Coherent States in Physics and Mathematics - V

S. Twareque Ali
Department of Mathematics and Statistics
Concordia University
Montréal, Québec, CANADA H3G 1M8
stali@mathstat.concordia.ca
Expository Quantum Lecture Series 5
Institute for Mathematical Research
Putra University, Malaysia

Jan 9-13, 2012

Abstract

In this talk we focus on coherent states built using the analytic structure of reproducing kernel Hilberst spaces of analytic functions, on some complex domain, which are square integrable with respect to an appropriate measure. The canonical CS already provided us with an example of this type. We now look at the problem in some greater generality.

Contents

(1) Preliminaries

- Contents

Contents

(1) Preliminaries

- Contents
(2) Holomorphic kernels

Contents

(1) Preliminaries

- Contents
(2) Holomorphic kernels
(3) Coherent states: The holomorphic case

Contents

(1) Preliminaries

- Contents
(2) Holomorphic kernels
(3) Coherent states: The holomorphic case

4 Associated operators and orthogonal polynomials

Contents

(1) Preliminaries

- Contents
(2) Holomorphic kernels
(3) Coherent states: The holomorphic case
(4) Associated operators and orthogonal polynomials
(5) Some vector coherent states

The problem

We have seen that the canonical coherent states could be represented as analytic functions of a complex variable, on a Hilbert space of such functions.

The problem

We have seen that the canonical coherent states could be represented as analytic functions of a complex variable, on a Hilbert space of such functions.
The important mathematical property in this setting was the continuity of the evaluation map $z \longmapsto f(z)$.

The problem

We have seen that the canonical coherent states could be represented as analytic functions of a complex variable, on a Hilbert space of such functions.
The important mathematical property in this setting was the continuity of the evaluation map $z \longmapsto f(z)$.
We shall now study a more general class of Hilbert spaces of analytic functions, where again the continuity of this map is assured. This will then enable us to construct an entire family of coherent states, arising from such Hilbert spaces.

The problem

We have seen that the canonical coherent states could be represented as analytic functions of a complex variable, on a Hilbert space of such functions.
The important mathematical property in this setting was the continuity of the evaluation map $z \longmapsto f(z)$.
We shall now study a more general class of Hilbert spaces of analytic functions, where again the continuity of this map is assured. This will then enable us to construct an entire family of coherent states, arising from such Hilbert spaces.
This type of coherent states will include the so-called non-linear coherent states discussed in the quantum optical literature, as well as the coherent states associated to the discrete series representations of semi-simple Lie groups.

The problem

We have seen that the canonical coherent states could be represented as analytic functions of a complex variable, on a Hilbert space of such functions.
The important mathematical property in this setting was the continuity of the evaluation map $z \longmapsto f(z)$.
We shall now study a more general class of Hilbert spaces of analytic functions, where again the continuity of this map is assured. This will then enable us to construct an entire family of coherent states, arising from such Hilbert spaces.
This type of coherent states will include the so-called non-linear coherent states discussed in the quantum optical literature, as well as the coherent states associated to the discrete series representations of semi-simple Lie groups.
We shall illustrate the theory with a couple of examples.

The problem

We have seen that the canonical coherent states could be represented as analytic functions of a complex variable, on a Hilbert space of such functions.
The important mathematical property in this setting was the continuity of the evaluation map $z \longmapsto f(z)$.
We shall now study a more general class of Hilbert spaces of analytic functions, where again the continuity of this map is assured. This will then enable us to construct an entire family of coherent states, arising from such Hilbert spaces.
This type of coherent states will include the so-called non-linear coherent states discussed in the quantum optical literature, as well as the coherent states associated to the discrete series representations of semi-simple Lie groups.
We shall illustrate the theory with a couple of examples.
One ought to mention in this connection also the class of the so-called Gazeau-Klauder type of CS, which are built somewhat similarly, but are not necessarily analytic functions.

The setting

Let $\mathbb{D} \subset \mathbb{C}$ be a domain, i.e., an open connected set,

$$
d \nu(z, \bar{z})=\frac{d z \wedge d \bar{z}}{2 \pi i}=\frac{1}{\pi} d y \wedge d x, \quad z=x+i y
$$

the Lebesgue measure on \mathbb{D} and $d \mu(z, \bar{z})=\rho(z, \bar{z}) d \nu(z, \bar{z})$ any other measure, equivalent to ν, where ρ is a continuous, positive function, which does not vanish anywhere on \mathbb{D}. Let $\mathfrak{H}=L^{2}(\mathbb{D}, d \mu)$, and denote the norm in it by $\|\ldots\|_{\text {hol }}$.

The setting

Let $\mathbb{D} \subset \mathbb{C}$ be a domain, i.e., an open connected set,

$$
d \nu(z, \bar{z})=\frac{d z \wedge d \bar{z}}{2 \pi i}=\frac{1}{\pi} d y \wedge d x, \quad z=x+i y,
$$

the Lebesgue measure on \mathbb{D} and $d \mu(z, \bar{z})=\rho(z, \bar{z}) d \nu(z, \bar{z})$ any other measure, equivalent to ν, where ρ is a continuous, positive function, which does not vanish anywhere on \mathbb{D}. Let $\mathfrak{H}=L^{2}(\mathbb{D}, d \mu)$, and denote the norm in it by $\|\ldots\|_{\text {hol }}$. Suppose that there exists a non-empty subset of vectors in \mathfrak{H}, which can be identified with functions analytic in z. Let $L_{\text {hol }}^{2}(\mathbb{D}, d \mu) \subset \mathfrak{H}$ denote this subset.

The setting

Let $\mathbb{D} \subset \mathbb{C}$ be a domain, i.e., an open connected set,

$$
d \nu(z, \bar{z})=\frac{d z \wedge d \bar{z}}{2 \pi i}=\frac{1}{\pi} d y \wedge d x, \quad z=x+i y,
$$

the Lebesgue measure on \mathbb{D} and $d \mu(z, \bar{z})=\rho(z, \bar{z}) d \nu(z, \bar{z})$ any other measure, equivalent to ν, where ρ is a continuous, positive function, which does not vanish anywhere on \mathbb{D}. Let $\mathfrak{H}=L^{2}(\mathbb{D}, d \mu)$, and denote the norm in it by $\|\ldots\|_{\text {hol }}$.
Suppose that there exists a non-empty subset of vectors in \mathfrak{H}, which can be identified with functions analytic in z. Let $L_{h o l}^{2}(\mathbb{D}, d \mu) \subset \mathfrak{H}$ denote this subset.
Note that if, for example, $\mathbb{D}=\mathbb{C}$ and $\mu=\nu$, then there are no nonvanishing analytic functions in \mathfrak{H} at all. On the other hand, with $\mathbb{D}=\mathbb{C}$ and $\rho(z, \bar{z})=\exp \left[-|z|^{2}\right]$, the Hilbert space $L_{h o l}^{2}(\mathbb{D}, d \mu)$ is the Bargmann space of entire analytic functions of the canonical CS, discussed earlier in these lectures.

The setting

Similarly, when $\mathbb{D}=\mathcal{D}=\{z \in \mathbb{C}| | z \mid<1\}$, the open unit disc and $\rho(z, \bar{z})=(1-|z|)^{2 j-2}, \quad j=1,3 / 2,2,5 / 2$, we have an entire class of Hilbert spaces of holomorphic functions $\mathfrak{H}_{\text {hol }}^{j}$, carrying representations of the group $S U(1,1)$, which we shall also study.

The setting

Similarly, when $\mathbb{D}=\mathcal{D}=\{z \in \mathbb{C}| | z \mid<1\}$, the open unit disc and $\rho(z, \bar{z})=(1-|z|)^{2 j-2}, \quad j=1,3 / 2,2,5 / 2$, we have an entire class of Hilbert spaces of holomorphic functions $\mathfrak{H}_{\text {hol }}^{j}$, carrying representations of the group $\operatorname{SU}(1,1)$, which we shall also study.
We begin by proving an important result.

Lemma

$L_{\text {hol }}^{2}(\mathbb{D}, d \mu)$ is a closed Hilbert subspace of \mathfrak{H}, on which the evaluation map

$$
E_{h o l}(z): L_{h o l}^{2}(\mathbb{D}, d \mu) \rightarrow \mathbb{C}, \quad E_{h o l}(z) f=f(z)
$$

is bounded and linear for all $z \in \mathbb{D}$, and moreover, for any compact subset $C \subset \mathbb{D}$, there exists a constant $k(C)>0$, such that

$$
|f(z)| \leq k(C)\|f\|_{h o l}
$$

for all $f \in L_{\text {hol }}^{2}(\mathbb{D}, d \mu)$ and $z \in \mathbb{C}$.

The setting

Proof. The linearity of $E_{h o l}(z)$ is obvious and its boundedness would follow directly once inequality above is proved. Let us therefore prove this relation.

The setting

Proof. The linearity of $E_{h o l}(z)$ is obvious and its boundedness would follow directly once inequality above is proved. Let us therefore prove this relation.
Let $f \in L_{\text {hol }}^{2}(\mathbb{D}, d \mu)$ and $z \in \mathbb{D}$. Choose $\varepsilon \in(0,1)$ such that
$V_{\varepsilon}(z)=\{w| | w-z \mid<\varepsilon\} \subset \mathbb{D}$.

The setting

Proof. The linearity of $E_{h o l}(z)$ is obvious and its boundedness would follow directly once inequality above is proved. Let us therefore prove this relation.
Let $f \in L_{\text {hol }}^{2}(\mathbb{D}, d \mu)$ and $z \in \mathbb{D}$. Choose $\varepsilon \in(0,1)$ such that
$V_{\varepsilon}(z)=\{w| | w-z \mid<\varepsilon\} \subset \mathbb{D}$.
Taylor expanding f around z in $V_{\varepsilon}(z)$, we may write

$$
f(w)=\sum_{k=0}^{\infty} a_{k}(w-z)^{k}, \quad a_{k} \in \mathbb{C}
$$

The setting

Proof. The linearity of $E_{h o l}(z)$ is obvious and its boundedness would follow directly once inequality above is proved. Let us therefore prove this relation.
Let $f \in L_{\text {hol }}^{2}(\mathbb{D}, d \mu)$ and $z \in \mathbb{D}$. Choose $\varepsilon \in(0,1)$ such that
$V_{\varepsilon}(z)=\{w| | w-z \mid<\varepsilon\} \subset \mathbb{D}$.
Taylor expanding f around z in $V_{\varepsilon}(z)$, we may write

$$
f(w)=\sum_{k=0}^{\infty} a_{k}(w-z)^{k}, \quad a_{k} \in \mathbb{C}
$$

Setting $f_{k}(w)=(w-z)^{k}$,

$$
\begin{aligned}
\left\langle f_{k} \mid f_{\ell}\right\rangle & =\int_{V_{\varepsilon}(z)} \overline{f_{k}(w)} f_{\ell}(w) d \nu(w, \bar{w})=\frac{1}{\pi} \int_{0}^{\varepsilon} r d r \int_{0}^{2 \pi} r^{k+1} e^{-i(k-\ell) \theta} d \theta \\
& =\frac{2 \varepsilon^{k+\ell+2}}{k+\ell+2} \delta_{k \ell} .
\end{aligned}
$$

The setting

Thus,

$$
\|f\|_{\varepsilon}^{2}=\langle f \mid f\rangle_{\varepsilon}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}\left\|f_{k}\right\|_{\varepsilon}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2} \frac{\varepsilon^{2(k+1)}}{k+1}
$$

The setting

Thus,

$$
\|f\|_{\varepsilon}^{2}=\langle f \mid f\rangle_{\varepsilon}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}\left\|f_{k}\right\|_{\varepsilon}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2} \frac{\varepsilon^{2(k+1)}}{k+1},
$$

and since $a_{0}=f(z)$, this implies

$$
\int_{V_{\varepsilon}(z)}|f(w)|^{2} d \nu(w, \bar{w}) \geq|f(z)|^{2} \varepsilon^{2}
$$

The setting

Thus,

$$
\|f\|_{\varepsilon}^{2}=\langle f \mid f\rangle_{\varepsilon}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}\left\|f_{k}\right\|_{\varepsilon}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2} \frac{\varepsilon^{2(k+1)}}{k+1}
$$

and since $a_{0}=f(z)$, this implies

$$
\int_{V_{\varepsilon}(z)}|f(w)|^{2} d \nu(w, \bar{w}) \geq|f(z)|^{2} \varepsilon^{2}
$$

Now let $\varepsilon<1$ be chosen so that the closed compact set

$$
C^{\prime}=\{w \in \mathbb{C} \mid \operatorname{dist}(C, w) \leq \varepsilon\}
$$

is contained in C. (Here $\operatorname{dist}(C, w)$ is the infimum of $|z-w|$, over all $z \in C$).

The setting

Thus,

$$
\|f\|_{\varepsilon}^{2}=\langle f \mid f\rangle_{\varepsilon}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2}\left\|f_{k}\right\|_{\varepsilon}^{2}=\sum_{k=0}^{\infty}\left|a_{k}\right|^{2} \frac{\varepsilon^{2(k+1)}}{k+1},
$$

and since $a_{0}=f(z)$, this implies

$$
\int_{V_{\varepsilon}(z)}|f(w)|^{2} d \nu(w, \bar{w}) \geq|f(z)|^{2} \varepsilon^{2} .
$$

Now let $\varepsilon<1$ be chosen so that the closed compact set

$$
C^{\prime}=\{w \in \mathbb{C} \mid \operatorname{dist}(C, w) \leq \varepsilon\}
$$

is contained in C. (Here $\operatorname{dist}(C, w)$ is the infimum of $|z-w|$, over all $z \in C$). Then, for any $z \in C, \quad V_{\varepsilon}(z) \subset C^{\prime}$. Going back to the measure $d \mu(w, \bar{w})=\rho(w, \bar{w}) d \nu(w, \bar{w})$, let

$$
r(C)=\inf _{w \in C^{\prime}} \rho(w, \bar{w}) .
$$

The setting

Hence, for all $z \in C$,

$$
\begin{aligned}
\|f\|_{\text {hol }} & =\int_{\mathbb{D}}|f(w)|^{2} \rho(w, \bar{w}) d \nu(w, \bar{w}) \geq \int_{V_{\varepsilon}(z)}|f(w)|^{2} \rho(w, \bar{w}) d \nu(w, \bar{w}) \\
& \geq \varepsilon^{2} r(C)|f(z)|^{2},
\end{aligned}
$$

so that taking $k(C)=[r(C)]^{-\frac{1}{2}} \varepsilon^{-1}$ we obtain the desired result.

The setting

Hence, for all $z \in C$,

$$
\begin{aligned}
\|f\|_{\text {hol }} & =\int_{\mathbb{D}}|f(w)|^{2} \rho(w, \bar{w}) d \nu(w, \bar{w}) \geq \int_{V_{\varepsilon}(z)}|f(w)|^{2} \rho(w, \bar{w}) d \nu(w, \bar{w}) \\
& \geq \varepsilon^{2} r(C)|f(z)|^{2},
\end{aligned}
$$

so that taking $k(C)=[r(C)]^{-\frac{1}{2}} \varepsilon^{-1}$ we obtain the desired result. It only remains to prove that $L_{h o l}^{2}(\mathbb{D}, d \mu)$ is closed. Let $\left\{f_{m}\right\}_{m=0}^{\infty}$ be a Cauchy sequence in $L_{h o l}^{2}(\mathbb{D}, d \mu)$. Since $L_{h o l}^{2}(\mathbb{D}, d \mu) \subset \mathfrak{H}$, there exists $f \in \mathfrak{H}$ such that $\lim _{m \rightarrow \infty}\left\|f_{m}-f\right\|_{\text {hol }}=0$.

The setting

Hence, for all $z \in C$,

$$
\begin{aligned}
\|f\|_{\text {hol }} & =\int_{\mathbb{D}}|f(w)|^{2} \rho(w, \bar{w}) d \nu(w, \bar{w}) \geq \int_{V_{\varepsilon}(z)}|f(w)|^{2} \rho(w, \bar{w}) d \nu(w, \bar{w}) \\
& \geq \varepsilon^{2} r(C)|f(z)|^{2},
\end{aligned}
$$

so that taking $k(C)=[r(C)]^{-\frac{1}{2}} \varepsilon^{-1}$ we obtain the desired result.
It only remains to prove that $L_{h o l}^{2}(\mathbb{D}, d \mu)$ is closed. Let $\left\{f_{m}\right\}_{m=0}^{\infty}$ be a Cauchy sequence in $L_{h o l}^{2}(\mathbb{D}, d \mu)$. Since $L_{h o l}^{2}(\mathbb{D}, d \mu) \subset \mathfrak{H}$, there exists $f \in \mathfrak{H}$ such that $\lim _{m \rightarrow \infty}\left\|f_{m}-f\right\|_{h o l}=0$. By virtue of the above inequality the complex sequence $\left\{f_{m}(z)\right\}_{m=0}^{\infty}$ converges to some function $g(z)$, and this convergence is uniform on every compact subset C of \mathbb{D}. Being the uniform limit of holomorphic functions, g must then also be holomorphic and, as in the standard proof of the completeness of L^{2}-spaces, we infer that $f(z)=g(z)$ almost everywhere.

The setting

Hence, for all $z \in C$,

$$
\begin{aligned}
\|f\|_{\text {hol }} & =\int_{\mathbb{D}}|f(w)|^{2} \rho(w, \bar{w}) d \nu(w, \bar{w}) \geq \int_{V_{\varepsilon}(z)}|f(w)|^{2} \rho(w, \bar{w}) d \nu(w, \bar{w}) \\
& \geq \varepsilon^{2} r(C)|f(z)|^{2},
\end{aligned}
$$

so that taking $k(C)=[r(C)]^{-\frac{1}{2}} \varepsilon^{-1}$ we obtain the desired result.
It only remains to prove that $L_{h o l}^{2}(\mathbb{D}, d \mu)$ is closed. Let $\left\{f_{m}\right\}_{m=0}^{\infty}$ be a Cauchy sequence in $L_{h o l}^{2}(\mathbb{D}, d \mu)$. Since $L_{h o l}^{2}(\mathbb{D}, d \mu) \subset \mathfrak{H}$, there exists $f \in \mathfrak{H}$ such that $\lim _{m \rightarrow \infty}\left\|f_{m}-f\right\|_{\text {hol }}=0$. By virtue of the above inequality the complex sequence $\left\{f_{m}(z)\right\}_{m=0}^{\infty}$ converges to some function $g(z)$, and this convergence is uniform on every compact subset C of \mathbb{D}. Being the uniform limit of holomorphic functions, g must then also be holomorphic and, as in the standard proof of the completeness of L^{2}-spaces, we infer that $f(z)=g(z)$ almost everywhere. Hence $g \in L_{\text {hol }}^{2}(\mathbb{D}, \mu)$ which implies that $L_{h o l}^{2}(\mathbb{D}, \mu)$ is closed.

The setting

Using this lemma we arrive at our main theorem on holomorphic kernels:

The setting

Using this lemma we arrive at our main theorem on holomorphic kernels:

Theorem

The subspace $L_{h o l}^{2}(\mathbb{D}, d \mu)$ of $\mathfrak{H}=L^{2}(\mathbb{D}, d \mu)$ is a reproducing kernel Hilbert space with square integrable kernel $K_{\mathbb{D}}: \mathbb{D} \times \mathbb{D} \rightarrow \mathbb{C}$,

$$
K_{\mathbb{D}}\left(z, \bar{z}^{\prime}\right)=E_{h o l}(z) E_{h o l}\left(\bar{z}^{\prime}\right)^{*},
$$

such that

$$
\int_{\mathbb{D}} K_{\mathbb{D}}(z, \bar{w}) K_{\mathbb{D}}\left(w, \bar{z}^{\prime}\right) d \mu(w, \bar{w})=K_{\mathbb{D}}\left(z, \bar{z}^{\prime}\right)
$$

For fixed $w \in \mathbb{D}$, the kernel $K_{\mathbb{D}}(z, \bar{w})$ is holomorphic in z.

The setting

Using this lemma we arrive at our main theorem on holomorphic kernels:

Theorem

The subspace $L_{h o l}^{2}(\mathbb{D}, d \mu)$ of $\mathfrak{H}=L^{2}(\mathbb{D}, d \mu)$ is a reproducing kernel Hilbert space with square integrable kernel $K_{\mathbb{D}}: \mathbb{D} \times \mathbb{D} \rightarrow \mathbb{C}$,

$$
K_{\mathbb{D}}\left(z, \bar{z}^{\prime}\right)=E_{h o l}(z) E_{h o l}\left(\bar{z}^{\prime}\right)^{*}
$$

such that

$$
\int_{\mathbb{D}} K_{\mathbb{D}}(z, \bar{w}) K_{\mathbb{D}}\left(w, \bar{z}^{\prime}\right) d \mu(w, \bar{w})=K_{\mathbb{D}}\left(z, \bar{z}^{\prime}\right)
$$

For fixed $w \in \mathbb{D}$, the kernel $K_{\mathbb{D}}(z, \bar{w})$ is holomorphic in z.

From the proof of the lemma it is also clear that, if \mathbb{D} is a bounded domain, then $L_{h o l}^{2}(\mathbb{D}, d \nu)$ (i.e., w.r.t. the Lebesgue measure) is always non-empty. (Indeed, the identity function $\mathbb{I}(z)=1, \forall z \in \mathbb{D}$, is always in $\left.L_{h o l}^{2}(\mathbb{D}, d \nu)\right)$.

The setting

In this case, the reproducing kernel $K_{\mathbb{D}}$ is called the Bergman kernel of the domain \mathbb{D}. In general, the kernel $K_{\text {hol }}$ is called the μ-Bergmann kernel of \mathbb{D}.

The setting

In this case, the reproducing kernel $K_{\mathbb{D}}$ is called the Bergman kernel of the domain \mathbb{D}. In general, the kernel $K_{\text {hol }}$ is called the μ-Bergmann kernel of \mathbb{D}. The above theorem admits generalizations. For example, \mathbb{D} could be taken to be a domain in \mathbb{C}^{k}, so that we would be considering Hilbert spaces of holomorphic functions of k complex variables, $z_{1}, z_{2}, \ldots, z_{k}$. Writing $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$, the measure ν would now be replaced by

$$
d \nu(\mathbf{z}, \overline{\mathbf{z}})=\frac{1}{(2 \pi i)^{k}} \prod_{i=1}^{k} d z_{i} \wedge d \bar{z}_{i}
$$

The setting

In this case, the reproducing kernel $K_{\mathbb{D}}$ is called the Bergman kernel of the domain \mathbb{D}. In general, the kernel $K_{\text {hol }}$ is called the μ-Bergmann kernel of \mathbb{D}.
The above theorem admits generalizations. For example, \mathbb{D} could be taken to be a domain in \mathbb{C}^{k}, so that we would be considering Hilbert spaces of holomorphic functions of k complex variables, $z_{1}, z_{2}, \ldots, z_{k}$. Writing $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$, the measure ν would now be replaced by

$$
d \nu(\mathbf{z}, \overline{\mathbf{z}})=\frac{1}{(2 \pi i)^{k}} \prod_{i=1}^{k} d z_{i} \wedge d \bar{z}_{i}
$$

Furthermore, the density ρ in the definition of μ,

$$
d \mu(\mathbf{z}, \overline{\mathbf{z}})=\rho(\mathbf{z}, \overline{\mathbf{z}}) d \nu(\mathbf{z}, \overline{\mathbf{z}})
$$

could be an admissible weight.

The setting

In this case, the reproducing kernel $K_{\mathbb{D}}$ is called the Bergman kernel of the domain \mathbb{D}. In general, the kernel $K_{\text {hol }}$ is called the μ-Bergmann kernel of \mathbb{D}.
The above theorem admits generalizations. For example, \mathbb{D} could be taken to be a domain in \mathbb{C}^{k}, so that we would be considering Hilbert spaces of holomorphic functions of k complex variables, $z_{1}, z_{2}, \ldots, z_{k}$. Writing $\mathbf{z}=\left(z_{1}, z_{2}, \ldots, z_{k}\right)$, the measure ν would now be replaced by

$$
d \nu(\mathbf{z}, \overline{\mathbf{z}})=\frac{1}{(2 \pi i)^{k}} \prod_{i=1}^{k} d z_{i} \wedge d \bar{z}_{i}
$$

Furthermore, the density ρ in the definition of μ,

$$
d \mu(\mathbf{z}, \overline{\mathbf{z}})=\rho(\mathbf{z}, \overline{\mathbf{z}}) d \nu(\mathbf{z}, \overline{\mathbf{z}})
$$

could be an admissible weight. To understand this, again let $L^{2}(\mathbb{D}, d \mu)$ be the Hilbert space of all complex-valued functions on $\mathbb{D} \subset \mathbb{C}^{k}$, square integrable w.r.t. $d \mu$.

The setting

Let $L_{h o l}^{2}(\mathbb{D}, d \mu)$ be the set of vectors in $L^{2}(\mathbb{D}, d \mu)$ which can be identified with holomorphic functions.

The setting

Let $L_{h o l}^{2}(\mathbb{D}, d \mu)$ be the set of vectors in $L^{2}(\mathbb{D}, d \mu)$ which can be identified with holomorphic functions.
We assume that this set is non-empty. Let $E_{\text {hol }}(\mathbf{z}): L_{\text {hol }}^{2}(\mathbb{D}, d \mu) \rightarrow \mathbb{C}, \quad E_{\text {hol }}(\mathbf{z}) f=f(\mathbf{z})$, be the evaluation map at $\mathbf{z} \in \mathbb{D}$.

The setting

Let $L_{h o l}^{2}(\mathbb{D}, d \mu)$ be the set of vectors in $L^{2}(\mathbb{D}, d \mu)$ which can be identified with holomorphic functions.
We assume that this set is non-empty. Let $E_{h o l}(\mathbf{z}): L_{h o l}^{2}(\mathbb{D}, d \mu) \rightarrow \mathbb{C}, \quad E_{h o l}(\mathbf{z}) f=f(\mathbf{z})$, be the evaluation map at $\mathbf{z} \in \mathbb{D}$.
Then ρ is said to be an admissible weight if, (i) it is Lebesgue measurable, positive and non-zero on all of \mathbb{D};

The setting

Let $L_{h o l}^{2}(\mathbb{D}, d \mu)$ be the set of vectors in $L^{2}(\mathbb{D}, d \mu)$ which can be identified with holomorphic functions.
We assume that this set is non-empty. Let $E_{h o l}(\mathbf{z}): L_{h o l}^{2}(\mathbb{D}, d \mu) \rightarrow \mathbb{C}, \quad E_{h o l}(\mathbf{z}) f=f(\mathbf{z})$, be the evaluation map at $\mathbf{z} \in \mathbb{D}$.
Then ρ is said to be an admissible weight if, (i) it is Lebesgue measurable, positive and non-zero on all of \mathbb{D}; and (ii) for any $\mathbf{z} \in \mathbb{D}$, there exists a neighbourhood $V(\mathbf{z})$ and a constant $k(\mathbf{z})$, such that for all $\mathbf{w} \in V(\mathbf{z}),\left\|E_{h o l}(\mathbf{w})\right\| \leq k(\mathbf{z})$.

The setting

Let $L_{h o l}^{2}(\mathbb{D}, d \mu)$ be the set of vectors in $L^{2}(\mathbb{D}, d \mu)$ which can be identified with holomorphic functions.
We assume that this set is non-empty. Let $E_{h o l}(\mathrm{z}): L_{h o l}^{2}(\mathbb{D}, d \mu) \rightarrow \mathbb{C}, \quad E_{h o l}(\mathrm{z}) f=f(\mathrm{z})$, be the evaluation map at $\mathbf{z} \in \mathbb{D}$.
Then ρ is said to be an admissible weight if, (i) it is Lebesgue measurable, positive and non-zero on all of \mathbb{D}; and (ii) for any $\mathbf{z} \in \mathbb{D}$, there exists a neighbourhood $V(\mathbf{z})$ and a constant $k(\mathbf{z})$, such that for all $\mathbf{w} \in V(\mathbf{z}),\left\|E_{h o l}(\mathbf{w})\right\| \leq k(\mathbf{z})$.
It can be shown that if ρ is an admissible weight then $L_{h o l}^{2}(\mathbb{D}, d \mu)$ is a closed subspace of $L^{2}(\mathbb{D}, d \mu)$, admitting a reproducing kernel $K_{\text {hol }}(\mathbf{z}, \overline{\mathbf{w}})=E_{\text {hol }}(\mathbf{z}) E_{h o l}(\mathbf{w})^{*}$, which is holomorphic in \mathbf{z} and is square integrable.

The setting

Consider now the Hilbert space $\widetilde{\mathfrak{H}}=L^{2}(\mathbb{D}, d \mu)$, its reproducing kernel subspace $\mathfrak{H}_{K}=L_{\text {hol }}^{2}(\mathbb{D}, d \mu)$ and the projection operator $\mathbb{P}_{K}: \widetilde{\mathfrak{H}} \longrightarrow \mathfrak{H}_{K}$. We restrict ourselves to the case where $\mathbb{D} \subset \mathbb{C}$.

The setting

Consider now the Hilbert space $\widetilde{\mathfrak{H}}=L^{2}(\mathbb{D}, d \mu)$, its reproducing kernel subspace $\mathfrak{H}_{K}=L_{h o l}^{2}(\mathbb{D}, d \mu)$ and the projection operator $\mathbb{P}_{K}: \widetilde{\mathfrak{H}} \longrightarrow \mathfrak{H}_{K}$. We restrict ourselves to the case where $\mathbb{D} \subset \mathbb{C}$.
Using the continuity of the evaluation map, $f \longmapsto f(z), f \in \mathfrak{H}_{K}$, for each $z \in \mathbb{D}$, we define the coherent states, $\zeta_{\bar{z}}$,

$$
f(z)=\left\langle\zeta_{\bar{z}} \mid f\right\rangle, \quad f \in \mathfrak{H}_{K} .
$$

The setting

Consider now the Hilbert space $\widetilde{\mathfrak{H}}=L^{2}(\mathbb{D}, d \mu)$, its reproducing kernel subspace $\mathfrak{H}_{K}=L_{h o l}^{2}(\mathbb{D}, d \mu)$ and the projection operator $\mathbb{P}_{K}: \widetilde{\mathfrak{H}} \longrightarrow \mathfrak{H}_{K}$. We restrict ourselves to the case where $\mathbb{D} \subset \mathbb{C}$.
Using the continuity of the evaluation map, $f \longmapsto f(z), f \in \mathfrak{H}_{K}$, for each $z \in \mathbb{D}$, we define the coherent states, $\zeta_{\bar{z}}$,

$$
f(z)=\left\langle\zeta_{\bar{z}} \mid f\right\rangle, \quad f \in \mathfrak{H}_{K} .
$$

We have,

$$
\int_{\mathbb{D}}\left|\zeta_{\bar{z}}\right\rangle\left\langle\zeta_{\bar{z}}\right| d \mu(\bar{z}, z)=\mathbb{P}_{K}=\mathbb{I}_{\mathfrak{S}_{K}} \quad \text { and } \quad K_{\text {hol }}\left(z, \zeta_{\bar{z}^{\prime}}\right)=\left\langle\zeta_{\bar{z}} \mid \zeta_{\bar{z}^{\prime}}\right\rangle \text {. }
$$

The setting

Consider now the Hilbert space $\widetilde{\mathfrak{H}}=L^{2}(\mathbb{D}, d \mu)$, its reproducing kernel subspace $\mathfrak{H}_{K}=L_{h o l}^{2}(\mathbb{D}, d \mu)$ and the projection operator $\mathbb{P}_{\kappa}: \widetilde{\mathfrak{H}} \longrightarrow \mathfrak{H}_{K}$. We restrict ourselves to the case where $\mathbb{D} \subset \mathbb{C}$.
Using the continuity of the evaluation map, $f \longmapsto f(z), f \in \mathfrak{H}_{K}$, for each $z \in \mathbb{D}$, we define the coherent states, $\zeta_{\bar{z}}$,

$$
f(z)=\left\langle\zeta_{\bar{z}} \mid f\right\rangle, \quad f \in \mathfrak{H}_{K} .
$$

We have,

$$
\int_{\mathbb{D}}\left|\zeta_{\bar{z}}\right\rangle\left\langle\zeta_{\bar{z}}\right| d \mu(\bar{z}, z)=\mathbb{P}_{K}=\mathbb{I}_{\mathfrak{S}_{K}} \quad \text { and } \quad K_{\text {hol }}\left(z, \zeta_{\bar{z}^{\prime}}\right)=\left\langle\zeta_{\bar{z}} \mid \zeta_{\bar{z}^{\prime}}\right\rangle .
$$

Furthermore, if d is the dimension of $\mathfrak{H} K_{K}$ (finite or infinite) and if $\left\{\Psi_{n}\right\}_{n=0}^{\infty}$ is any orthonormal basis of \mathfrak{H}_{K}, then

$$
K_{\text {hol }}=\sum_{n=0}^{\infty} \Psi_{n}(z) \overline{\Psi_{n}\left(z^{\prime}\right)} .
$$

Non-linear coherent states

We will now construct an entire class of such Hilbert spaces and associated coherent states, which will include all the so-called non-linear coherent states, familiar from quantum optics.

Non-linear coherent states

We will now construct an entire class of such Hilbert spaces and associated coherent states, which will include all the so-called non-linear coherent states, familiar from quantum optics.
It will turn out that the construction of the Hilbert spaces of holomorphic functions, in question, will involve solving a certain moment problem.

Non-linear coherent states

We will now construct an entire class of such Hilbert spaces and associated coherent states, which will include all the so-called non-linear coherent states, familiar from quantum optics.
It will turn out that the construction of the Hilbert spaces of holomorphic functions, in question, will involve solving a certain moment problem.
The domains, \mathbb{D} will generically be of the type,

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<L\}, \quad L \in(0, \infty] .
$$

Non-linear coherent states

We will now construct an entire class of such Hilbert spaces and associated coherent states, which will include all the so-called non-linear coherent states, familiar from quantum optics.
It will turn out that the construction of the Hilbert spaces of holomorphic functions, in question, will involve solving a certain moment problem.
The domains, \mathbb{D} will generically be of the type,

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<L\}, \quad L \in(0, \infty] .
$$

and the measure $d \mu$ will have the form,

$$
d \mu(\bar{z}, z)=d \lambda(r) d \theta, \quad \text { where } \quad z=r e^{i \theta}
$$

Non-linear coherent states

We will now construct an entire class of such Hilbert spaces and associated coherent states, which will include all the so-called non-linear coherent states, familiar from quantum optics.
It will turn out that the construction of the Hilbert spaces of holomorphic functions, in question, will involve solving a certain moment problem.
The domains, \mathbb{D} will generically be of the type,

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<L\}, \quad L \in(0, \infty] .
$$

and the measure $d \mu$ will have the form,

$$
d \mu(\bar{z}, z)=d \lambda(r) d \theta, \quad \text { where } \quad z=r e^{i \theta}
$$

with $d \lambda$ being some appropriate measure on \mathbb{R}^{+}, determined by the moment problem.

Construction of non-linear coherent states

We have seen earlier that the canonical CS are defined over the domain $\mathbb{D}=\mathbb{C}$ and have the form

$$
|z\rangle=e^{-\frac{|z|^{2}}{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}} \phi_{n},
$$

where $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ is an orthonormal basis in a Hilbert space \mathfrak{H}.

Construction of non-linear coherent states

We have seen earlier that the canonical CS are defined over the domain $\mathbb{D}=\mathbb{C}$ and have the form

$$
|z\rangle=e^{-\frac{|z|^{2}}{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}} \phi_{n},
$$

where $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ is an orthonormal basis in a Hilbert space \mathfrak{H}.
The non-linear CS are generalizations of this structure and have the form:

$$
|z\rangle=\mathcal{N}\left(|z|^{2}\right)^{-\frac{1}{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{x_{n}!}} \phi_{n},
$$

where \mathcal{N} is a normalization factor, $\left\{x_{0}=0, x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ is a sequence of positive numbers, usually the eigenfunctions of some Hamiltonian, and $x_{n}!=x_{1} x_{2} \ldots x_{n}, x_{0}!=1$.

Construction of non-linear coherent states

We have seen earlier that the canonical CS are defined over the domain $\mathbb{D}=\mathbb{C}$ and have the form

$$
|z\rangle=e^{-\frac{|z|^{2}}{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{n!}} \phi_{n},
$$

where $\left\{\phi_{n}\right\}_{n=0}^{\infty}$ is an orthonormal basis in a Hilbert space \mathfrak{H}.
The non-linear CS are generalizations of this structure and have the form:

$$
|z\rangle=\mathcal{N}\left(|z|^{2}\right)^{-\frac{1}{2}} \sum_{n=0}^{\infty} \frac{z^{n}}{\sqrt{x_{n}!}} \phi_{n},
$$

where \mathcal{N} is a normalization factor, $\left\{x_{0}=0, x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}$ is a sequence of positive numbers, usually the eigenfunctions of some Hamiltonian, and $x_{n}!=x_{1} x_{2} \ldots x_{n}, x_{0}!=1$. The general construction of such coherent states proceeds as follows: We fix an orthonomeal basis in \mathfrak{H} and a positive sequence as above and then formally write down the vectors $|z\rangle$.

Construction of non-linear coherent states

The normalization condition $\langle z \mid z\rangle=1$ then requires that

$$
\mathcal{N}\left(|z|^{2}\right)=\sum_{n=0}^{\infty} \frac{|z|^{2 n}}{x_{n}!}<\infty .
$$

Construction of non-linear coherent states

The normalization condition $\langle z \mid z\rangle=1$ then requires that

$$
\mathcal{N}\left(|z|^{2}\right)=\sum_{n=0}^{\infty} \frac{|z|^{2 n}}{x_{n}!}<\infty .
$$

Thus the vectors $|z\rangle$ are well-defined if $z \in \mathbb{D}$, with

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<L\}, \quad \text { where } L=\lim _{n \rightarrow \infty} x_{n} .
$$

Of course, we require that $L>0$ (L could also be infinite).

Construction of non-linear coherent states

The normalization condition $\langle z \mid z\rangle=1$ then requires that

$$
\mathcal{N}\left(|z|^{2}\right)=\sum_{n=0}^{\infty} \frac{|z|^{2 n}}{x_{n}!}<\infty .
$$

Thus the vectors $|z\rangle$ are well-defined if $z \in \mathbb{D}$, with

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<L\}, \quad \text { where } L=\lim _{n \rightarrow \infty} x_{n} .
$$

Of course, we require that $L>0$ (L could also be infinite).
The next step is to find a measure, $d \mu(\bar{z}, z)=d \lambda(r) d \theta, \quad z=r e^{i \theta}$, for which the resolution of the identity,

$$
\int_{\mathbb{D}}|z\rangle\langle z| \mathcal{N}\left(|z|^{2}\right) d \lambda(r) d \theta=I_{\mathfrak{H}}
$$

holds.

Construction of non-linear coherent states

Hence, we require that

$$
\begin{aligned}
I_{\mathfrak{F}} & =\int_{0}^{2 \pi} \int_{0}^{L} \sum_{m, n=0}^{\infty} \frac{z^{m} \bar{z}^{n}}{\sqrt{x_{m}!x_{n}!}}\left|\phi_{m}\right\rangle\left\langle\phi_{n}\right| d \theta d \lambda(r) \\
& =2 \pi \sum_{n=0}^{\infty} \int_{0}^{L} \frac{r^{2 n}}{x_{n}!}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right| d \lambda(r)
\end{aligned}
$$

the interchange of the the sum and the integral being easily justified.

Construction of non-linear coherent states

Hence, we require that

$$
\begin{aligned}
\boldsymbol{I}_{\mathfrak{H}} & =\int_{0}^{2 \pi} \int_{0}^{L} \sum_{m, n=0}^{\infty} \frac{z^{m} \bar{z}^{n}}{\sqrt{x_{m}!x_{n}!}}\left|\phi_{m}\right\rangle\left\langle\phi_{n}\right| d \theta d \lambda(r) \\
& =2 \pi \sum_{n=0}^{\infty} \int_{0}^{L} \frac{r^{2 n}}{x_{n}!}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right| d \lambda(r)
\end{aligned}
$$

the interchange of the the sum and the integral being easily justified.
We are therefore led to imposing the conditions:

$$
\frac{x_{n}!}{2 \pi}=\int_{0}^{L} r^{2 n} d \lambda(r) \quad \text { and } \quad \frac{1}{2 \pi}=\int_{0}^{L} d \lambda(r) .
$$

Construction of non-linear coherent states

Hence, we require that

$$
\begin{aligned}
I_{\mathfrak{H}} & =\int_{0}^{2 \pi} \int_{0}^{L} \sum_{m, n=0}^{\infty} \frac{z^{m} \bar{z}^{n}}{\sqrt{x_{m}!x_{n}!}}\left|\phi_{m}\right\rangle\left\langle\phi_{n}\right| d \theta d \lambda(r) \\
& =2 \pi \sum_{n=0}^{\infty} \int_{0}^{L} \frac{r^{2 n}}{x_{n}!}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right| d \lambda(r),
\end{aligned}
$$

the interchange of the the sum and the integral being easily justified.
We are therefore led to imposing the conditions:

$$
\frac{x_{n}!}{2 \pi}=\int_{0}^{L} r^{2 n} d \lambda(r) \quad \text { and } \quad \frac{1}{2 \pi}=\int_{0}^{L} d \lambda(r) .
$$

These are a set of moment conditions for determining the measure $d \lambda$. A solution to this problem could be (i) unique, or (ii) multi-valued, or even possibly (iii) non-existent.

Construction of non-linear coherent states

We shall assume, therefore, that the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is so chosen that the moment problem has a solution. In that case, the required resolution of the identity is satisfied and we have an acceptable set of coherent states.

Construction of non-linear coherent states

We shall assume, therefore, that the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is so chosen that the moment problem has a solution. In that case, the required resolution of the identity is satisfied and we have an acceptable set of coherent states.
Note that in the moment problem above, only even moments of the measure $d \lambda$ appear. This has the consequence that $d \lambda$ can be extended to the symmetric interval $[-L, L]$ as a symmetric measure, $d \lambda(-r)=d \lambda(r)$, having moments

$$
\lambda_{2 n}=\int_{-L}^{L} r^{2 n} d \lambda(r)=\frac{x_{n}!}{\pi} \quad \text { and } \quad \lambda_{2 n+1}=0, \quad n=0,1,2, \ldots
$$

Construction of non-linear coherent states

We shall assume, therefore, that the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is so chosen that the moment problem has a solution. In that case, the required resolution of the identity is satisfied and we have an acceptable set of coherent states.
Note that in the moment problem above, only even moments of the measure $d \lambda$ appear. This has the consequence that $d \lambda$ can be extended to the symmetric interval $[-L, L]$ as a symmetric measure, $d \lambda(-r)=d \lambda(r)$, having moments

$$
\lambda_{2 n}=\int_{-L}^{L} r^{2 n} d \lambda(r)=\frac{x_{n}!}{\pi} \quad \text { and } \quad \lambda_{2 n+1}=0, \quad n=0,1,2, \ldots
$$

Using these moments one could generate a class of symmetric orthogonal polynomials in the standard fashion.

Construction of non-linear coherent states

We shall assume, therefore, that the sequence $\left\{x_{n}\right\}_{n=0}^{\infty}$ is so chosen that the moment problem has a solution. In that case, the required resolution of the identity is satisfied and we have an acceptable set of coherent states.
Note that in the moment problem above, only even moments of the measure $d \lambda$ appear. This has the consequence that $d \lambda$ can be extended to the symmetric interval $[-L, L]$ as a symmetric measure, $d \lambda(-r)=d \lambda(r)$, having moments

$$
\lambda_{2 n}=\int_{-L}^{L} r^{2 n} d \lambda(r)=\frac{x_{n}!}{\pi} \quad \text { and } \quad \lambda_{2 n+1}=0, \quad n=0,1,2, \ldots
$$

Using these moments one could generate a class of symmetric orthogonal polynomials in the standard fashion.
However, there also is a second set of orthogonal polynomials, associated to these non-linear CS, which in some sense is more interesting, and which we shall look at in some detail later.

Holomorphic embedding

Consider now the Hilbert space $\widetilde{\mathfrak{H}}=L^{2}(\mathbb{D}, d \mu(\bar{z}, z)$, with $d \mu(\bar{z}, z)=d \lambda(r) d \theta$ and its subspace $\mathfrak{H}_{\text {hol }}$ of all functions which are analytic in z. In the light of our earlier discussion we know that the map $W: \mathfrak{H} \longrightarrow \mathfrak{H}_{\text {hol }}$,

$$
\begin{aligned}
(W \phi)(z) & =\mathcal{N}\left(|\bar{z}|^{2}\right)^{\frac{1}{2}}\langle z \mid \phi\rangle \\
& =\sum_{n=0}^{\infty} c_{n} z^{n}, \quad c_{n}=\frac{\left\langle\phi \mid \phi_{n}\right\rangle}{\sqrt{x_{n}!}}
\end{aligned}
$$

is a linear isometry,

Holomorphic embedding

Consider now the Hilbert space $\widetilde{\mathfrak{H}}=L^{2}(\mathbb{D}, d \mu(\bar{z}, z)$, with $d \mu(\bar{z}, z)=d \lambda(r) d \theta$ and its subspace $\mathfrak{H}_{h o l}$ of all functions which are analytic in z. In the light of our earlier discussion we know that the map $W: \mathfrak{H} \longrightarrow \mathfrak{H}_{\text {hol }}$,

$$
\begin{aligned}
(W \phi)(z) & =\mathcal{N}\left(|\bar{z}|^{2}\right)^{\frac{1}{2}}\langle z \mid \phi\rangle \\
& =\sum_{n=0}^{\infty} c_{n} z^{n}, \quad c_{n}=\frac{\left\langle\phi \mid \phi_{n}\right\rangle}{\sqrt{x_{n}!}}
\end{aligned}
$$

is a linear isometry, mapping the non-linear coherent states $|\bar{z}\rangle$ into the vectors $\zeta_{\bar{z}}$:

$$
\zeta_{\bar{z}}=W|\bar{z}\rangle=\sum_{n=0}^{\infty} \frac{\bar{z}^{n}}{\sqrt{x_{n}!}} \Phi_{n}, \quad \Phi_{n}=W \phi_{n}, \quad \Phi_{n}(z)=\frac{z^{n}}{\sqrt{x_{n}}}
$$

Holomorphic embedding

Consider now the Hilbert space $\widetilde{\mathfrak{H}}=L^{2}(\mathbb{D}, d \mu(\bar{z}, z)$, with $d \mu(\bar{z}, z)=d \lambda(r) d \theta$ and its subspace $\mathfrak{H}_{h o l}$ of all functions which are analytic in z. In the light of our earlier discussion we know that the map $W: \mathfrak{H} \longrightarrow \mathfrak{H}_{\text {hol }}$,

$$
\begin{aligned}
(W \phi)(z) & =\mathcal{N}\left(|\bar{z}|^{2}\right)^{\frac{1}{2}}\langle z \mid \phi\rangle \\
& =\sum_{n=0}^{\infty} c_{n} z^{n}, \quad c_{n}=\frac{\left\langle\phi \mid \phi_{n}\right\rangle}{\sqrt{x_{n}!}}
\end{aligned}
$$

is a linear isometry, mapping the non-linear coherent states $|\bar{z}\rangle$ into the vectors $\zeta_{\bar{z}}$:

$$
\zeta_{\bar{z}}=W|\bar{z}\rangle=\sum_{n=0}^{\infty} \frac{\bar{z}^{n}}{\sqrt{x_{n}!}} \Phi_{n}, \quad \Phi_{n}=W \phi_{n}, \quad \Phi_{n}(z)=\frac{z^{n}}{\sqrt{x_{n}}}
$$

The subspace $\mathfrak{H}_{h o l}$ is a reproducing kernel subspace of $\widetilde{\mathfrak{H}}$, with kernel,

$$
K_{h o l}\left(z, \bar{z}^{\prime}\right)=\left\langle\zeta_{\bar{z}} \mid \zeta_{\bar{z}^{\prime}}\right\rangle=\zeta_{\bar{z}^{\prime}}(z)=\sum_{n=0}^{\infty} \frac{\left[z \bar{z}^{\prime}\right]^{n}}{x_{n}!}
$$

Two examples

Our first example of the previous construction is provided by the canonical coherent states. In this case the sequence $x_{n}, n=0,1,2, \ldots$, is just the set of integers, $0,1,2, \ldots, n, \ldots$, and $x_{n}!=n!$. Clearly, $\mathbb{D}=\mathbb{C}$ and we easily verify that

$$
d \lambda(r)=\frac{e^{-r^{2}}}{\pi} r d r, \quad d \mu(\bar{z}, z)=e^{-|z|^{2}} \frac{d \bar{z} \wedge d z}{2 \pi i}
$$

and we get back the Hilbert space of analytic functions we saw earlier.

Two examples

Our first example of the previous construction is provided by the canonical coherent states. In this case the sequence $x_{n}, n=0,1,2, \ldots$, is just the set of integers, $0,1,2, \ldots, n, \ldots$, and $x_{n}!=n!$. Clearly, $\mathbb{D}=\mathbb{C}$ and we easily verify that

$$
d \lambda(r)=\frac{e^{-r^{2}}}{\pi} r d r, \quad d \mu(\bar{z}, z)=e^{-|z|^{2}} \frac{d \bar{z} \wedge d z}{2 \pi i}
$$

and we get back the Hilbert space of analytic functions we saw earlier. For the second example, let j be one of the numbers $1,3 / 2,2,5 / 2, \ldots$, and define the generalized factorials

$$
x_{n}!=\frac{n!(2 j-1)!}{(2 j+n-1)!}=\frac{\Gamma(n+1) \Gamma(2 j)}{\Gamma(2 j+n)},
$$

from which get the sequence,

$$
x_{n}=\frac{x_{n}!}{x_{n-1}!}=\frac{n}{2 j+n-1}, \quad n=0,1,2,3, \ldots
$$

Two examples

Since $\lim _{n \rightarrow \infty} x_{n}=1$,

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}
$$

Two examples

Since $\lim _{n \rightarrow \infty} x_{n}=1$,

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\} .
$$

Using the fact that

$$
\int_{0}^{1} r^{2 n}\left(1-r^{2}\right)^{2 j-2} r d r=\frac{1}{2} B(n+1,2 j-1)=\frac{\Gamma(n+1) \Gamma(2 j-1)}{2 \Gamma(2 j+n)},
$$

the moment problem can be solved with

Two examples

Since $\lim _{n \rightarrow \infty} x_{n}=1$,

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\} .
$$

Using the fact that

$$
\int_{0}^{1} r^{2 n}\left(1-r^{2}\right)^{2 j-2} r d r=\frac{1}{2} B(n+1,2 j-1)=\frac{\Gamma(n+1) \Gamma(2 j-1)}{2 \Gamma(2 j+n)},
$$

the moment problem can be solved with

$$
d \lambda(r)=\frac{2 j+1}{\pi}\left(1-r^{2}\right)^{2 j-2} r d r, \quad d \mu(\bar{z}, z)=(2 j-1)\left(1-|z|^{2}\right)^{2 j-2} \frac{d \bar{z} \wedge d z}{2 \pi i} .
$$

Two examples

Since $\lim _{n \rightarrow \infty} x_{n}=1$,

$$
\mathbb{D}=\{z \in \mathbb{C}| | z \mid<1\}
$$

Using the fact that

$$
\int_{0}^{1} r^{2 n}\left(1-r^{2}\right)^{2 j-2} r d r=\frac{1}{2} B(n+1,2 j-1)=\frac{\Gamma(n+1) \Gamma(2 j-1)}{2 \Gamma(2 j+n)},
$$

the moment problem can be solved with

$$
d \lambda(r)=\frac{2 j+1}{\pi}\left(1-r^{2}\right)^{2 j-2} r d r, \quad d \mu(\bar{z}, z)=(2 j-1)\left(1-|z|^{2}\right)^{2 j-2} \frac{d \bar{z} \wedge d z}{2 \pi i} .
$$

The Hilbert space $\widetilde{\mathfrak{H}}=L^{2}(\mathbb{D}, d \mu)$ consists of functions supported on the open unit disc and its subspace $\mathfrak{H}_{h o l}$ of functions analytic in z is itself a closed Hilbert space, which has the orthonormal basis

$$
u_{n}(z)=\left[\frac{\Gamma(2 j+n)}{\Gamma(n+1) \Gamma(2 j)}\right]^{\frac{1}{2}} z^{n}, \quad u_{0}(z)=1, \quad \forall z \in \mathbb{D}
$$

Two examples

and coherent states,

$$
\zeta_{\bar{z}}=\left[\frac{\Gamma(2 j+n)}{\Gamma(n+1) \Gamma(2 j)}\right]^{\frac{1}{2}} \bar{z}^{n} u_{n}
$$

which of course satisfy the required resolution of the identity.

Two examples

and coherent states,

$$
\zeta_{\bar{z}}=\left[\frac{\Gamma(2 j+n)}{\Gamma(n+1) \Gamma(2 j)}\right]^{\frac{1}{2}} \bar{z}^{n} u_{n}
$$

which of course satisfy the required resolution of the identity. The resulting reproducing kernel is

$$
K_{\text {hol }}\left(z, \bar{z}^{\prime}\right)=\left\langle\zeta_{\bar{z}} \mid \zeta_{\bar{z}^{\prime}}\right\rangle=\zeta_{\bar{z}^{\prime}}(z)=\left(1-z \bar{z}^{\prime}\right)^{-2 j} .
$$

Two examples

and coherent states,

$$
\zeta_{\bar{z}}=\left[\frac{\Gamma(2 j+n)}{\Gamma(n+1) \Gamma(2 j)}\right]^{\frac{1}{2}} \bar{z}^{n} u_{n}
$$

which of course satisfy the required resolution of the identity.
The resulting reproducing kernel is

$$
K_{\text {hol }}\left(z, \bar{z}^{\prime}\right)=\left\langle\zeta_{\bar{z}} \mid \zeta_{\bar{z}^{\prime}}\right\rangle=\zeta_{\bar{z}^{\prime}}(z)=\left(1-z \bar{z}^{\prime}\right)^{-2 j} .
$$

As stated earlier, these Hilbert spaces and coherent states are associated to the unitary irreducible representations of the group $S U(1,1)$, coming from the discrete series.

Two examples

and coherent states,

$$
\zeta_{\bar{z}}=\left[\frac{\Gamma(2 j+n)}{\Gamma(n+1) \Gamma(2 j)}\right]^{\frac{1}{2}} \bar{z}^{n} u_{n}
$$

which of course satisfy the required resolution of the identity.
The resulting reproducing kernel is

$$
K_{\text {hol }}\left(z, \bar{z}^{\prime}\right)=\left\langle\zeta_{\bar{z}} \mid \zeta_{\bar{z}^{\prime}}\right\rangle=\zeta_{\bar{z}^{\prime}}(z)=\left(1-z \bar{z}^{\prime}\right)^{-2 j} .
$$

As stated earlier, these Hilbert spaces and coherent states are associated to the unitary irreducible representations of the group $S U(1,1)$, coming from the discrete series. We proceed now to analyze this point in some detail.

Two examples

and coherent states,

$$
\zeta_{\bar{z}}=\left[\frac{\Gamma(2 j+n)}{\Gamma(n+1) \Gamma(2 j)}\right]^{\frac{1}{2}} \bar{z}^{n} u_{n}
$$

which of course satisfy the required resolution of the identity.
The resulting reproducing kernel is

$$
K_{\text {hol }}\left(z, \bar{z}^{\prime}\right)=\left\langle\zeta_{\bar{z}} \mid \zeta_{\bar{z}^{\prime}}\right\rangle=\zeta_{\bar{z}^{\prime}}(z)=\left(1-z \bar{z}^{\prime}\right)^{-2 j} .
$$

As stated earlier, these Hilbert spaces and coherent states are associated to the unitary irreducible representations of the group $S U(1,1)$, coming from the discrete series. We proceed now to analyze this point in some detail.
The group $S U(1,1)$ consists of complex 2×2 matrces g, of the type

$$
g=\left(\begin{array}{ll}
\alpha & \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right), \quad \operatorname{det} g=|\alpha|^{2}-|\beta|^{2}=1 .
$$

Two examples

A general element of the group may be decomposed as

$$
g=\mathcal{Z} k, \quad \text { where } \quad \mathcal{Z}=\frac{1}{\sqrt{1-|z|^{2}}}\left(\begin{array}{cc}
1 & z \\
\bar{z} & 1
\end{array}\right), \quad k=\left(\begin{array}{cc}
\frac{\alpha}{|\alpha|} & 0 \\
0 & \frac{\alpha}{|\alpha|}
\end{array}\right), \quad z=\frac{\beta}{\bar{\alpha}},
$$

Two examples

A general element of the group may be decomposed as

$$
g=\mathcal{Z} k, \quad \text { where } \quad \mathcal{Z}=\frac{1}{\sqrt{1-|z|^{2}}}\left(\begin{array}{cc}
1 & z \\
\bar{z} & 1
\end{array}\right), \quad k=\left(\begin{array}{cc}
\frac{\alpha}{|\alpha|} & 0 \\
0 & \frac{\bar{\alpha}}{|\alpha|}
\end{array}\right), \quad z=\frac{\beta}{\bar{\alpha}},
$$

where both \mathcal{Z} and k are elements of the group. The set of all matrices, k form the maximal compact subgroup of $\operatorname{SU}(1,1)$ (it is isomorphic to the two-dimensional rotation group). We denote this subgroup by K.

Two examples

A general element of the group may be decomposed as

$$
g=\mathcal{Z} k, \quad \text { where } \quad \mathcal{Z}=\frac{1}{\sqrt{1-|z|^{2}}}\left(\begin{array}{cc}
1 & z \\
\bar{z} & 1
\end{array}\right), \quad k=\left(\begin{array}{cc}
\frac{\alpha}{|\alpha|} & 0 \\
0 & \frac{\bar{\alpha}}{|\alpha|}
\end{array}\right), \quad z=\frac{\beta}{\bar{\alpha}},
$$

where both \mathcal{Z} and k are elements of the group. The set of all matrices, k form the maximal compact subgroup of $\operatorname{SU}(1,1)$ (it is isomorphic to the two-dimensional rotation group). We denote this subgroup by K.
Since $|z|<1$, the set of all matrices \mathcal{Z}, which can be identified with the coset space $S U(1,1) / K$, is homeomorphic to the domain \mathbb{D}.

Two examples

A general element of the group may be decomposed as

$$
g=\mathcal{Z} k, \quad \text { where } \quad \mathcal{Z}=\frac{1}{\sqrt{1-|z|^{2}}}\left(\begin{array}{cc}
1 & z \\
\bar{z} & 1
\end{array}\right), \quad k=\left(\begin{array}{cc}
\frac{\alpha}{|\alpha|} & 0 \\
0 & \frac{\bar{\alpha}}{|\alpha|}
\end{array}\right), \quad z=\frac{\beta}{\bar{\alpha}},
$$

where both \mathcal{Z} and k are elements of the group. The set of all matrices, k form the maximal compact subgroup of $\operatorname{SU}(1,1)$ (it is isomorphic to the two-dimensional rotation group). We denote this subgroup by K.
Since $|z|<1$, the set of all matrices \mathcal{Z}, which can be identified with the coset space $S U(1,1) / K$, is homeomorphic to the domain \mathbb{D}.
We shall also need to use the section,

$$
\sigma: S U(1,1) / K \simeq \mathbb{D} \longrightarrow S U(1,1), \quad \sigma(z)=\mathcal{Z}
$$

to map the domain \mathbb{D} back into the group.

Two examples

The unitary irreducible representations U^{j} of $S U(1,1)$, belonging to the discrete series, are each labeled by a parameter $j=1,3 / 2,2,5 / 2, \ldots$. They are carried by the Hilbert spaces of holomorphic functions $\mathfrak{H}_{\text {hol }}$ introduced above.

Two examples

The unitary irreducible representations U^{j} of $S U(1,1)$, belonging to the discrete series, are each labeled by a parameter $j=1,3 / 2,2,5 / 2, \ldots$. They are carried by the Hilbert spaces of holomorphic functions $\mathfrak{H}_{\text {hol }}$ introduced above.
The operators $U^{j}(g)$ act on vectors $f \in \mathfrak{H}_{\text {hol }}\left(\mathcal{D}_{1}\right)$ in the manner

$$
\left(U^{j}(g) f\right)(z)=(\alpha-\bar{\beta} z)^{-2 j} f\left(\frac{\bar{\alpha} z-\beta}{\alpha-\bar{\beta} z}\right) .
$$

Two examples

The unitary irreducible representations U^{j} of $S U(1,1)$, belonging to the discrete series, are each labeled by a parameter $j=1,3 / 2,2,5 / 2, \ldots$. They are carried by the Hilbert spaces of holomorphic functions $\mathfrak{H}_{\text {hol }}$ introduced above.
The operators $U^{j}(g)$ act on vectors $f \in \mathfrak{H}_{\text {hol }}\left(\mathcal{D}_{1}\right)$ in the manner

$$
\left(U^{j}(g) f\right)(z)=(\alpha-\bar{\beta} z)^{-2 j} f\left(\frac{\bar{\alpha} z-\beta}{\alpha-\bar{\beta} z}\right)
$$

A straightforward computation then shows that the coherent states $\zeta_{\bar{z}}$, introduced above and associated to this space of holomorphic functions, can be expressed as:

$$
\zeta_{\bar{z}}=\left(1-|z|^{2}\right)^{-j} U^{j}(\sigma(z)) u_{0}, \quad z \in \mathbb{D}
$$

Two examples

The unitary irreducible representations U^{j} of $S U(1,1)$, belonging to the discrete series, are each labeled by a parameter $j=1,3 / 2,2,5 / 2, \ldots$. They are carried by the Hilbert spaces of holomorphic functions $\mathfrak{H}_{\text {hol }}$ introduced above.
The operators $U^{j}(g)$ act on vectors $f \in \mathfrak{H}_{\text {hol }}\left(\mathcal{D}_{1}\right)$ in the manner

$$
\left(U^{j}(g) f\right)(z)=(\alpha-\bar{\beta} z)^{-2 j} f\left(\frac{\bar{\alpha} z-\beta}{\alpha-\bar{\beta} z}\right)
$$

A straightforward computation then shows that the coherent states $\zeta_{\bar{z}}$, introduced above and associated to this space of holomorphic functions, can be expressed as:

$$
\zeta_{\bar{z}}=\left(1-|z|^{2}\right)^{-j} U^{j}(\sigma(z)) u_{0}, \quad z \in \mathbb{D} .
$$

In the physical literature one uses the normalized coherent states,

$$
\eta_{\sigma(z)}=U^{j}(\sigma(z)) u_{0}=\left(1-|z|^{2}\right)^{j} \zeta_{\bar{z}}
$$

Two examples

obtained by acting on the single vector u_{0} by the representation operators $U^{j}(\sigma(z))=U^{j}(\mathcal{Z})$.

Two examples

obtained by acting on the single vector u_{0} by the representation operators $U^{j}(\sigma(z))=U^{j}(\mathcal{Z})$. These physical coherent states satisfy the resolution of the identity with respect to the invariant measure on the domain $\mathbb{D}, \operatorname{viz}\left(1-|z|^{2}\right)^{2 j} d \mu(\bar{z}, z)$.

Two examples

obtained by acting on the single vector u_{0} by the representation operators $U^{j}(\sigma(z))=U^{j}(\mathcal{Z})$. These physical coherent states satisfy the resolution of the identity with respect to the invariant measure on the domain $\mathbb{D}, \operatorname{viz}\left(1-|z|^{2}\right)^{2 j} d \mu(\bar{z}, z)$.
The CS $\eta_{\sigma(z)}$ are of the Gilmore-Perelomov type, in the sense that they are obtained by first fixing a vector u_{0} in the representation space, next identifying the subgroup K which stabilizes it, up to a phase,

$$
U^{j}(k) u_{0}=e^{-j \phi} u_{0}, \quad k=\left(\begin{array}{cc}
e^{\frac{i \phi}{2}} & 0 \\
0 & e^{\frac{-i \phi}{2}}
\end{array}\right) \in K
$$

Two examples

obtained by acting on the single vector u_{0} by the representation operators $U^{j}(\sigma(z))=U^{j}(\mathcal{Z})$. These physical coherent states satisfy the resolution of the identity with respect to the invariant measure on the domain $\mathbb{D}, \operatorname{viz}\left(1-|z|^{2}\right)^{2 j} d \mu(\bar{z}, z)$.
The CS $\eta_{\sigma(z)}$ are of the Gilmore-Perelomov type, in the sense that they are obtained by first fixing a vector u_{0} in the representation space, next identifying the subgroup K which stabilizes it, up to a phase,

$$
U^{j}(k) u_{0}=e^{-j \phi} u_{0}, \quad k=\left(\begin{array}{cc}
e^{\frac{i \phi}{2}} & 0 \\
0 & e^{\frac{-i \phi}{2}}
\end{array}\right) \in K
$$

and then defining the $C S$ on the quotient space $S U(1,1) / K$ using the representation operators.

Some Berezin-Toeplitz operators

Let us next look at some related operators, obtained via the so-called Berezin-Toeplitz quantization method.

Some Berezin-Toeplitz operators

Let us next look at some related operators, obtained via the so-called Berezin-Toeplitz quantization method.
These are obtained via the prescription,

$$
\widehat{f}=\int_{\mathcal{D}} f(z, \bar{z}) \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z}),
$$

for "nice" complex-valued functions f over the domain \mathcal{D}.

Some Berezin-Toeplitz operators

Let us next look at some related operators, obtained via the so-called Berezin-Toeplitz quantization method.
These are obtained via the prescription,

$$
\widehat{f}=\int_{\mathcal{D}} f(z, \bar{z}) \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z})
$$

for "nice" complex-valued functions f over the domain \mathcal{D}. It is particularly important to study the shift operators,:

$$
a \phi_{n}=\sqrt{x_{n}} \phi_{n-1}, \quad a^{\dagger} \phi_{n}=\sqrt{x_{n+1}} \phi_{n+1}, \quad n=0,1,2, \ldots,
$$

and the Hamiltonian,

$$
H=a^{\dagger} a=\sum_{n=0}^{\infty} x_{n}\left|\phi_{n}\right\rangle\left\langle\phi_{n}\right|, \quad x_{0}=0
$$

Since

$$
a|z\rangle=z|z\rangle,
$$

Some Berezin-Toeplitz operators

it follows that,

$$
a=\int_{\mathcal{D}} z \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z}), \quad a^{\dagger}=\int_{\mathcal{D}} \bar{z} \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z}),
$$

Some Berezin-Toeplitz operators

it follows that,

$$
a=\int_{\mathcal{D}} z \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z}), \quad a^{\dagger}=\int_{\mathcal{D}} \bar{z} \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z})
$$

while

$$
H=\int_{\mathcal{D}} f(|z|) \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z})
$$

where f is a function satisfying the moment condition:

$$
\frac{\left[x_{k}!\right] x_{k}}{2 \pi}=\int_{0}^{L} f(r) r^{2 k} d \lambda(r), \quad k=0,1,2,3, \ldots,
$$

Some Berezin-Toeplitz operators

it follows that,

$$
a=\int_{\mathcal{D}} z \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z}), \quad a^{\dagger}=\int_{\mathcal{D}} \bar{z} \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z})
$$

while

$$
H=\int_{\mathcal{D}} f(|z|) \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z})
$$

where f is a function satisfying the moment condition:

$$
\frac{\left[x_{k}!\right] x_{k}}{2 \pi}=\int_{0}^{L} f(r) r^{2 k} d \lambda(r), \quad k=0,1,2,3, \ldots
$$

Also,

$$
a a^{\dagger}=\int_{\mathcal{D}}|z|^{2} \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \nu(z, \bar{z})
$$

Some Berezin-Toeplitz operators

it follows that,

$$
a=\int_{\mathcal{D}} z \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z}), \quad a^{\dagger}=\int_{\mathcal{D}} \bar{z} \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z})
$$

while

$$
H=\int_{\mathcal{D}} f(|z|) \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \mu(z, \bar{z})
$$

where f is a function satisfying the moment condition:

$$
\frac{\left[x_{k}!\right] x_{k}}{2 \pi}=\int_{0}^{L} f(r) r^{2 k} d \lambda(r), \quad k=0,1,2,3, \ldots,
$$

Also,

$$
a a^{\dagger}=\int_{\mathcal{D}}|z|^{2} \mathcal{N}\left(|z|^{2}\right)|z\rangle\langle z| d \nu(z, \bar{z}),
$$

Generally, a B-T operator corresponding to a function of $|z|$ alone will have a discrete spectrum. Note also that, in general,

$$
\left[a, a^{\dagger}\right]=F(N+1)-F(N), \quad \text { where } \quad F(N) \phi_{n}=x_{n} \phi_{n}, \quad n=0,1,2, \ldots .
$$

Orthogonal polynomials

There is an interesting set of orthogonal polynomials, associated to nonlinear coherent states, which could have an intrinsic relation to the class of Berezin-Toeplits operators generated by them.

Orthogonal polynomials

There is an interesting set of orthogonal polynomials, associated to nonlinear coherent states, which could have an intrinsic relation to the class of Berezin-Toeplits operators generated by them.
Using the operators a and a^{\dagger} we define the operators,

$$
Q=\frac{1}{\sqrt{2}}\left[a+a^{\dagger}\right], \quad P=\frac{1}{i \sqrt{2}}\left[a-a^{\dagger}\right]
$$

which are the deformed analogues of the standard position and momentum operators of quantum mechanics.

Orthogonal polynomials

There is an interesting set of orthogonal polynomials, associated to nonlinear coherent states, which could have an intrinsic relation to the class of Berezin-Toeplits operators generated by them.
Using the operators a and a^{\dagger} we define the operators,

$$
Q=\frac{1}{\sqrt{2}}\left[a+a^{\dagger}\right], \quad P=\frac{1}{i \sqrt{2}}\left[a-a^{\dagger}\right]
$$

which are the deformed analogues of the standard position and momentum operators of quantum mechanics.
The operator Q has the following action on the basis vectors:

$$
Q \phi_{k}=\sqrt{\frac{x_{k}}{2}} \phi_{k-1}+\sqrt{\frac{x_{k+1}}{2}} \phi_{k+1} .
$$

If now the sum $\sum_{k=0}^{\infty} \frac{1}{\sqrt{x_{k}}}$ diverges, the operator Q is essentially self-adjoint and hence has a unique self-adjoint extension, which we again denote by Q.

Orthogonal polynomials

Let $E_{x}, x \in \mathbb{R}$, be the spectral family of Q, so that,

$$
Q=\int_{-\infty}^{\infty} x d E_{x} .
$$

Thus there is a measure $d w(x)$ on \mathbb{R} such that on the Hilbert space $L^{2}(\mathbb{R}, d w)$, the action of Q is just a multiplication by x.

Orthogonal polynomials

Let $E_{x}, x \in \mathbb{R}$, be the spectral family of Q, so that,

$$
Q=\int_{-\infty}^{\infty} x d E_{x}
$$

Thus there is a measure $d w(x)$ on \mathbb{R} such that on the Hilbert space $L^{2}(\mathbb{R}, d w)$, the action of Q is just a multiplication by x.
Consequently, on this space, the above relation assumes the form

$$
x \phi_{k}(x)=b_{k} \phi_{k-1}(x)+b_{k+1} \phi_{k+1}(x), \quad b_{k}=\sqrt{\frac{x_{k}}{2}}
$$

which is a three-term recursion relation for a family of orthogonal polynomials. It follows that

$$
d w(x)=d\left\langle\phi_{0} \mid E_{x} \phi_{0}\right\rangle
$$

and the ϕ_{k} may be realized as the polynomials obtained by orthonormalizing the sequence of monomials $1, x, x^{2}, x^{2}, \ldots$, with respect to this measure.

Orthogonal polynomials

Let us use the notation $p_{k}(x)$ to write the vectors ϕ_{k}, when they are so realized, as orthogonal polynomials in $L^{2}(\mathbb{R}, d w)$.

Orthogonal polynomials

Let us use the notation $p_{k}(x)$ to write the vectors ϕ_{k}, when they are so realized, as orthogonal polynomials in $L^{2}(\mathbb{R}, d w)$.
Then, for any w-measurable set $\Delta \subset \mathbb{R}$,

$$
\left\langle\phi_{k} \mid E(\Delta) \phi_{\ell}\right\rangle=\int_{\Delta} d w(x) p_{k}(x) p_{\ell}(x)
$$

and

$$
\left\langle\phi_{k} \mid \phi_{\ell}\right\rangle=\int_{\mathbb{R}} d w(x) p_{k}(x) p_{\ell}(x)=\delta_{k \ell} .
$$

Orthogonal polynomials

Let us use the notation $p_{k}(x)$ to write the vectors ϕ_{k}, when they are so realized, as orthogonal polynomials in $L^{2}(\mathbb{R}, d w)$.
Then, for any w-measurable set $\Delta \subset \mathbb{R}$,

$$
\left\langle\phi_{k} \mid E(\Delta) \phi_{\ell}\right\rangle=\int_{\Delta} d w(x) p_{k}(x) p_{\ell}(x)
$$

and

$$
\left\langle\phi_{k} \mid \phi_{\ell}\right\rangle=\int_{\mathbb{R}} d w(x) p_{k}(x) p_{\ell}(x)=\delta_{k \ell} .
$$

Also setting $\eta_{z}=|z\rangle$,

$$
\eta_{z}(x)=\mathcal{N}\left(|z|^{2}\right)^{-\frac{1}{2}} \sum_{k=0}^{\infty} \frac{z^{k}}{\left[x_{k}!\right]^{\frac{1}{2}}} p_{k}(x)
$$

we obtain the generating function for the polynomials p_{k} :

$$
G(z, x)=\mathcal{N}\left(|z|^{2}\right)^{\frac{1}{2}} \eta_{z}(x)=\sum_{k=0}^{\infty} \frac{z^{k}}{\left[x_{k}!\right]^{\frac{1}{2}}} p_{k}(x)
$$

Orthogonal polynomials

The set of polynomials so obtained is in a sense canonically related to the family of CS $\eta_{z}=|z\rangle$ and the associated family of Berezin-Toeplitz operators.

Orthogonal polynomials

The set of polynomials so obtained is in a sense canonically related to the family of CS $\eta_{z}=|z\rangle$ and the associated family of Berezin-Toeplitz operators.
This is re-emphasized by the fact that the operators a and a^{\dagger} together generate the algebra over which the Berezin-Toeplitz operators are defined and the orthogonal polynomials arise from this algebra.

Orthogonal polynomials

The set of polynomials so obtained is in a sense canonically related to the family of CS $\eta_{z}=|z\rangle$ and the associated family of Berezin-Toeplitz operators.
This is re-emphasized by the fact that the operators a and a^{\dagger} together generate the algebra over which the Berezin-Toeplitz operators are defined and the orthogonal polynomials arise from this algebra.
The polynomials p_{n} are not monic polynomials, i.e., that the coefficient of λ^{n} in p_{n} is not one. However, the renormalized polynomials

$$
q_{n}(\lambda)=b_{n}!p_{n}(\lambda), \quad b_{n}!=b_{1} b_{2} \cdots b_{n}
$$

are seen to satisfy the recursion relation

$$
q_{n+1}(\lambda)=\lambda q_{n}(\lambda)-b_{n}^{2} q_{n-1}(\lambda),
$$

Orthogonal polynomials

The set of polynomials so obtained is in a sense canonically related to the family of CS $\eta_{z}=|z\rangle$ and the associated family of Berezin-Toeplitz operators.
This is re-emphasized by the fact that the operators a and a^{\dagger} together generate the algebra over which the Berezin-Toeplitz operators are defined and the orthogonal polynomials arise from this algebra.
The polynomials p_{n} are not monic polynomials, i.e., that the coefficient of λ^{n} in p_{n} is not one. However, the renormalized polynomials

$$
q_{n}(\lambda)=b_{n}!p_{n}(\lambda), \quad b_{n}!=b_{1} b_{2} \cdots b_{n}
$$

are seen to satisfy the recursion relation

$$
q_{n+1}(\lambda)=\lambda q_{n}(\lambda)-b_{n}^{2} q_{n-1}(\lambda),
$$

from which it is clear that these polynomials are indeed monic.

Orthogonal polynomials

There is a simple way to compute the monic polynomials. To see this, note first that in virtue of the recursion relations, the operator Q is represented in the ϕ_{n} basis as the infinite tri-diagonal matrix,

$$
Q=\left(\begin{array}{cccccc}
0 & b_{1} & 0 & 0 & 0 & \ldots \\
b_{1} & 0 & b_{2} & 0 & 0 & \ldots \\
0 & b_{2} & 0 & b_{3} & 0 & \ldots \\
0 & 0 & b_{3} & 0 & b_{4} & \ldots \\
0 & 0 & 0 & b_{4} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

Orthogonal polynomials

There is a simple way to compute the monic polynomials. To see this, note first that in virtue of the recursion relations, the operator Q is represented in the ϕ_{n} basis as the infinite tri-diagonal matrix,

$$
Q=\left(\begin{array}{cccccc}
0 & b_{1} & 0 & 0 & 0 & \ldots \\
b_{1} & 0 & b_{2} & 0 & 0 & \ldots \\
0 & b_{2} & 0 & b_{3} & 0 & \ldots \\
0 & 0 & b_{3} & 0 & b_{4} & \ldots \\
0 & 0 & 0 & b_{4} & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Let Q_{n} be the truncated matrix consisting of the first n rows and columns of Q and \mathbb{I}_{n} the $n \times n$ identity matrix.

Orthogonal polynomials

Then,

$$
\lambda \mathbb{I}_{n}-Q_{n}=\left(\begin{array}{ccccccccc}
\lambda & -b_{1} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-b_{1} & \lambda & -b_{2} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -b_{2} & \lambda & -b_{3} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -b_{3} & \lambda & -b_{4} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & -b_{4} & \lambda & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & \lambda & -b_{n-2} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & -b_{n-2} & \lambda & -b_{n-1} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -b_{n-1} & \lambda
\end{array}\right)
$$

Orthogonal polynomials

Then,

$$
\lambda \mathbb{I}_{n}-Q_{n}=\left(\begin{array}{ccccccccc}
\lambda & -b_{1} & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-b_{1} & \lambda & -b_{2} & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & -b_{2} & \lambda & -b_{3} & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & -b_{3} & \lambda & -b_{4} & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & -b_{4} & \lambda & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & \lambda & -b_{n-2} & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & -b_{n-2} & \lambda & -b_{n-1} \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -b_{n-1} & \lambda
\end{array}\right)
$$

It now follows that q_{n} is just the characteristic polynomial of Q_{n} :

$$
q_{n}(\lambda)=\operatorname{det}\left[\lambda \mathbb{I}_{n}-Q_{n}\right] .
$$

Orthogonal polynomials

Indeed, expanding the determinant with respect to the last row, starting at the lower right corner, we easily get

$$
\operatorname{det}\left[\lambda \mathbb{I}_{n}-Q_{n}\right]=\lambda \operatorname{det}\left[\lambda \mathbb{I}_{n-1}-Q_{n-1}\right]-b_{n-1}^{2} \operatorname{det}\left[\lambda \mathbb{I}_{n-2}-Q_{n-2}\right]
$$

Orthogonal polynomials

Indeed, expanding the determinant with respect to the last row, starting at the lower right corner, we easily get

$$
\operatorname{det}\left[\lambda \mathbb{I}_{n}-Q_{n}\right]=\lambda \operatorname{det}\left[\lambda \mathbb{I}_{n-1}-Q_{n-1}\right]-b_{n-1}^{2} \operatorname{det}\left[\lambda \mathbb{I}_{n-2}-Q_{n-2}\right]
$$

which is precisely the recursion relation we obtained earlier for the monic polynomials. Consequently the roots of the polynomial q_{n} (or p_{n}) are the eigenvalues of Q_{n}.

Orthogonal polynomials

Indeed, expanding the determinant with respect to the last row, starting at the lower right corner, we easily get

$$
\operatorname{det}\left[\lambda \mathbb{I}_{n}-Q_{n}\right]=\lambda \operatorname{det}\left[\lambda \mathbb{I}_{n-1}-Q_{n-1}\right]-b_{n-1}^{2} \operatorname{det}\left[\lambda \mathbb{I}_{n-2}-Q_{n-2}\right]
$$

which is precisely the recursion relation we obtained earlier for the monic polynomials. Consequently the roots of the polynomial q_{n} (or p_{n}) are the eigenvalues of Q_{n}. It is now straightforward to verify that in the case case where in the original sequence we take $x_{n}=n$, the corresponding polynomials are the well known Hermite polynomials, as expected.

Vector coherent states

As a final topic, we now construct a class of vector CS over matrix domains. This will essentially amount to replacing the complex variable z in the previous discussion by a matrix variable, chosen from some appropriate domain.

Vector coherent states

As a final topic, we now construct a class of vector CS over matrix domains. This will essentially amount to replacing the complex variable z in the previous discussion by a matrix variable, chosen from some appropriate domain.
Consider the domain $\Omega=\mathbb{C}^{N \times N}$ (all $N \times N$ complex matrices), equipped with the measure

$$
d \nu(\mathfrak{Z})=\frac{e^{-\operatorname{Tr}\left[33^{*}\right]}}{(2 \pi i)^{n^{2}}} \prod_{i, j=1}^{N} d \bar{z}_{i j} \wedge d z_{i j}
$$

where $\mathfrak{Z} \in \Omega$ and $z_{i j}$ are its entries. This measure is normalized to one:

$$
\int_{\Omega} d \Omega(\mathfrak{Z})=1
$$

Vector coherent states

As a final topic, we now construct a class of vector CS over matrix domains. This will essentially amount to replacing the complex variable z in the previous discussion by a matrix variable, chosen from some appropriate domain.
Consider the domain $\Omega=\mathbb{C}^{N \times N}$ (all $N \times N$ complex matrices), equipped with the measure

$$
d \nu(\mathfrak{Z})=\frac{e^{-\operatorname{Tr}\left[33^{*}\right]}}{(2 \pi i)^{n^{2}}} \prod_{i, j=1}^{N} d \bar{z}_{i j} \wedge d z_{i j}
$$

where $\mathfrak{Z} \in \Omega$ and $z_{i j}$ are its entries. This measure is normalized to one:

$$
\int_{\Omega} d \Omega(\mathfrak{Z})=1
$$

Note also, that

$$
\operatorname{Tr}\left[\mathfrak{Z} \mathfrak{Z}^{*}\right]=\sum_{i, j=1}^{n}\left|z_{i j}\right|^{2}
$$

Vector coherent states

One can then prove the matrix orthogonality relation,

$$
\int_{\Omega} \mathfrak{Z}^{k} \mathfrak{Z}^{* \ell} d \nu(\mathfrak{Z})=\frac{1}{N} \int_{\Omega} \operatorname{Tr}\left[\mathfrak{Z}^{k} \mathfrak{Z}^{* \ell}\right] d \nu(\mathfrak{Z}) \mathbb{I}_{N}=b(k) \mathbb{I}_{N},
$$

Vector coherent states

One can then prove the matrix orthogonality relation,

$$
\int_{\Omega} \mathfrak{Z}^{k} \mathfrak{Z}^{* \ell} d \nu(\mathfrak{Z})=\frac{1}{N} \int_{\Omega} \operatorname{Tr}\left[\mathfrak{Z}^{k} \mathfrak{Z}^{* \ell}\right] d \nu(\mathfrak{Z}) \mathbb{I}_{N}=b(k) \mathbb{I}_{N}
$$

where,

$$
b(k)=\left\{\begin{array}{lc}
\frac{(k+N+1)!}{N!(k+1)(k+2)} \quad \text { for } k \geq N-1, \\
\frac{(k+N+1)!}{N!(k+1)(k+2)}-\frac{N!}{(k+1)(k+2)(N-k-2)!} \quad \text { for } k<N-1,
\end{array}\right.
$$

Vector coherent states

One can then prove the matrix orthogonality relation,

$$
\int_{\Omega} \mathfrak{Z}^{k} \mathfrak{Z}^{* \ell} d \nu(\mathfrak{Z})=\frac{1}{N} \int_{\Omega} \operatorname{Tr}\left[\mathfrak{Z}^{k} \mathfrak{Z}^{* \ell}\right] d \nu(\mathfrak{Z}) \mathbb{I}_{N}=b(k) \mathbb{I}_{N}
$$

where,

$$
b(k)=\left\{\begin{array}{lc}
\frac{(k+N+1)!}{N!(k+1)(k+2)} \quad \text { for } k \geq N-1, \\
\frac{(k+N+1)!}{N!(k+1)(k+2)}-\frac{N!}{(k+1)(k+2)(N-k-2)!} \quad \text { for } k<N-1,
\end{array}\right.
$$

that is,

$$
b(k)=\frac{1}{(k+1)(k+2)}\left[\prod_{j=1}^{k+1}(N+j)-\prod_{j=1}^{k+1}(N-j)\right]
$$

In particular, $b(0)=1, b(1)=N, b(2)=N^{2}+1$, etc.

Vector coherent states

Note that the following series converges for all $x \in \mathbb{R}$:

$$
S=\sum_{k=0}^{\infty} \frac{x^{k}}{b(k)}
$$

Vector coherent states

Note that the following series converges for all $x \in \mathbb{R}$:

$$
S=\sum_{k=0}^{\infty} \frac{x^{k}}{b(k)} .
$$

Consider the Hilbert space $\widetilde{\mathfrak{H}}=L_{\mathbb{C}^{N}}^{2}(\Omega, d \nu)$ of square-integrable, N-component vector-valued functions on Ω and in it consider the vectors
$\boldsymbol{\Psi}_{k}^{i}, \quad i=1,2, \ldots, N, \quad k=0,1,2, \ldots, \infty$:

Vector coherent states

Note that the following series converges for all $x \in \mathbb{R}$:

$$
S=\sum_{k=0}^{\infty} \frac{x^{k}}{b(k)}
$$

Consider the Hilbert space $\widetilde{\mathfrak{H}}=L_{\mathbb{C}^{N}}^{2}(\Omega, d \nu)$ of square-integrable, N-component vector-valued functions on Ω and in it consider the vectors $\boldsymbol{\Psi}_{k}^{i}, \quad i=1,2, \ldots, N, \quad k=0,1,2, \ldots, \infty$:

$$
\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{*}\right)=\frac{1}{\sqrt{b(k)}} \mathfrak{Z}^{* k} \chi^{i}
$$

where the χ^{i} form an orthonormal basis of \mathbb{C}^{N}.

Vector coherent states

Note that the following series converges for all $x \in \mathbb{R}$:

$$
S=\sum_{k=0}^{\infty} \frac{x^{k}}{b(k)}
$$

Consider the Hilbert space $\widetilde{\mathfrak{H}}=L_{\mathbb{C}^{N}}^{2}(\Omega, d \nu)$ of square-integrable, N-component vector-valued functions on Ω and in it consider the vectors
$\boldsymbol{\Psi}_{k}^{i}, \quad i=1,2, \ldots, N, \quad k=0,1,2, \ldots, \infty$:

$$
\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{*}\right)=\frac{1}{\sqrt{b(k)}} \mathfrak{Z}^{* k} \chi^{i}
$$

where the χ^{i} form an orthonormal basis of \mathbb{C}^{N}. These vectors form an orthonormal set,

$$
\left\langle\boldsymbol{\Psi}_{k}^{i} \mid \boldsymbol{\Psi}_{\ell}^{j}\right\rangle=\delta_{k \ell} \delta_{i j}
$$

Vector coherent states

Note that the following series converges for all $x \in \mathbb{R}$:

$$
S=\sum_{k=0}^{\infty} \frac{x^{k}}{b(k)}
$$

Consider the Hilbert space $\widetilde{\mathfrak{H}}=L_{\mathbb{C}^{N}}^{2}(\Omega, d \nu)$ of square-integrable, N-component vector-valued functions on Ω and in it consider the vectors $\boldsymbol{\Psi}_{k}^{i}, \quad i=1,2, \ldots, N, \quad k=0,1,2, \ldots, \infty$:

$$
\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{*}\right)=\frac{1}{\sqrt{b(k)}} \mathfrak{Z}^{* k} \chi^{i}
$$

where the χ^{i} form an orthonormal basis of \mathbb{C}^{N}. These vectors form an orthonormal set,

$$
\left\langle\boldsymbol{\Psi}_{k}^{i} \mid \boldsymbol{\Psi}_{\ell}^{j}\right\rangle=\delta_{k \ell} \delta_{i j}
$$

Denote by \mathfrak{H}_{K} the Hilbert subspace of $\widetilde{\mathfrak{H}}$ generated by this set of vectors.

Vector coherent states

Then, in view of the convergence of the series S

$$
\sum_{i, k}\left\|\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{*}\right)\right\|^{2}<\infty, \forall \mathfrak{Z}^{*}
$$

Vector coherent states

Then, in view of the convergence of the series S

$$
\sum_{i, k}\left\|\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{*}\right)\right\|^{2}<\infty, \forall \mathfrak{Z}^{*}
$$

Thus, \mathfrak{H}_{K} is a reproducing kernel Hilbert space of analytic functions in the variable \mathfrak{Z}^{*}, with matrix valued kernel $K: \Omega \times \Omega \longmapsto C^{N \times N}$, given by

$$
\begin{aligned}
K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) & =\sum_{i, k}\left|\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{* \prime}\right)\right\rangle\left\langle\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{*}\right)\right|=\sum_{i, k} \frac{\mathfrak{Z}^{* \prime k} \chi^{i} \chi^{i \dagger} \mathfrak{Z}^{k}}{b(k)} \\
& =\sum_{i, k} \frac{\mathfrak{Z}^{* \prime k} \mathfrak{Z}^{k}}{b(k)}
\end{aligned}
$$

Vector coherent states

Then, in view of the convergence of the series S

$$
\sum_{i, k}\left\|\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{*}\right)\right\|^{2}<\infty, \forall \mathfrak{Z}^{*}
$$

Thus, \mathfrak{H}_{K} is a reproducing kernel Hilbert space of analytic functions in the variable \mathfrak{Z}^{*}, with matrix valued kernel $K: \Omega \times \Omega \longmapsto C^{N \times N}$, given by

$$
\begin{aligned}
K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) & =\sum_{i, k}\left|\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{* \prime}\right)\right\rangle\left\langle\boldsymbol{\Psi}_{k}^{i}\left(\mathfrak{Z}^{*}\right)\right|=\sum_{i, k} \frac{\mathfrak{Z}^{* / k} \chi^{i} \chi^{i \dagger} \mathfrak{Z}^{k}}{b(k)} \\
& =\sum_{i, k} \frac{\mathfrak{Z}^{* \prime k} \mathfrak{Z}^{k}}{b(k)}
\end{aligned}
$$

When $N=1, \mathfrak{Z}=z \in \mathbb{C}$ and $b(k)=k!$, so that this is just the well-known Bargmann kernel,

$$
K\left(\bar{z}^{\prime}, z\right)=e^{\bar{z}^{\prime} z}
$$

Vector coherent states

and \mathfrak{H}_{K} is the Hilbert space of entire analytic functions in the variable \bar{z}.

Vector coherent states

and \mathfrak{H}_{K} is the Hilbert space of entire analytic functions in the variable $\overline{\mathbf{z}}$.
The vector coherent states associated to the reproducing kernel K are the vectors $\boldsymbol{\xi}_{\mathfrak{J}}^{i} \in \mathfrak{H}_{K}$,

$$
\boldsymbol{\xi}_{\mathfrak{Z}}^{i}\left(\mathfrak{Z}^{* \prime}\right)=K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{i}
$$

Vector coherent states

and \mathfrak{H}_{K} is the Hilbert space of entire analytic functions in the variable \bar{z}.
The vector coherent states associated to the reproducing kernel K are the vectors $\boldsymbol{\xi}_{\mathfrak{Z}}^{i} \in \mathfrak{H}_{K}$,

$$
\xi_{\mathfrak{Z}}^{i}\left(\mathfrak{Z}^{* \prime}\right)=K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{i}
$$

defined for each $\mathfrak{Z} \in \Omega$ and $i=1,2, \ldots, N$. They satisfy the resolution of the identity,

$$
\sum_{i=1}^{N} \int_{\Omega}\left|\xi_{\mathfrak{3}}^{i}\right\rangle\left\langle\xi_{3}^{i}\right|=I_{K}
$$

Vector coherent states

and \mathfrak{H}_{K} is the Hilbert space of entire analytic functions in the variable \bar{z}.
The vector coherent states associated to the reproducing kernel K are the vectors $\boldsymbol{\xi}_{\mathfrak{Z}}^{i} \in \mathfrak{H}_{K}$,

$$
\xi_{\mathfrak{Z}}^{i}\left(\mathfrak{Z}^{* \prime}\right)=K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{i},
$$

defined for each $\mathfrak{Z} \in \Omega$ and $i=1,2, \ldots, N$. They satisfy the resolution of the identity,

$$
\sum_{i=1}^{N} \int_{\Omega}\left|\xi_{\mathfrak{3}}^{i}\right\rangle\left\langle\xi_{3}^{i}\right|=I_{K}
$$

More generally, once can define VCS, $\boldsymbol{\xi}_{3}^{\chi}$, corresponding to arbitrary $\chi \in \mathbb{C}^{N}$, as linear combinations of the ξ_{3}^{i}, so that,

$$
\xi_{\mathfrak{Z}}^{\chi}\left(\mathfrak{Z}^{* \prime}\right)=K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi .
$$

Vector coherent states

and \mathfrak{H}_{K} is the Hilbert space of entire analytic functions in the variable \bar{z}.
The vector coherent states associated to the reproducing kernel K are the vectors $\boldsymbol{\xi}_{\mathfrak{Z}}^{i} \in \mathfrak{H}_{K}$,

$$
\xi_{\mathfrak{Z}}^{i}\left(\mathfrak{Z}^{* \prime}\right)=K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{i}
$$

defined for each $\mathfrak{Z} \in \Omega$ and $i=1,2, \ldots, N$. They satisfy the resolution of the identity,

$$
\sum_{i=1}^{N} \int_{\Omega}\left|\xi_{3}^{i}\right\rangle\left\langle\xi_{3}^{i}\right|=I_{K}
$$

More generally, once can define VCS, ξ_{3}^{χ}, corresponding to arbitrary $\chi \in \mathbb{C}^{N}$, as linear combinations of the $\boldsymbol{\xi}_{3}^{i}$, so that,

$$
\xi_{\mathfrak{Z}}^{\chi}\left(\mathfrak{Z}^{* \prime}\right)=K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi .
$$

The kernel K has matrix elements

$$
K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right)_{i j}=\chi^{i \dagger} K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{j}
$$

Vector coherent states

But also,

$$
\begin{aligned}
\left\langle\boldsymbol{\xi}_{\mathfrak{Z}^{\prime}}^{i} \mid \boldsymbol{\xi}_{\mathfrak{Z}}^{j}\right\rangle & =\int_{\Omega} \chi^{i \dagger} K\left(\mathfrak{X}^{*}, \mathfrak{Z}^{\prime}\right)^{*} K\left(\mathfrak{X}^{*}, \mathfrak{Z}\right) \chi^{j} d \nu(\mathfrak{X})=\chi^{i \dagger} K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{j} \\
& =K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right)_{i j}
\end{aligned}
$$

Vector coherent states

But also,

$$
\begin{aligned}
\left\langle\boldsymbol{\xi}_{\mathfrak{Z}^{\prime}}^{i} \mid \boldsymbol{\xi}_{\mathfrak{Z}}^{j}\right\rangle & =\int_{\Omega} \chi^{i \dagger} K\left(\mathfrak{X}^{*}, \mathfrak{Z}^{\prime}\right)^{*} K\left(\mathfrak{X}^{*}, \mathfrak{Z}\right) \chi^{j} d \nu(\mathfrak{X})=\chi^{i \dagger} K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{j} \\
& =K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right)_{i j}
\end{aligned}
$$

The VCS can alternatively written as,

$$
\boldsymbol{\xi}_{\mathfrak{Z}}^{i}\left(\mathfrak{Z}^{*}\right)=\sum_{k} \frac{\mathfrak{Z}^{* / k} \mathfrak{Z}^{k} \chi^{i}}{b(k)}=\sum_{j, k} \frac{\mathfrak{Z}^{* / k} \chi^{j}}{\sqrt{b(k)}} \cdot \frac{\chi^{j \dagger} \mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}}
$$

Vector coherent states

But also,

$$
\begin{aligned}
\left\langle\boldsymbol{\xi}_{\mathfrak{Z}^{\prime}}^{i} \mid \xi_{\mathfrak{Z}}^{j}\right\rangle & =\int_{\Omega} \chi^{i \dagger} K\left(\mathfrak{X}^{*}, \mathfrak{Z}^{\prime}\right)^{*} K\left(\mathfrak{X}^{*}, \mathfrak{Z}\right) \chi^{j} d \nu(\mathfrak{X})=\chi^{i \dagger} K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{j} \\
& =K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right)_{i j}
\end{aligned}
$$

The VCS can alternatively written as,

$$
\boldsymbol{\xi}_{\mathfrak{3}}^{i}\left(\mathfrak{Z}^{*}\right)=\sum_{k} \frac{\mathfrak{Z}^{* / k} \mathfrak{Z}^{k} \chi^{i}}{b(k)}=\sum_{j, k} \frac{\mathfrak{Z}^{* / k} \chi^{j}}{\sqrt{b(k)}} \cdot \frac{\chi^{j \dagger} \mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}}
$$

so that,

$$
\boldsymbol{\xi}_{\mathfrak{Z}}^{i}=\sum_{j, k} \boldsymbol{\Psi}_{k}^{j} \frac{\chi^{j \dagger} \mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}}
$$

Vector coherent states

But also,

$$
\begin{aligned}
\left\langle\boldsymbol{\xi}_{\mathfrak{Z}^{\prime}}^{i} \mid \boldsymbol{\xi}_{\mathfrak{Z}}^{j}\right\rangle & =\int_{\Omega} \chi^{i \dagger} K\left(\mathfrak{X}^{*}, \mathfrak{Z}^{\prime}\right)^{*} K\left(\mathfrak{X}^{*}, \mathfrak{Z}\right) \chi^{j} d \nu(\mathfrak{X})=\chi^{i \dagger} K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right) \chi^{j} \\
& =K\left(\mathfrak{Z}^{* \prime}, \mathfrak{Z}\right)_{i j}
\end{aligned}
$$

The VCS can alternatively written as,

$$
\boldsymbol{\xi}_{\mathfrak{J}}^{i}\left(\mathfrak{Z}^{*}\right)=\sum_{k} \frac{\mathfrak{Z}^{* / k} \mathfrak{Z}^{k} \chi^{i}}{b(k)}=\sum_{j, k} \frac{\mathfrak{Z}^{* / k} \chi^{j}}{\sqrt{b(k)}} \cdot \frac{\chi^{j \dagger} \mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}}
$$

so that,

$$
\boldsymbol{\xi}_{\mathfrak{Z}}^{i}=\sum_{j, k} \boldsymbol{\Psi}_{k}^{j} \frac{\chi^{j \dagger} \mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}}
$$

Let \mathfrak{H} be an infinite dimensional (complex, separable) Hilbert space and let $\left\{\phi_{k}\right\}_{k=0}^{\infty}$ be an orthonormal basis for it.

Vector coherent states

Then the vectors $\chi^{i} \otimes \phi_{k}, \quad 1=1,2, \ldots, N, k=0,1,2, \ldots, \infty$, form an orthonormal basis of $\mathbb{C}^{N} \otimes \mathfrak{H}$.

Vector coherent states

Then the vectors $\chi^{i} \otimes \phi_{k}, \quad 1=1,2, \ldots, N, k=0,1,2, \ldots, \infty$, form an orthonormal basis of $\mathbb{C}^{N} \otimes \mathfrak{H}$.
We make a unitary transformation, $V: \mathfrak{H}_{K} \longrightarrow \mathbb{C}^{N} \otimes \mathfrak{H}$, by the basis change $\boldsymbol{\Psi}_{k}^{i} \longmapsto \chi^{i} \otimes \phi_{k}$. Under this map, the VCS $\boldsymbol{\xi}_{3}^{i}$ transform to the vectors

$$
|\mathfrak{Z}, i\rangle=\sum_{j, k} \chi^{j} \otimes \phi_{k} \frac{\chi^{j \dagger} \mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}}=\sum_{k} \frac{\mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}} \otimes \phi_{k} \in \mathbb{C}^{N} \otimes \mathfrak{H}
$$

Vector coherent states

Then the vectors $\chi^{i} \otimes \phi_{k}, \quad 1=1,2, \ldots, N, k=0,1,2, \ldots, \infty$, form an orthonormal basis of $\mathbb{C}^{N} \otimes \mathfrak{H}$.
We make a unitary transformation, $V: \mathfrak{H}_{K} \longrightarrow \mathbb{C}^{N} \otimes \mathfrak{H}$, by the basis change $\boldsymbol{\Psi}_{k}^{i} \longmapsto \chi^{i} \otimes \phi_{k}$. Under this map, the VCS $\boldsymbol{\xi}_{3}^{i}$ transform to the vectors

$$
|\mathfrak{Z}, i\rangle=\sum_{j, k} \chi^{j} \otimes \phi_{k} \frac{\chi^{j \dagger} \mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}}=\sum_{k} \frac{\mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}} \otimes \phi_{k} \in \mathbb{C}^{N} \otimes \mathfrak{H}
$$

which, are a more convenient set of vectors to work with.

Vector coherent states

Then the vectors $\chi^{i} \otimes \phi_{k}, \quad 1=1,2, \ldots, N, k=0,1,2, \ldots, \infty$, form an orthonormal basis of $\mathbb{C}^{N} \otimes \mathfrak{H}$.
We make a unitary transformation, $V: \mathfrak{H}_{K} \longrightarrow \mathbb{C}^{N} \otimes \mathfrak{H}$, by the basis change $\boldsymbol{\Psi}_{k}^{i} \longmapsto \chi^{i} \otimes \phi_{k}$. Under this map, the VCS $\boldsymbol{\xi}_{3}^{i}$ transform to the vectors

$$
|\mathfrak{Z}, i\rangle=\sum_{j, k} \chi^{j} \otimes \phi_{k} \frac{\chi^{j \dagger} \mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}}=\sum_{k} \frac{\mathfrak{Z}^{k} \chi^{i}}{\sqrt{b(k)}} \otimes \phi_{k} \in \mathbb{C}^{N} \otimes \mathfrak{H}
$$

which, are a more convenient set of vectors to work with.
The inverse of this map is then easily seen to be given by,

$$
\left(V^{-1} \boldsymbol{\Phi}\right)\left(\mathfrak{Z}^{*}\right)=\sum_{i=1}^{N}\langle\mathfrak{Z}, i \mid \boldsymbol{\Phi}\rangle \chi^{i}, \quad \boldsymbol{\Phi} \in \mathbb{C}^{N} \otimes \mathfrak{H}
$$

Vector coherent states

The above sort of construction can be carried out over a variety of matrix domains.

Vector coherent states

The above sort of construction can be carried out over a variety of matrix domains. For example, if Ω is the domain consisting of all $N \times N$ normal matrices, then the numbers $b(k)$ are just $k!$, and the VCS look exactly like the canonical coherent states.

Vector coherent states

The above sort of construction can be carried out over a variety of matrix domains. For example, if Ω is the domain consisting of all $N \times N$ normal matrices, then the numbers $b(k)$ are just k !, and the VCS look exactly like the canonical coherent states. Alternatively, one could take for Ω the set of all normal matrices \mathfrak{Z} which satisfy, for example, $\left\|\mathbb{I}_{N}-\mathfrak{Z}^{\dagger} \mathfrak{Z}\right\|<1$ and obtain VCS resembling the $S U(1,1$ coherent states, etc.

Vector coherent states

The above sort of construction can be carried out over a variety of matrix domains. For example, if Ω is the domain consisting of all $N \times N$ normal matrices, then the numbers $b(k)$ are just k !, and the VCS look exactly like the canonical coherent states. Alternatively, one could take for Ω the set of all normal matrices \mathfrak{Z} which satisfy, for example, $\left\|\mathbb{I}_{N}-\mathfrak{Z}^{\dagger} \mathfrak{Z}\right\|<1$ and obtain VCS resembling the $S U(1,1$ coherent states, etc. Finally it is possible to work out an analogue of the Berezin-Toeplitz calculus using such VCS.

