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Fractional quantum Hall Effect

The fractional QHE was discovered by Stormer and Tsui in 1982,
where the same graph gets ”quantized” at certain fractional values.

Together with Laughlin, they were awarded the Nobel Prize in 1998 for their
momentous discovery.



FQHE experiment

B setup as in the quantum Hall effect;
B very pure and ∼ ∞ 2D-sample;
B powerful magnetic field.



In his book, A different universe: reinventing physics from the bottom down,
Nobel Laureate Robert Laughlin says that

“the result of the organization of large numbers of atoms shows us how the
most fundamental laws of physics are also in fact emergent.”

Also includes a personal account of the events surrounding the discovery of
the integer quantum Hall effect and the fractional quantum Hall effect.



Under the above conditions, one either has to incorporate the Coulomb inter-
action between the electrons and study a many-electron theory, or one has to
incorporate an effective interaction term into the single electron model.

This is the approach that we adopt. All models provide only partial explana-
tions.



Euclidean model: Has been used by Bellissard and coauthors to give a sat-
isfactory explanation of the integer QHE.

Hyperbolic model: This has been used in [MM] to give a noncommutative
geometry model of the fractional QHE, extending the model of Bellissard et
al. Let H denote the hyperbolic plane (2D) and B be a 2-form on H which is
Γ-invariant. It defines a multiplier σ on Γ, which is a U(1)-valued 2-cocycle
on Γ as follows. Since B is Γ-invariant, one has 0 = γ∗B − B = d(γ∗A −
A) ∀γ ∈ Γ. So γ∗A−A is a closed 1-form on the simply connected manifold
H, therefore

γ∗A−A = dψγ, ∀γ ∈ Γ,

where ψγ is a smooth function on H. It is defined up to an additive constant,
so we can assume in addition that it satisfies the normalization condition:

• ψγ(x0) = 0 for a fixed x0 ∈ H, ∀γ ∈ Γ.



It follows that ψγ is real-valued and ψe(x) ≡ 0, where e denotes the identity
element of Γ. It is also easy to check that

• ψγ(x) + ψγ′(γx)− ψγ′γ(x) is independent of x ∈ H, ∀γ, γ′ ∈ Γ.

Then σ(γ, γ′) = exp(−iψγ(γ′ · x0)) defines the desired multiplier on Γ.

The discrete analogue of the Schrödinger equation describing the quantum
mechanics of a single electron confined to move along the Cayley graph of Γ
(embedded in H) subject to the periodic magnetic field B is

i
∂

∂t
ψ = ∆σψ + V ψ

where all physical constants have been set equal to 1. Here Hσ is the Harper
operator, encoding the magnetic field and V is the electric potential, here
taken to be an operator in the twisted group algebra, C(Γ, σ). The hyperbolic
metric is the effective interaction between of the charge carriers (a common
assumption in solid state physics).



Algebra of Observables

The algebra of observables is the C∗ algebra generated by all the Hamiltoni-
ans H = ∆σ,V = ∆σ + V, ∀V ∈ C(Γ, σ), i.e. the algebra of observables
is C∗r(Γ, σ). However, for several technical reasons since derivations on this
algebra are used in the definition of the Hall conductance cocycle, they are
unbounded on C∗r(Γ, σ).

Therefore we want only to consider a dense ∗-subalgebra R of C∗r(Γ, σ)

which is contained in the domain of definition of these derivations, and more-
over satisfying the following two desirable properties,

(1) the inclusion R ⊂ C∗r(Γ, σ) induces an isomorphism in K-theory;

(2) Cyclic cocycles on C(Γ, σ) extend continuously to R.



R is defined as follows. Consider an operator D defined as

Dδγ = `(γ)δγ ∀γ ∈ Γ,

where `(γ) denotes the word length of γ. Let δ = ad(D) denote the com-
mutator [D, ·]. Then δ is an unbounded, but closed derivation on C∗r(Γ, σ).
Define

R :=
⋂
k∈N

Dom(δk).

It is clear that R contains δγ ∀γ ∈ Γ and so it contains C(Γ, σ). Hence it
is dense in C∗r(Γ, σ). Since R is defined as the domain of derivations, it is
closed under the holomorphic functional calculus, i.e. if A ∈ R and A = A∗,
A > 0, then f(A) ∈ R for all holomorphic functions f on a nbd of spec(A).
Therefore by a result of Connes, property (1) above holds for R, and we
have seen earlier via the Riesz resolvent that the spectral projections PE ∈ R
whenever E is in a gap in the spectrum of the Hamiltonian H.



Until now, we have not used any special property of the group Γ. But now
assume that Γ is a surface group. Then it follows from a variant of a result
by Jollisaint that there is a k ∈ N and a positive constant C′ such that for all
f ∈ C(Γ, σ), one has the Haagerup inequality,

||Lσ(f)|| ≤ C′ νk(f), (1)

where Lσ(f) denotes the operator norm of the operator on `2(Γ) given by
left twisted convolution by f . Using this, it is routine to show that property (2)

holds.

Therefore we have successfully constructed the algebra of observablesR sat-
isfying the desired properties (1) and (2).



Cyclic cocycles on Algebra of Observables

Cyclic cocycles are also called multilinear traces, and the word cyclic refers to
invariance under the cyclic group Zn+1 acting on the slots of the Cartesian
product, i.e. t is a cyclic n-cocycle if it is a multilinear functional
t : R×R· · · × R → C satisfying the cyclic condition,

t(a0, a1, . . . , an) = (−1)nt(an, a0, a1, . . . , an−1)

and also satisfying the cocycle condition,

t(aa0, a1, . . . , an)− t(a, a0a1, . . . , an) . . . (−1)n+1t(ana, a0, . . . , an−1) = 0.

Examples: Cyclic 0-cocycles: t(ab) = t(ba) i.e. t is a trace.

Cyclic 1-cocycles: t(a, b) = −t(b, a) and t(ab, c)−t(a, bc)+t(ca, b) = 0.

Cyclic 2-cocycles: t(a, b, c) = t(c, a, b) = t(b, c, a) and

t(ab, c, d)− t(a, bc, d) + t(a, b, cd)− t(da, b, c) = 0.



Cyclic 1-cocycles on Algebra of Observables

Given a 1-cocycle a on the discrete group Γ, i.e.

a(γ1γ2) = a(γ1) + a(γ2) ∀γ1, γ2 ∈ Γ

one can define a linear functional δa on the twisted group algebra C(Γ, σ)

δa(f)(γ) = a(γ)f(γ)

Then one verifies that δa is a derivation,

δa(fg)(γ) = a(γ)
∑

γ=γ1γ2

f(γ1)g(γ2)σ(γ1, γ2)

=
∑

γ=γ1γ2

(
a(γ1) + a(γ2)

)
f(γ1)g(γ2)σ(γ1, γ2)

=
∑

γ=γ1γ2

(
δa(f)(γ1)g(γ2)σ(γ1, γ2) + f(γ1)δa(g)(γ2)σ(γ1, γ2)

)
= (δa(f)g)(γ) + (fδag)(γ).



Now the first cohomology of the group Γ is a free Abelian group of rank 2g,
where g is the genus of Riemann surface H/Γ. It is in fact a symplectic vector
space over Z, and assume that aj, bj, j = 1, . . . g is a symplectic basis of
H1(Γ,Z). We denote δaj by δj and δbj by δj+g.

Then these derivations give rise to 2g cyclic 1-cocycles on the twisted group
algebra C(Γ, σ),

tj(f0, f1) = tr(f0δj(f1)), j = 1, . . . ,2g.

Since aj, bj are linearly bounded, it follows that the cyclic 1-cocycles tj are
also linearly bounded, and so extend to a cyclic 1-cocycles on R, the algebra
of observables



Non-positive curvature and cyclic 2-cocycles

Let Σ be a compact oriented surface (or orbifold) and let h be a Riemannian
metric of nonpositive sectional curvature on Σ. Then the (orbifold) universal
cover is Σ̃ which is a smooth manifold, with induced metric h̃. By the Hopf-
Rinow theorem, there is a unique geodesic joining any two points of Σ̃, and
moreover the (orbifold) fundamental group Γ, which is a cocompact Fuchsian
group, acts properly as isometries on Σ̃. We can define an area group 2-
cocycle ch : Γ×Γ→ R on Γ with respect to the metric h̃, by setting ch(γ1, γ2)

to be the oriented area of the geodesic triangle,



Now associated to such a group 2-cocycle, there is a cyclic 2-cocycle

trch(f0, f1, f2) =
∑

γ0γ1γ2=1

f0(γ0)f1(γ1)f2(γ2)ch(γ1, γ2)σ(γ1, γ2).

Since ch is bounded by a polynomial in `(γ1), `(γ2), it is easy to show that
the cyclic 2-cocycle trch extends to the smooth subalgebra R.

Now any compact oriented surface (or orbifold) Σ of genus g ≥ 2 has at
least two God-given Riemannian metrics of of nonpositive sectional curvature.
The best known is the hyperbolic metric. The second is the Bergman or
canonical metric, which is lesser known. It is constructed as follows. There
is an embedding of Σ into the Jacobian variety Jac(Σ), which is a torus, given
by the Abel-Jacobi map, which is defined in terms of a basis of H1(Σ,Z) and
a choice of basepoint x0 ∈ Σ, ie

x 7→
(∫ x

x0

a1,
∫ x
x0

b1, . . .
∫ x
x0

ag,
∫ x
x0

bg

)
.

The induced Riemannian metric is known as the Bergman or canonical metric,
and has nonpositive sectional curvature.



Hall conductance cocycle & Area cocycle

First consider the cyclic 2-cocycle called the conductance 2-cocycle trK
which is defined from physical considerations, more precisely from ”transport
theory”. Mathematically, it is obtained via the following general construction.
Given a 1-cocycle a on the discrete group Γ, i.e.

a(γ1γ2) = a(γ1) + a(γ2) ∀γ1, γ2 ∈ Γ

recall that one can define a derivation δa on the twisted group algebra C(Γ, σ)

δa(f)(γ) = a(γ)f(γ)

Now the first cohomology of the group Γ is a free Abelian group of rank 2g,
where g is the genus of Riemann surface H/Γ. It is in fact a symplectic vector
space over Z, and assume that aj, bj, j = 1, . . . g is a symplectic basis of
H1(Γ,Z). We denote δaj by δj and δbj by δj+g.



Hall conductance cocycle

Then these derivations give rise to cyclic 2-cocycle on the twisted group alge-
bra C(Γ, σ),

trK(f0, f1, f2) = κ

g∑
j=1

tr(f0{δj(f1)δj+g(f2)− δj+g(f1)δj(f2)})

= κ

g∑
j=1

∑
γ0γ1γ2=1

f0(γ0){δjf1(γ1)δj+gf2(γ2)− δj+gf1(γ1)δjf2(γ2)}σ(γ1, γ2),

where κ is some constant to be determined. trK is called the conductance
2-cocycle. Since aj, bj are linearly bounded, it follows that the conductance
2-cocycle trK is quadratically bounded, and so extends to a cyclic 2-cocycle
on R.

The goal is to prove that this cyclic 2-cocycle is fractional i.e. it takes on
fractional values on projections in the dense subalgebra R of the algebra of
observables. Key to proving this is the Proposition



Proposition([CHMM], [MM2]) The conductance 2-cocycle trK can be rewrit-
ten as the area cocycle wrt to the Bergman metric h i.e. κ trch = trκch = trK .



Hyperbolic area cocycle

The second cyclic 2-cocycle is the one defined by the hyperbolic metric τ ,
which can also be defined as follows. On G = PSL(2,R), there is an (area)
2-cocycle

cτ : G×G→ R
cτ(γ1, γ2) = (oriented) hyperbolic area of the geodesic triangle with

vertices at (o, γ−1
1 o, γ2o), o ∈ H



Hyperbolic area cocycle

The restriction of cτ to Γ is the hyperbolic area group cocycle on Γ. This in
turn defines a cyclic 2-cocycle on C(Γ, σ) by

trcτ(f0, f1, f2) =
∑

γ0γ1γ2=1

f0(γ0)f1(γ1)f2(γ2)cτ(γ1, γ2)σ(γ1, γ2).

Since cτ is a bounded 2-cocycle (the hyperbolic area of an ideal hyperbolic
triangle is finite), trcτ extends to the smooth subalgebra R.

Therefore we have have defined a couple of cyclic 2-cocycles, trK and trcτ
on the algebra of observables R.

Our next proposition compares these cyclic 2-cocycles.



Proposition [[CHMM], [MM], Comparison of cyclic 2-cocycles] The cyclic
2-cocycles trK and trcτ differ by a coboundary, which can be described ex-
plicitly. That is, they are cohomologous⇒ the conductance 2-cocycle trK and
the hyperbolic area 2-cocycle trcτ , induce the same map on K-theory.



This essentially follows from the fact that the 2 area group cocycles κch and
cτ are cohomologous, where κ is a computable constant, obtained as follows.

Let Σ̂ be a smooth genus g′ Riemann surface which is an orbifold covering
of Σ, ie Σ̂/G = Σ. If aj, j = 1, . . .2g′ is a symplectic basis of harmonic
1-forms on Σ̂, where aj+g′ = ∗aj, j = 1, . . . g′. One first observes that∑g′
j=1 aj ∧ aj+g′ is the volume form for the Bergman metric ĥ on Σ̂. To deter-

mine the constant κ, we integrate over the surface Σ̂ to get

∫
Σ̂
ω

Σ̂
= κ

∫
Σ̂

g′∑
j=1

aj ∧ aj+g′ = κg′,

since each term
∫
Σ̂
aj∧aj+g′ = 1 by our choice of normalized symplectic ba-

sis. By the Gauss-Bonnet theorem, one has
∫
Σ̂
ω

Σ̂
= 4π(g′ − 1). Therefore

κ = 4π(g′ − 1)/g′.



• The following key result is established by proving a twisted analogue of the
Baum-Connes conjecture for Γ and also a modest generalization of the higher
index theorem of Connes-Moscovici.

Theorem [MM] Let Γ be a cocompact Fuchsian group of signature (g : ν1, . . . , νn)

of genus g > 1. Then one has

[trK](K0(C∗r(Γ, σ)) = [trcτ ](K0(C∗r(Γ, σ)) = φZ ,

where φ = (2(g− 1) + (n−
∑
j 1/νj)) is the orbifold Euler characteristic

of the orbifold H/Γ.

That is, the conductance 2-cocycle trK is an integer multiple of the orbifold
Euler characteristic, and is in particular fractional.

The actual computation of φ is done via characteristic classes, where we ob-
serve that φ is proportional to the hyperbolic orbifold volume.



Because the charge carriers are Fermions, two different charge carriers must
occupy different quantum eigenstates of the Hamiltonian H.

In the limit of zero temperature they minimize the energy and occupy eigen-
states with energy lower that a given one, called the Fermi level and de-
noted E. Let PE denote denote the corresponding spectral projection, i.e.
PE = χ(−∞,E](H). Then the conductance in this case is

σE = trcτ(PE, PE, PE).

Corollary [MM] Fractional conductance] Suppose that the Fermi levelE lies
in a spectral gap of the Hamiltonian Hσ,V . Then the Hall conductance

σE = trK(PE, PE, PE) = trcτ(PE, PE, PE) ∈ φZ,

i.e. the Hall conductance has plateaus that are integer multiples of the
orbifold Euler characteristic φ of the orbifold H/Γ .



experimental g = 1 or g = 0

5/3 Σ(1; 6,6)
4/3 Σ(1; 3,3)
7/5 Σ(0; 5,5,10,10)
4/5 Σ(1; 5)
5/7 Σ(0; 7,14,14)
2/3 Σ(1; 3)
3/5 Σ(0; 5,10,10)
4/7 Σ(0; 7,7,7)
4/9 Σ(0; 3,9,9)
2/5 Σ(0; 5,5,5)
1/3 Σ(0; 3,6,6)
5/2 Σ(1; 6,6,6)



φ g′ = 2 or g′ = 3

4/3 Σ(0; 3,3,3,3,3), Σ(1; 3,3)
2/3 Σ(0; 2,2,2,2,3), Σ(1; 3)
4/7 Σ(0; 7,7,7)
1/2 Σ(0; 4,8,8), Σ(1; 2)
4/9 Σ(0; 3,9,9)
2/5 Σ(0; 5,5,5)
1/3 Σ(0; 4,4,6), Σ(0; 2,2,2,6)
1/4 Σ(0; 2,8,8) Σ(0; 4,4,4)
1/5 Σ(0; 2,5,10)

4/21 Σ(0; 3,7,7)
1/6 Σ(0; 2,4,12), Σ(0; 3,3,6)
1/8 Σ(0; 2,4,8)

1/12 Σ(0; 2,4,6), Σ(0; 3,3,4)
1/24 Σ(0; 2,3,8)
1/42 Σ(0; 2,3,7)



Advantages versus limitations
Summarizing, a key advantage of our hyperbolic model for the fractional QHE
is that it is a clear generalization of the Bellissard et al. Euclidean model for
the integer QHE. The fractions for the Hall conductance that we get are ob-
tained from an equivariant index theorem and are thus topological in nature.
Consequently, the Hall conductance is seen to be stable under small defor-
mations of the Hamiltonian. Thus, this model can be generalized to systems
with disorder as in [CHM], and then the hypothesis that the Fermi level is in a
spectral gap of the Hamiltonian can be relaxed to the assumption that it is in
a gap of extended states. This is a necessary step in order to establish the
presence of plateaux.

The main limitation of our model is that there is a small number of experi-
mental fractions that we do not obtain in our model, and we also derive other
fractions which do not seem to correspond to experimentally observed val-
ues. To our knowledge, however, this is also a limitation occuring in the other
models available in the literature.



• Apparant paradox: The Hamiltonian Hσ,V may not have any spectral gaps,
but yet there is fractional QHE!

• Good News! As in [CHM], the domains of the cyclic 2-cocycles trC and
trK are in fact larger than the smooth subalgebra R. More precisely, there
is a ∗-subalgebra A such that R ⊂ A ⊂ W ∗(Γ, σ) and A is contained in
the domains of trC and trK . A is closed under the Besov space functional
calculus, and the spectral projections PE of the Hamiltonian Hσ,V that lie in A
are called ”gaps in extended states”. They include all the spectral projections
onto gaps in the spectrum, but contain many more spectral projections. In
particular, even though the HamiltonianHσ,V may not have any spectral gaps,
it may still have ”gaps in extended states”.

• Modelling disorder As in [CHM], one can easily model disorder, i.e. allow
the potential V to be random. The results extend in a straightforward way to
this case.


