_{\text {aff }}$ on its quotient space $G_{\text {aff }} / H$ is exactly the same as its action on \mathbb{R} as given earlier. Thus, the parameter space \mathbb{R} on which the signals $\psi(x)$ are defined is a quotient space of the group and hence intrinsic to the set of signal symmetries. We shall see below that the parameter space on which the wavelet transform of ψ is defined can also be identified with a quotient space of the group. In fact this space will turn out to be a phase space, in a sense to be specified later. Let us re-emphasize that the group (of signal symmetries) is determinative of all aspects of the signal and its various transforms.

A representation of the group

We come back now to the point made earlier, that the representation $U(b, a)$ is irreducible.

A representation of the group

We come back now to the point made earlier, that the representation $U(b, a)$ is irreducible.

We shall see that it also enjoys a second crucial property, that of being square integrable.

A representation of the group

We come back now to the point made earlier, that the representation $U(b, a)$ is irreducible.

We shall see that it also enjoys a second crucial property, that of being square integrable. The group $G_{\text {aff }}$ has a natural action on itself (by matrix multiplication from the left), according to which for a given $\left(b_{0}, a_{0}\right) \in G_{\text {aff }}$, a general point $(b, a) \in G_{\text {aff }}$ is mapped to $\left(b^{\prime}, a^{\prime}\right)=\left(b_{0}, a_{0}\right)(b, a)=\left(b_{0}+a_{0} b, a_{0} a\right)$.

A representation of the group

We come back now to the point made earlier, that the representation $U(b, a)$ is irreducible.

We shall see that it also enjoys a second crucial property, that of being square integrable. The group $G_{\text {aff }}$ has a natural action on itself (by matrix multiplication from the left), according to which for a given $\left(b_{0}, a_{0}\right) \in G_{\text {aff }}$, a general point $(b, a) \in G_{\text {aff }}$ is mapped to $\left(b^{\prime}, a^{\prime}\right)=\left(b_{0}, a_{0}\right)(b, a)=\left(b_{0}+a_{0} b, a_{0} a\right)$.
It is not hard to see that the measure

$$
d \mu(b, a)=\frac{d b d a}{a^{2}}
$$

is invariant under this action:

A representation of the group

We come back now to the point made earlier, that the representation $U(b, a)$ is irreducible.

We shall see that it also enjoys a second crucial property, that of being square integrable. The group $G_{\text {aff }}$ has a natural action on itself (by matrix multiplication from the left), according to which for a given $\left(b_{0}, a_{0}\right) \in G_{\text {aff }}$, a general point $(b, a) \in G_{\text {aff }}$ is mapped to $\left(b^{\prime}, a^{\prime}\right)=\left(b_{0}, a_{0}\right)(b, a)=\left(b_{0}+a_{0} b, a_{0} a\right)$.
It is not hard to see that the measure

$$
d \mu(b, a)=\frac{d b d a}{a^{2}}
$$

is invariant under this action:

$$
\frac{d b d a}{a^{2}}=\frac{d b^{\prime} d a^{\prime}}{a^{\prime 2}}
$$

We call the measure $d \mu$ the left Haar measure of $G_{\text {aff }}$.

Square integrability, admissibility and irreducibility

In a similar manner we could obtain a right Haar measure $d \mu_{r}$ (invariant under right multiplication):

$$
d \mu_{r}(b, a)=a^{-1} d b d a .
$$

Square integrability, admissibility and irreducibility

In a similar manner we could obtain a right Haar measure $d \mu_{r}$ (invariant under right multiplication):

$$
d \mu_{r}(b, a)=a^{-1} d b d a .
$$

It is important to realize, that while these two measures are (measure theoretically) equivalent, they are not the same measure.

Square integrability, admissibility and irreducibility

In a similar manner we could obtain a right Haar measure $d \mu_{r}$ (invariant under right multiplication):

$$
d \mu_{r}(b, a)=a^{-1} d b d a .
$$

It is important to realize, that while these two measures are (measure theoretically) equivalent, they are not the same measure.
The function $\boldsymbol{\Delta}(b, a)=a^{-1}$, for which $d \mu(b, a)=\boldsymbol{\Delta}(b, a) d \mu_{r}(b, a)$, is called the modular function of the group.

Square integrability, admissibility and irreducibility

In a similar manner we could obtain a right Haar measure $d \mu_{r}$ (invariant under right multiplication):

$$
d \mu_{r}(b, a)=a^{-1} d b d a .
$$

It is important to realize, that while these two measures are (measure theoretically) equivalent, they are not the same measure.
The function $\boldsymbol{\Delta}(b, a)=a^{-1}$, for which $d \mu(b, a)=\Delta(b, a) d \mu_{r}(b, a)$, is called the modular function of the group.
The square-integrability of the representation $U(b, a)$ now means that there exist signals $\psi \in L^{2}(\mathbb{R}, d x)$ for which the matrix element $\langle U(b, a) \psi \mid \psi\rangle$ is square integrable as a function of the variables b, a, with respect to the left Haar measure $d \mu$, i.e.,

$$
\iint_{G_{\mathrm{aff}}} d \mu(b, a)|\langle U(b, a) \psi \mid \psi\rangle|^{2}<\infty
$$

Square integrability, admissibility and irreducibility

and a straightforward computation would then establish that the function is also square integrable with respect to the right Haar measure.

Square integrability, admissibility and irreducibility

and a straightforward computation would then establish that the function is also square integrable with respect to the right Haar measure.
Also, it is a fact that the existence of one such (nonzero) vector implies the existence of an entire dense set of them. Indeed, the condition for a signal to be of this type is precisely the condition of admissibility required of mother wavelets.

Square integrability, admissibility and irreducibility

and a straightforward computation would then establish that the function is also square integrable with respect to the right Haar measure.
Also, it is a fact that the existence of one such (nonzero) vector implies the existence of an entire dense set of them. Indeed, the condition for a signal to be of this type is precisely the condition of admissibility required of mother wavelets.
To derive the admissibility condition, and also to verify our claim of irreducibility of the representation $U(a, b)$, it will be convenient to go over to the Fourier domain. For $\psi \in L^{2}(\mathbb{R}, d x)$, we denote its Fourier transform by $\widehat{\psi}$.

Square integrability, admissibility and irreducibility

and a straightforward computation would then establish that the function is also square integrable with respect to the right Haar measure.
Also, it is a fact that the existence of one such (nonzero) vector implies the existence of an entire dense set of them. Indeed, the condition for a signal to be of this type is precisely the condition of admissibility required of mother wavelets.
To derive the admissibility condition, and also to verify our claim of irreducibility of the representation $U(a, b)$, it will be convenient to go over to the Fourier domain. For $\psi \in L^{2}(\mathbb{R}, d x)$, we denote its Fourier transform by $\widehat{\psi}$.
It is not hard hard to see that on the Fourier transformed space the unitary operator $U(b, a)$ transforms to $\widehat{U}(b, a)$, with explicit action,

$$
(\widehat{U}(b, a) \widehat{\psi})(\xi)=|a|^{1 / 2} \widehat{\psi}(a \xi) e^{-i b \xi} \quad(b \in \mathbb{R}, a \neq 0)
$$

Square integrability, admissibility and irreducibility

The Fourier transform is a linear isometry, and we denote by $L^{2}(\widehat{\mathbb{R}}, d \xi)$ the image of $L^{2}(\mathbb{R}, d x)$ under this map.

Square integrability, admissibility and irreducibility

The Fourier transform is a linear isometry, and we denote by $L^{2}(\widehat{\mathbb{R}}, d \xi)$ the image of $L^{2}(\mathbb{R}, d x)$ under this map.
It follows that the operators $\widehat{U}(b, a)$ are also unitary and that they again constitute a unitary representation of the group $G_{\text {aff }}$.

Square integrability, admissibility and irreducibility

The Fourier transform is a linear isometry, and we denote by $L^{2}(\widehat{\mathbb{R}}, d \xi)$ the image of $L^{2}(\mathbb{R}, d x)$ under this map.
It follows that the operators $\widehat{U}(b, a)$ are also unitary and that they again constitute a unitary representation of the group $G_{\text {aff }}$. Let $\widehat{\psi} \in L^{2}(\widehat{\mathbb{R}}, d \xi)$ be a fixed nonzero vector in the Fourier domain. We will now show that the set of all vectors $\widehat{U}(b, a) \widehat{\psi}$ as (b, a) runs through $G_{\text {aff }}$ is dense in $L^{2}(\widehat{\mathbb{R}}, d \xi)$ and this is what will constitute the mathematically precise statement of the irreducibility of \widehat{U}.

Square integrability, admissibility and irreducibility

The Fourier transform is a linear isometry, and we denote by $L^{2}(\widehat{\mathbb{R}}, d \xi)$ the image of $L^{2}(\mathbb{R}, d x)$ under this map.
It follows that the operators $\widehat{U}(b, a)$ are also unitary and that they again constitute a unitary representation of the group $G_{\text {aff }}$.
Let $\widehat{\psi} \in L^{2}(\widehat{\mathbb{R}}, d \xi)$ be a fixed nonzero vector in the Fourier domain. We will now show that the set of all vectors $\widehat{U}(b, a) \widehat{\psi}$ as (b, a) runs through $G_{\text {aff }}$ is dense in $L^{2}(\widehat{\mathbb{R}}, d \xi)$ and this is what will constitute the mathematically precise statement of the irreducibility of \widehat{U}.
Indeed, let $\widehat{\chi} \in L^{2}(\widehat{\mathbb{R}}, d \xi)$ be a vector which is orthogonal to all the vectors $\widehat{U}(b, a) \widehat{\psi}$:

$$
\langle\widehat{\chi} \mid \widehat{U}(b, a) \widehat{\psi}\rangle=0
$$

Then,

$$
\langle\widehat{\chi} \mid \widehat{U}(b, a) \widehat{\psi}\rangle=|a|^{1 / 2} \int_{-\infty}^{\infty} d \xi \overline{\widehat{\chi}(\xi)} \widehat{\psi}(a \xi) e^{-i b \xi}=0 .
$$

Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields $\overline{\widehat{\chi}(\xi)} \widehat{\psi}(a \xi)=0$, almost everywhere, for all $a \neq 0$. Since $\widehat{\psi} \not \equiv 0$, this in turn implies $\widehat{\chi}(\xi)=0$, almost everywhere.

Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields $\overline{\widehat{\chi}(\xi)} \widehat{\psi}(a \xi)=0$, almost everywhere, for all $a \neq 0$. Since $\widehat{\psi} \not \equiv 0$, this in turn implies $\widehat{\chi}(\xi)=0$, almost everywhere. Thus, the only subspaces of $L^{2}(\widehat{\mathbb{R}}, d \xi)$ which are stable under the action of all the operators $\widehat{U}(b, a)$ are $L^{2}(\widehat{\mathbb{R}}, d \xi)$ itself and the trivial subspace containing just the zero vector.

Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields $\overline{\widehat{\chi}(\xi)} \widehat{\psi}(a \xi)=0$, almost everywhere, for all $a \neq 0$. Since $\widehat{\psi} \not \equiv 0$, this in turn implies $\widehat{\chi}(\xi)=0$, almost everywhere. Thus, the only subspaces of $L^{2}(\widehat{\mathbb{R}}, d \xi)$ which are stable under the action of all the operators $\widehat{U}(b, a)$ are $L^{2}(\widehat{\mathbb{R}}, d \xi)$ itself and the trivial subspace containing just the zero vector.
In other words, $L^{2}(\widehat{\mathbb{R}}, d \xi)$ is sort of a minimal space for the representation.

Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields $\overline{\widehat{\chi}(\xi)} \widehat{\psi}(a \xi)=0$, almost everywhere, for all $a \neq 0$. Since $\widehat{\psi} \not \equiv 0$, this in turn implies $\widehat{\chi}(\xi)=0$, almost everywhere. Thus, the only subspaces of $L^{2}(\widehat{\mathbb{R}}, d \xi)$ which are stable under the action of all the operators $\widehat{U}(b, a)$ are $L^{2}(\widehat{\mathbb{R}}, d \xi)$ itself and the trivial subspace containing just the zero vector.
In other words, $L^{2}(\widehat{\mathbb{R}}, d \xi)$ is sort of a minimal space for the representation. The unitarity of the Fourier transform also tells us that the representations $U(b, a)$ and $\widehat{U}(b, a)$ are equivalent and since $\widehat{U}(b, a)$ is irreducible, so also is $U(b, a)$.

Square integrability, admissibility and irreducibility

By the unitarity of the Fourier transform, this yields $\overline{\widehat{\chi}(\xi)} \widehat{\psi}(a \xi)=0$, almost everywhere, for all $a \neq 0$. Since $\widehat{\psi} \not \equiv 0$, this in turn implies $\widehat{\chi}(\xi)=0$, almost everywhere. Thus, the only subspaces of $L^{2}(\widehat{\mathbb{R}}, d \xi)$ which are stable under the action of all the operators $\widehat{U}(b, a)$ are $L^{2}(\widehat{\mathbb{R}}, d \xi)$ itself and the trivial subspace containing just the zero vector.
In other words, $L^{2}(\widehat{\mathbb{R}}, d \xi)$ is sort of a minimal space for the representation. The unitarity of the Fourier transform also tells us that the representations $U(b, a)$ and $\widehat{U}(b, a)$ are equivalent and since $\widehat{U}(b, a)$ is irreducible, so also is $U(b, a)$. (Note, this is also clear from the fact that the linear isometry property of the Fourier transform implies that

$$
\langle\chi \mid U(b, a) \psi\rangle=\langle\widehat{\chi} \mid \widehat{U}(b, a) \widehat{\psi}\rangle
$$

χ, ψ denoting the inverse Fourier transforms of $\widehat{\chi}, \widehat{\psi}$, respectively.)

Square integrability, admissibility and irreducibility

Now we address the question of square integrability. We require that,

$$
\begin{aligned}
& \iint_{G_{\mathrm{aff}}} \frac{d a d b}{a^{2}}|\langle\widehat{U}(b, a) \widehat{\psi} \mid \widehat{\psi}\rangle|^{2}= \\
&=\iiint \int d \xi d \xi^{\prime} \frac{d a}{|a|} d b e^{i b\left(\xi-\xi^{\prime}\right)} \overline{\widehat{\psi}(a \xi)} \widehat{\psi}\left(a \xi^{\prime}\right) \widehat{\psi}(\xi) \overline{\widehat{\psi}\left(\xi^{\prime}\right)} \\
& \quad=2 \pi \iint \frac{d a}{|a|} d \xi|\widehat{\psi}(a \xi)|^{2}|\widehat{\psi}(\xi)|^{2} \\
&=2 \pi\|\psi\|^{2} \int_{-\infty}^{\infty} \frac{d \xi}{|\xi|}|\widehat{\psi}(\xi)|^{2}<\infty
\end{aligned}
$$

Square integrability, admissibility and irreducibility

Now we address the question of square integrability. We require that,

$$
\begin{aligned}
& \iint_{G_{\mathrm{aff}}} \frac{d a d b}{a^{2}}|\langle\widehat{U}(b, a) \widehat{\psi} \mid \widehat{\psi}\rangle|^{2}= \\
&= \iiint \int d \xi d \xi^{\prime} \frac{d a}{|a|} d b e^{i b\left(\xi-\xi^{\prime}\right)} \overline{\widehat{\psi}(a \xi)} \widehat{\psi}\left(a \xi^{\prime}\right) \widehat{\psi}(\xi) \overline{\widehat{\psi}\left(\xi^{\prime}\right)} \\
& \quad=2 \pi \iint \frac{d a}{|a|} d \xi|\widehat{\psi}(a \xi)|^{2}|\widehat{\psi}(\xi)|^{2} \\
& \quad=2 \pi\|\psi\|^{2} \int_{-\infty}^{\infty} \frac{d \xi}{|\xi|}|\widehat{\psi}(\xi)|^{2}<\infty
\end{aligned}
$$

(the integral over byields a delta distribution, which can be used to perform the ξ^{\prime} integration and the interchange of integrals can be justified using s distribution theoretic arguments).

Square integrability, admissibility and irreducibility

Now we address the question of square integrability. We require that,

$$
\begin{aligned}
& \iint_{G_{\mathrm{aff}}} \frac{d a d b}{a^{2}}|\langle\widehat{U}(b, a) \widehat{\psi} \mid \widehat{\psi}\rangle|^{2}= \\
& \quad= \iiint \int d \xi d \xi^{\prime} \frac{d a}{|a|} d b e^{i b\left(\xi-\xi^{\prime}\right)} \overline{\widehat{\psi}(a \xi)} \widehat{\psi}\left(a \xi^{\prime}\right) \widehat{\psi}(\xi) \overline{\widehat{\psi}\left(\xi^{\prime}\right)} \\
& \quad=2 \pi \iint \frac{d a}{|a|} d \xi|\widehat{\psi}(a \xi)|^{2}|\widehat{\psi}(\xi)|^{2} \\
& \quad=2 \pi\|\psi\|^{2} \int_{-\infty}^{\infty} \frac{d \xi}{|\xi|}|\widehat{\psi}(\xi)|^{2}<\infty
\end{aligned}
$$

(the integral over byields a delta distribution, which can be used to perform the ξ^{\prime} integration and the interchange of integrals can be justified using s distribution theoretic arguments). This means that the vector ψ is admissible in the sense of our earlier definition if and only if

$$
c_{\psi} \equiv 2 \pi \int_{-\infty}^{\infty} \frac{d \xi}{|\xi|}|\widehat{\psi}(\xi)|^{2}<\infty
$$

Square integrability, admissibility and irreducibility

From this discussion we draw two immediate conclusions. First, there is a dense set of vectors $\widehat{\psi}$ which satisfy the admissibility condition. Second, the admissibility condition, $c_{\psi}<\infty$, simply expresses the square integrability of the representation U.

Square integrability, admissibility and irreducibility

From this discussion we draw two immediate conclusions. First, there is a dense set of vectors $\widehat{\psi}$ which satisfy the admissibility condition. Second, the admissibility condition, $c_{\psi}<\infty$, simply expresses the square integrability of the representation U. Defining an operator \widehat{C} on $L^{2}(\widehat{\mathbb{R}}, d \xi)$,

$$
(\widehat{C} \widehat{\psi})(\xi)=\left[\frac{2 \pi}{|\xi|}\right]^{\frac{1}{2}} \widehat{\psi}(\xi),
$$

and denoting by C its inverse Fourier transform, we see that the vector ψ is admissible if and only if

$$
c_{\psi}=\|C \psi\|^{2}<\infty .
$$

Square integrability, admissibility and irreducibility

From this discussion we draw two immediate conclusions. First, there is a dense set of vectors $\widehat{\psi}$ which satisfy the admissibility condition. Second, the admissibility condition, $c_{\psi}<\infty$, simply expresses the square integrability of the representation U. Defining an operator \widehat{C} on $L^{2}(\widehat{\mathbb{R}}, d \xi)$,

$$
(\widehat{C} \widehat{\psi})(\xi)=\left[\frac{2 \pi}{|\xi|}\right]^{\frac{1}{2}} \widehat{\psi}(\xi)
$$

and denoting by C its inverse Fourier transform, we see that the vector ψ is admissible if and only if

$$
c_{\psi}=\|C \psi\|^{2}<\infty .
$$

This operator, known as the Duflo-Moore operator, is positive, self-adjoint and unbounded. It also has an inverse. It is easily seen that if a vector ψ is admissible, then so also is the vector $U(b, a) \psi$, for any $(b, a) \in G_{\text {aff }}$.

Square integrability, admissibility and irreducibility

A word now about the form of the representation $U(b, a)$. How does one arrive at it?

Square integrability, admissibility and irreducibility

A word now about the form of the representation $U(b, a)$. How does one arrive at it? In fact, given the way the group acts on $\mathbb{R}, x \mapsto a x+b$, the representation $U(b, a)$ is recognized as being the most natural, nontrivial way to realize a group homomorphism onto a set of unitary operators on the signal space $L^{2}(\mathbb{R}, d x)$. (Unitarity is required in order to ensure that the signal ψ and the transformed signal $U(b, a) \psi$ both have the same total energy).

Square integrability, admissibility and irreducibility

A word now about the form of the representation $U(b, a)$. How does one arrive at it? In fact, given the way the group acts on $\mathbb{R}, x \mapsto a x+b$, the representation $U(b, a)$ is recognized as being the most natural, nontrivial way to realize a group homomorphism onto a set of unitary operators on the signal space $L^{2}(\mathbb{R}, d x)$. (Unitarity is required in order to ensure that the signal ψ and the transformed signal $U(b, a) \psi$ both have the same total energy).
Indeed, given any differentiable mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, the operator $U(T)$, on the Hilbert space $L^{2}\left(\mathbb{R}^{n}, d^{n} \vec{x}\right)$, defined as

$$
(U(T) f)(\vec{x})=|\operatorname{det}[J(T)]|^{-\frac{1}{2}} f\left(T^{-1}(\vec{x})\right)
$$

where $J(T)$ is the Jacobian of the map T, is easily seen to be unitary. (Recall that

$$
d(T(\vec{x}))=|\operatorname{det}[J(T)]| d \vec{x} .)
$$

Square integrability, admissibility and irreducibility

This provides the rationale for our definition of the representation $U(b, a)$ in the way we did.

Square integrability, admissibility and irreducibility

This provides the rationale for our definition of the representation $U(b, a)$ in the way we did.

Of course, the interesting point here is that this representation turns out to be both irreducible and square integrable.

Square integrability, admissibility and irreducibility

This provides the rationale for our definition of the representation $U(b, a)$ in the way we did.

Of course, the interesting point here is that this representation turns out to be both irreducible and square integrable.
But then, why is square integrability of the representation a desirable criterion for wavelet analysis? In order to answer this question, let us take a vector ψ satisfying the admissibility condition and use it to construct the wavelet transform of the signal s :

$$
S(b, a)=\left\langle\psi_{b, a} \mid s\right\rangle .
$$

Square integrability, admissibility and irreducibility

This provides the rationale for our definition of the representation $U(b, a)$ in the way we did.
Of course, the interesting point here is that this representation turns out to be both irreducible and square integrable.
But then, why is square integrability of the representation a desirable criterion for wavelet analysis? In order to answer this question, let us take a vector ψ satisfying the admissibility condition and use it to construct the wavelet transform of the signal s :

$$
S(b, a)=\left\langle\psi_{b, a} \mid s\right\rangle
$$

As we already know, the total energy of the transformed signal is given by the integral

$$
E(S)=\iint_{G_{\mathrm{aff}}} d \mu(b, a)|S(b, a)|^{2}
$$

and we would like this to be finite, like that of the signal itself.

Square integrability, admissibility and irreducibility

An easy computation now shows that

$$
E(S)=\|C \psi\|^{2}\|s\|^{2}=c_{\psi}\|s\|^{2}
$$

Square integrability, admissibility and irreducibility

An easy computation now shows that

$$
E(S)=\|C \psi\|^{2}\|s\|^{2}=c_{\psi}\|s\|^{2}
$$

which means that the total energy of the wavelet transform will be finite if and only if the mother wavelet can be chosen from the domain of the operator C, i.e., if and only if it satisfies the square integrability condition.

Square integrability, admissibility and irreducibility

An easy computation now shows that

$$
E(S)=\|C \psi\|^{2}\|s\|^{2}=c_{\psi}\|s\|^{2}
$$

which means that the total energy of the wavelet transform will be finite if and only if the mother wavelet can be chosen from the domain of the operator C, i.e., if and only if it satisfies the square integrability condition.
However, this is not the whole story, for let us rewrite the above equation in the expanded form,

$$
\begin{aligned}
E(S) & =\iint_{G_{\mathrm{aff}}} d \mu(b, a)\left\langle s \mid \psi_{b, a}\right\rangle\left\langle\psi_{b, a} \mid s\right\rangle \\
& =\left\langle s \mid\left[\iint_{G_{\mathrm{aff}}} d \mu(b, a)\left|\psi_{b, a}\right\rangle\left\langle\psi_{b, a}\right|\right] s\right\rangle \\
& =c_{\psi}\langle s \mid I s\rangle
\end{aligned}
$$

Square integrability, admissibility and irreducibility

An easy computation now shows that

$$
E(S)=\|C \psi\|^{2}\|s\|^{2}=c_{\psi}\|s\|^{2}
$$

which means that the total energy of the wavelet transform will be finite if and only if the mother wavelet can be chosen from the domain of the operator C, i.e., if and only if it satisfies the square integrability condition.
However, this is not the whole story, for let us rewrite the above equation in the expanded form,

$$
\begin{aligned}
E(S) & =\iint_{G_{\text {aff }}} d \mu(b, a)\left\langle s \mid \psi_{b, a}\right\rangle\left\langle\psi_{b, a} \mid s\right\rangle \\
& =\left\langle s \mid\left[\iint_{G_{\text {aff }}} d \mu(b, a)\left|\psi_{b, a}\right\rangle\left\langle\psi_{b, a}\right|\right] s\right\rangle \\
& =c_{\psi}\langle s \mid I s\rangle,
\end{aligned}
$$

Using the well-known polarization identity for scalar products we infer that

Square integrability, admissibility and irreducibility

$$
\frac{1}{c_{\psi}} \iint_{G_{\mathrm{aff}}} d \mu(b, a)\left|\psi_{b, a}\right\rangle\left\langle\psi_{b, a}\right|=I,
$$

i.e., the resolution of the identity.

Square integrability, admissibility and irreducibility

$$
\frac{1}{c_{\psi}} \iint_{G_{\mathrm{aff}}} d \mu(b, a)\left|\psi_{b, a}\right\rangle\left\langle\psi_{b, a}\right|=I
$$

i.e., the resolution of the identity. It is immediately clear that this is completely equivalent to the square integrability of the representation $U(b, a)$.

Square integrability, admissibility and irreducibility

$$
\frac{1}{c_{\psi}} \iint_{G_{\mathrm{aff}}} d \mu(b, a)\left|\psi_{b, a}\right\rangle\left\langle\psi_{b, a}\right|=I
$$

i.e., the resolution of the identity. It is immediately clear that this is completely equivalent to the square integrability of the representation $U(b, a)$.
The resolution of the identity also incorporates within it the possibility of reconstructing the the signal $s(x)$, from its wavelet transform $S(b, a)$. To see this, let us act on the vector $s \in L^{2}(\mathbb{R}, d x)$ with both sides of the above identity. We get

$$
\frac{1}{c_{\psi}} \iint_{G_{\mathrm{aff}}} d \mu(b, a) \psi_{b, a}\left\langle\psi_{b, a} \mid s\right\rangle=I s=s
$$

Square integrability, admissibility and irreducibility

$$
\frac{1}{c_{\psi}} \iint_{G_{\mathrm{aff}}} d \mu(b, a)\left|\psi_{b, a}\right\rangle\left\langle\psi_{b, a}\right|=I
$$

i.e., the resolution of the identity. It is immediately clear that this is completely equivalent to the square integrability of the representation $U(b, a)$.
The resolution of the identity also incorporates within it the possibility of reconstructing the the signal $s(x)$, from its wavelet transform $S(b, a)$. To see this, let us act on the vector $s \in L^{2}(\mathbb{R}, d x)$ with both sides of the above identity. We get

$$
\frac{1}{c_{\psi}} \iint_{G_{\mathrm{aff}}} d \mu(b, a) \psi_{b, a}\left\langle\psi_{b, a} \mid s\right\rangle=l s=s
$$

implying

$$
s(x)=\frac{1}{c_{\psi}} \iint_{G_{\text {aff }}} d \mu(b, a) S(b, a) \psi_{b, a}(x), \quad \text { almost everywhere }
$$

Square integrability, admissibility and irreducibility

which is the celebrated reconstruction formula we encountered before.
Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

Square integrability, admissibility and irreducibility

which is the celebrated reconstruction formula we encountered before.
Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

1. the finiteness of the energy of the wavelet transform, and

Square integrability, admissibility and irreducibility

which is the celebrated reconstruction formula we encountered before.
Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

1. the finiteness of the energy of the wavelet transform, and
2. the validity of the reconstruction formula.

Square integrability, admissibility and irreducibility

 which is the celebrated reconstruction formula we encountered before.Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

1. the finiteness of the energy of the wavelet transform, and
2. the validity of the reconstruction formula.

These two properties are also shared by the Fourier transform of a signal.

Square integrability, admissibility and irreducibility

which is the celebrated reconstruction formula we encountered before.
Summarizing, we conclude that square integrability (which is a group property) is precisely the condition which ensures, in this case, the very desirable consequences of

1. the finiteness of the energy of the wavelet transform, and
2. the validity of the reconstruction formula.

These two properties are also shared by the Fourier transform of a signal.
The resolution of the identity condition has independent mathematical interest. First of all, it implies that any vector in $L^{2}(\mathbb{R}, d x)$ which is orthogonal to all the wavelets $\psi_{b, a}$ is necessarily the zero vector, i.e., the linear span of the wavelets is dense in the Hilbert space of signals.

Square integrability, admissibility and irreducibility

This fact, which could also have been inferred from the irreducibility of the representation $U(b, a)$, is what enables us to use the wavelets as a basis set for expressing arbitrary signals.

Square integrability, admissibility and irreducibility

This fact, which could also have been inferred from the irreducibility of the representation $U(b, a)$, is what enables us to use the wavelets as a basis set for expressing arbitrary signals.
In fact we have here what is also known as an overcomplete basis. Secondly, this overcomplete basis is a continuously parametrized set, meaning that this is an example of a continuous basis and a continuous frame.

Square integrability, admissibility and irreducibility

This fact, which could also have been inferred from the irreducibility of the representation $U(b, a)$, is what enables us to use the wavelets as a basis set for expressing arbitrary signals.
In fact we have here what is also known as an overcomplete basis. Secondly, this overcomplete basis is a continuously parametrized set, meaning that this is an example of a continuous basis and a continuous frame.

As mentioned earlier, for practical implementation, one samples this continuous basis to extract a discrete set of basis vectors which forms a discrete frame.

