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Quantization in physics

Assignment

f 7−→ Qf

functions on M → operators on H.

M — classical phase space (symplectic manifold);
H — (fixed) Hilbert space.
f — classical observables; Qf — quantum observables.

Physical interpretation.

Dirac, von Neumann, Weyl.
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Example. M = R2n 3 (p, q),
H = L2(Rn) functions of q,

Qqj
: f(q) 7−→ qjf(q),

Qpj : f(q) 7−→ h

2πi

∂f(q)
∂qj

.

(Schrödinger representation)

Satisfies canonical commutation relations (CCR)

[Qqj
, Qqk

] = [Qpj
, Qpk

] = 0, ∀j, k,

[Qqj
, Qpk

] = 0 for j 6= k,

[Qqj
, Qpj

] =
ih

2π
I,

where [A,B] := AB −BA denotes the commutator of two operators.

What about Qf for more general functions f?
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Axioms for quantization

(1) f 7→ Qf is linear;
(2) for any polynomial φ : R → R,

Qφ◦f = φ(Qf );

(in particular: Q1 = I) (von Neumann rule)

(3) [Qf , Qg] = − ih

2π
Q{f,g}, where

{f, g} =
n∑

j=1

(
∂f

∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)

is the Poisson bracket of f and g.
(Extends to general symplectic manifolds instead of R2n.)

Solutions?

Bad news.
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Unfortunately, the above axioms are inconsistent (even on R2n).
Denote for brevity P = Qp1 , Q = Qq1 , p = p1, q = q1; then

pq =
(p + q)2 − p2 − q2

2
7→ (P + Q)2 − P 2 −Q2

2
=

PQ + QP

2
;

p2q2 =
(p2 + q2)2 − p4 − q4

2
7→ P 2Q2 + Q2P 2

2
6=

(
PQ + QP

2

)2

.

So
• linearity + von Neumann =⇒ contradiction;

[Groenewold 1946, van Hove 1951]:
• linearity + brackets =⇒ contradiction.

[Englǐs 2001]:
• von Neumann + brackets =⇒ contradiction.
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From a purely mathematical viewpoint, it can, in fact, be shown that
already the von Neumann rule and the canonical commutation relations
by themselves lead to a contradiction.

Namely, recall that there exists a continuous function f (Peáno curve)
which maps R continuously and surjectively onto R2n. Let g be a right
inverse for f , so that g : R2n → R and f ◦ g = id; such g exists owing
to the surjectivity of f , and can be chosen to be measurable and locally
bounded.

Set T = Qg and consider the functions φ = p1 ◦ f , ψ = q1 ◦ f . Then
by (von Neumann),

φ(T ) = Qp1◦f◦g = Qp1 , ψ(T ) = Qq1◦f◦g = Qq1 ,

and
0 = φ(T )ψ(T )− ψ(T )φ(T ) = [Qp1 , Qq1 ] = − ih

2π I,

a contradiction.

In the physical realm one usually deals only with smooth observables, which rules

out such pathologies.
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What to do?

In any case, discard the von Neumann rule, except for φ = 1, i.e.

Q1 = I.

First avenue: Insist on all other axioms, but restrict the space of quan-
tizable observables (the domain of the map f 7→ Qf ).
For instance, for quantization on Rn — allow only functions at most
linear in the pj . Then the recipe

Qf : ψ 7−→ − ih

2π

( ∑

j

∂f

∂pj

∂ψ

∂qj

)
+

(
f −

∑

j

pj
∂f

∂pj

)
ψ,

where ψ = ψ(q) ∈ L2(Rn), works.
In general, restrict to “functions depending on only half of the variables”.
Requires the use of polarizations of (Ω, ω), and leads to Geometric
quantization. [Kostant 1970], [Souriau 1969]

Second avenue: Relax (Poisson brackets) to hold only asymptotically as
h → 0:

(z) [Qf , Qg] = − ih

2π
Q{f,g} + O(h2).
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Simplest example on R2n: An “arbitrary” function f(p, q) can be ex-
panded into exponentials via the Fourier transform,

f(p, q) =
∫∫

f̂(ξ, η) e2πi(ξp+ηq) dξ dη.

Let us now postulate that

Qf =
∫∫

f̂(ξ, η) e2πi(ξQp+ηQq) dξ dη =: W (f).

This is the celebrated Weyl calculus of pseudodifferential operators.
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It can be shown that for nice f and g,

W (f)W (g) = Wfg + hWC1(f,g) + O(h2)

as h ↘ 0, where

C1(f, g) =
i

4π

n∑

j=1

( ∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj

)

satisfies
C1(f, g)− C1(g, f) = − i

2π
{f, g}.

Hence
[Wf ,Wg] = − ih

2π
W{f,g} + O(h2)

and so (z) holds for the Qf = Wf .
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The product formula

W (f)W (g) = Wfg + hWC1(f,g) + O(h2),

can even be improved to higher order: there exist C2, C3, . . . such that

WfWg = Wfg + hWC1(f,g) + h2WC2(f,g) + O(h3),

WfWg = Wfg + hWC1(f,g) + h2WC2(f,g) + h3WC3(f,g) + O(h4),

and so on. Symbolically,

WfWg = Wf∗g

where

f ∗ g = fg + hC1(f, g) + h2C2(f, g) + h3C3(f, g) + . . . .

In fact, in quantization it is often not really necessary to have the oper-
ators Qf , but suffices to have the noncommutative product like ∗.
This is the deformation quantization.
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Deformation quantization

C∞(Ω)[[h]] = the ring of all formal power series in h over C∞(Ω).
A star product is an associative C[[h]]-bilinear mapping ∗ such that

f ∗ g =
∞∑

j=0

hjCj(f, g), ∀f, g ∈ C∞(Ω),

where the bilinear operators Cj satisfy

C0(f, g) = fg, C1(f, g)− C1(g, f) = − i

2π
{f, g},

Cj(f,1) = Cj(1, f) = 0 ∀j ≥ 1.
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Weyl calculus — example of deformation quantization on R2n.

Unfortunately, does not readily extend to more general phase spaces
than R2n. Fourier transform.

Deformation quantization on general symplectic manifolds:
– introduced: [Bayen,Flato,Fronsdal,Lichnerowicz,Sternheimer 1977]
– existence: [DeWilde & Lecomte 1983], [Fedosov 1985], [Omori, Maeda&

Yoshioka 1991] ([Kontsevich 1997] even on any Poisson)
– classification up to equivalence: by H2(Ω,R)[[h]].

Drawback:
In general, only formal power series — no convergence guaranteed for a
given value of h. Difficult for calculations.
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This talk: special deformation quantizations on phase spaces which are
domains in Cn (more generally — Kähler manifolds):
Berezin and Berezin-Toeplitz quantizations.

First — an example.
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Fock space on C

On C: F(C) = F := L2
hol(C, π−1e−|z|

2
dz).

Let us compute the norm of f(z) =
∑∞

j=0 fjz
j :

∫

|z|<R

|f(z)|2e−|z|2 dz

π
=

∫

|z|<R

∞∑

j,k=0

fjz
jfkzke−|z|

2 dz

π

=
∫

|z|<R

∞∑

j,k=0

fjfkrj+ke(j−k)iθe−r2 r dr dθ

π

=
∫

r<R

∞∑

j=0

|fj |2r2je−r2
2r dr

=
∫ √

R

0

∞∑

j=0

|fj |2tje−t dt.

Letting R → +∞ yields

‖f‖2 =
∞∑

j=0

|fj |2
∫ ∞

0

tje−t dt =
∞∑

j=0

|fj |2j!.
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Thus f ∈ F iff its Taylor coefficients satisfy
∑

j |fj |2j! < ∞.

Similar computation (using Cauchy-Schwarz and Fubini) gives a formula
for the inner product in F :

〈f, g〉 =
∞∑

j=0

fjgj j!.

In particular, the monomials zn, n = 0, 1, 2, . . . , form an orthogonal
basis of F , and

zn

√
n!

, n = 0, 1, 2, . . . ,

is an orthonormal basis.
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Reproducing kernels for F : For any z ∈ C we have

|f(z)| =
∣∣∣
∑

j

fjz
j
∣∣∣ ≤

∑

j

|fj ||z|j =
∑

j

|fj |
√

j!
|z|j√

j!

≤
( ∑

j

|fj |2j!
)1/2( ∑

j

|z|2j

j!

)1/2

= ‖f‖ e|z|
2/2.

Thus, first, f 7→ f(z) is a bounded linear functional on F ; and second,
it is in fact uniformly bounded for z in a bounded set in C.

The latter implies (since locally uniform limits of holomorphic functions
are holomorphic) that F is a closed subspace in L2(C, e−|z|

2
dz), hence

a Hilbert space on its own right.

The former implies that there exist Kz ∈ F such that

f(z) = 〈f,Kz〉 ∀f ∈ F .

In fact, it is not difficult to compute what Kz is explicitly.
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Indeed, for any f ∈ F and z ∈ C

f(z) =
∑

j

fjz
j =

∑

j

fj
zj

j!
j! = 〈f,Kz〉,

where

Kz(w) =
∑

j

zj

j!
wj = ezw.

Thus Kz(w) = ezw.

The function of two variables

K(w, z) := Kz(w) = ezw

is called the reproducing kernel of F .
Will play important role throughout.



18

Toeplitz operators on F : for f ∈ L∞(C), defined by

Tfu = P (fu)

where P : L2(C, π−1e−|z|
2
dz) → F is the orthogonal projection.

In other words
Tf = PMf |F

where Mf : u 7→ fu is the operator of “multiplication by f”.

f is called the symbol of Tf .

Properties:
• Tf+g = Tf + Tg, Tcf = cTf for c ∈ C;
• ‖Tf‖ ≤ ‖Mf‖ = ‖f‖∞; in particular, bounded;
• T1 = I;
• T ∗f = Tf .
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Sometimes Tf makes sense even for unbounded f : for instance,

Tzu = P (zu) = zu

(if zu ∈ L2), so Tz is just “multiplication by z” on F . Similarly, Tzm for
any m = 0, 1, 2, . . . , is just “multiplication by zm”.
Densely defined operators.

More generally, for any f ∈ L∞,

Tzfu = P (zfu) = P (fP (zu)) = TfTzu

(if zu ∈ L2). Thus Tzf = TfTz. Similarly

Tzmf = TfTzm = Tfzm

for any m = 0, 1, 2, . . . .

Taking adjoints gives:
Tzmf = TzmTf .

In general, however, TfTg 6= Tfg.
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What is T ∗z = Tz?

(T ∗z zm)(w) = 〈T ∗z zm,Kw〉 = 〈zm, TzKw〉 = 〈zm, zKw〉

= 〈zm, z
∑

j

zj wj

j!
〉

= 〈zm,
∑

j

zj+1 wj

j!
〉

=
wm−1

(m− 1)!
〈zm, zm〉 =

m!
(m− 1)!

wm−1

= mwm−1.

Thus T ∗z zm = mzm−1, or

T ∗z =
∂

∂z
≡ ∂.

Similarly T ∗zm = ∂m.
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Commutation relation:

[Tz, Tz]u = [z, ∂]u = z∂u− ∂(zu) = −(∂zu) = −u,

or [Tz, Tz] = −I.
Setting z = p + iq for the real and imaginary parts, this gives

[Tp, Tq] =
1
2i

I,

which agrees with the CCR for the Schrödinger representation, except
for the constant factor. This is easily remedied.
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Scaled Fock spaces

Replace π−1e−|z|
2

by the scaled Gaussian:

Fα(C) = Fα := L2
hol(C,

α

π
e−α|z|2 dz), α > 0.

Reproducing kernel:
Kα(z, w) = eαwz.

Toeplitz operators:

Tz = z, T ∗z =
1
α

∂.

Reduces to F for α = 1.

Commutation relations for Tp, Tq, z = p + iq ∈ C ∼= R2:

[Tq, Tp] =
1

2αi
I.

Taking α = π/h thus exactly recovers the Schrödinger representation!

What about more complicated functions than z, z (or q, p) ?
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Recall Tz = 1
α∂. By Leibniz

Tzzmu = TzTzmu =
1
α

∂(zmu) =
mzm−1

α
u + zm 1

α
∂u,

or Tzzm = TzmTz + 1
αTmzm−1 . Thus

TzmTz = T [zzm − 1
α (zm)′] = T [(z − 1

α∂)zm].

It follows by linearity that

TpTz = T [(z − 1
α∂)p]

for any polynomial p in z.
Since Tzkf = TzkTf for any f , and ∂ commutes with z, we even have

TpTz = T [(z − 1
α∂)p]

for any polynomial p in z, z.
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Iterating this gives
TpTzk = T [(z − 1

α∂)kp]

which by the binomial theorem equals
k∑

j=0

k!
j!(k − j)!

(−1)j

αj
zk−j∂jp =

∑

j

(−1)j

j!αj
(∂

j
zk)(∂jp).

Finally, since Tfzm = TfTzm for any f , and ∂ commutes with z, we even
have the same with zk replaced by zkzm. By linearity, we thus get

TpTq = T
[ ∑

j

(−1)j

j!αj
(∂

j
q)∂jp

]
=

∑

j

α−jT
(−1)j(∂

j
q)∂jp/j!

for any polynomials p, q in z, z. (The sum is finite.)

The beginning of this expansion reads

TfTg = Tfg − 1
α

T(∂f)(∂g) + O(α−2).

For α = π/h, taking antisymmetrization produces the Poisson bracket.

Conclusion: f 7→ Tf on Fα, α = π
h , produces a deformation quantiza-

tion on C! For f a polynomial in z, z.



25

Fock spaces on Cn

Fα(Cn) := L2
hol(C

n, e−α‖z‖2(α/π)n dz)

Reproducing kernel:
Kα(z, w) = eα〈z,w〉.

Toeplitz operators:

Tzj = zj , T ∗zj
=

1
α

∂j .

Product of Toeplitz operators:

TfTg =
∑

j multiindex

(−1)|j|

j!α|j|
T [(∂jf)(∂

j
g)],

at least for f, g polynomials in zj , zj , j = 1, . . . , n.

So, again deformation quantization on Cn.
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Remark. There is actually an isomorphism, the Bargmann transform,
mapping L2(Rn) unitarily onto Fα(Cn).

Transferring Wf to Fα via this isomorphism, Wf actually becomes pre-
cisely Tf for f a first-degree polynomial in zj , zj ; but this is no longer
true for more general f . ¤
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Some caveats: the above is nice, but

• Tz, Tz are unbounded operators — not so nice

• how to make sense of

TfTg =
∑

j multiindex

(−1)|j|

j!α|j|
T [(∂jf)(∂

j
g)],

when f, g are not polynomials (the sum is infinite — convergence?!)

• We also want other domains than Cn.

Answer = rest of this talk.
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Bergman space

Ω a bounded domain in Cn

dm(z) or dz the normalized Lebesgue measure on Ω

L2(Ω) ⊃ L2
hol(Ω) the Bergman space

K(x, y) ≡ Ky(x) reproducing kernel: Ky ∈ L2
hol(Ω),

f(y) = 〈f,Ky〉 =
∫

Ω

f(x)K(y, x) dx ∀f ∈ L2
hol.

Note:
K(x, y) = Ky(x) = 〈Ky,Kx〉

is holomorphic in x, y.

Note also: since Ω is assumed bounded, 1 ∈ L2
hol(Ω), and

1 = 1(x) = 〈1,Kx〉 ≤ ‖1‖‖Kx‖.

Thus ‖Kx‖ > 0 for all x ∈ Ω.
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Berezin symbols

Berezin symbol (or transform) of operators on L2
hol(Ω)

T̃ (x) =
〈TKx,Kx〉
〈Kx,Kx〉 = 〈Tkx, kx〉, kx :=

Kx

‖Kx‖ .

(Note: denominator6= 0.) A function on Ω.

Properties:

T 7→ T̃ linear T̃ ∗ = T̃
Ĩ = 1 ‖T̃‖∞ ≤ ‖T‖
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Also, T̃ is real-analytic: it is the restriction to x = y of the function

T̃ (x, y) :=
〈TKy,Kx〉
〈Ky,Kx〉 =

〈TKy, Kx〉
K(x, y)

holomorphic in x, y.

Important property:
T 7→ T̃ is 1-to-1.

Indeed, suppose T̃ (x) = T̃ (x, x) = 0 ∀x. Setting x = u + iv, y =
u− iv, it follows that T̃ (u + iv, u + iv) = 0 for all u, v real, while being
holomorphic in u, v. By uniqueness principle for holomorphic functions,
T̃ (x, y) = 0 ∀x, y, hence 〈TKx,Ky〉 = TKx(y) = 0 ∀x, y. However,

T̃ ∗f(x) = 〈T ∗f, Kx〉 = 〈f, TKx〉 =
∫

Ω

f(y)TKx(y) dy = 0

for all f and x. Hence T ∗ = 0 and T = 0.
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Toeplitz operators

Toeplitz operator with symbol φ ∈ L∞(Ω):

Tφ : L2
hol → L2

hol, Tφf = P (φf)

where P : L2 → L2
hol is the Bergman projection (orthogonal)

Properties:
f 7→ Tf linear T ∗f = Tf

T1 = I ‖Tf‖ ≤ ‖f‖∞
Furthermore, for φ holomorphic and f arbitrary,

Tfφ = TfTφ, Tφf = TφTf ,

and Tφ is just the operator of “multiplication by φ”.
Same situation we saw for the Fock space — except now the operators are bounded.
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Berezin transform

Berezin transform Bf or f̃ of functions on Ω:

f̃ := T̃f .

Again a function on Ω; integral operator:

f̃(x) =
〈fKx,Kx〉
〈Kx,Kx〉 =

∫

Ω

f(y)
|K(x, y)|2
K(x, x)

dm(y).

Properties:
f 7→ Bf linear Bf = Bf
B1 = 1 ‖Bf‖∞ ≤ ‖f‖∞

Also, Bf is always a real-analytic function on Ω.
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Weighted variants

w > 0 a positive continuous weight on Ω

L2(Ω, w) ⊃ L2
hol(Ω, w) the weighted Bergman space

Kw(x, y) ≡ Kw,y(x) reproducing kernel

Berezin symbol of operators on L2
hol(Ω, w)

T̃ (x) =
〈TKw,x,Kw,x〉
〈Kw,x,Kw,x〉 = 〈Tkw,x, kw,x〉, kw,x :=

Kw,x

‖Kw,x‖ .

Toeplitz operator with symbol φ ∈ L∞(Ω):

Tφ : L2
hol → L2

hol, Tφf = Pw(φf)

where Pw : L2(Ω, w) → L2
hol(Ω, w) is the weighted Bergman projection.

Weighted Berezin transform of functions on Ω: f̃ := T̃f ,

f̃(x) =
〈fKw,x,Kw,x〉
〈Kw,x,Kw,x〉 =

∫

Ω

f(y)
|Kw(x, y)|2
Kw(x, x)

w(y) dm(y).

Notation: instead of f̃ , will also use Bwf .
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Ideas for quantization

• Berezin-Toeplitz quantization: Find family of weights ρh, h > 0,
such that

TfTg =
∞∑

j=0

hjT [Cj(f, g)],

where Cj are some bidifferential operators such that C0(f, g) = fg
and

C1(f, g)− C1(g, f) =
i

2π
{f, g}

for some given Poisson bracket {·, ·} on Ω.

We saw this for Ω = C, with Cj(f, g) = 1
j! (∂

jf)(∂
j
g).

(And similarly for Cn.)
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• Berezin quantization: For any given ρ, since T → T̃ is 1-to-1, we
can introduce a noncommutative product ∗ρ by

S̃ ∗ρ T̃ := S̃T .

Defined on {T̃ : T a bded linear operator on L2
hol(Ω, ρ)}.

(Depends on ρ.)

Find family of weights ρh, h > 0, such that as h → 0

f ∗ρh
g =

∞∑

j=0

hjCj(f, g),

where Cj are some bidifferential operators such that C0(f, g) = fg
and

C1(f, g)− C1(g, f) =
i

2π
{f, g}

for a given Poisson bracket {·, ·} on Ω.



36

• Alternative description of the last via the Berezin transform: Find
family of weights ρh, h > 0, such that as h → 0, the corresponding
Berezin transforms Bρh

≡ Bh have an asymptotic expansion

(♠) Bh = Q0 + hQ1 + h2Q2 + . . .

with some differential operators Qj , with Q0 = I. Let

Qjf =:
∑

α,β multiindices

cjαβ ∂α∂βf,

be the coefficients of Qj , and set f ∗Bt g :=
∑∞

j=0 hjCj(f, g), with

Cj(f, g) :=
∑

α,β

cjαβ (∂βf)(∂αg).

If it happens that

C1(f, g)− C1(g, f) =
i

2π
{f, g},

then we obtain a star-product from the preceding slide.

We first prove the last claim, and then proceed to construct the ρh.
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Sketch of proof of the equivalence:

Let Zj = Tzj be the operators on L2
hol(Ω, ρh) : f(z) 7→ zjf(z);

Z∗j their adjoints;

for p(z, z) =
∑

α,β pαβzαzβ a polynomial in z, z, define

Vp :=
∑

α,β

pαβZαZ∗β .

Recall the notation Ky = Kρh
( · , y) for the reproducing kernel,

and the notation, for any operator T on L2
hol(Ω, ρh),

T̃ (x, y) :=
〈TKy, Kx〉
〈Ky,Kx〉 =

TKy(x)
K(x, y)

=
T ∗Kx(y)
K(x, y)

(a function on Ω× Ω).
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Then

Ṽp(x, y) =
VpKy(x)
K(x, y)

=

∑
α,β pαβ(ZαZ∗βKy)(x)

K(x, y)

=

∑
α,β pαβxα(Z∗βKy)(x)

K(x, y)
=

∑
α,β pαβxα〈Z∗βKy, Kx〉

K(x, y)

=

∑
α,β pαβxα〈Ky, ZβKx〉

K(x, y)
=

∑
α,β pαβxαyβKx(y)

K(x, y)

=
∑

α,β

pαβxαyβ = p(x, y) for any h.

In particular, Ṽp(x, x) = Ṽp(x) = p(x, x).
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Now, for any two operators T1, T2

(̃T1T2)(x, y) =
〈T2Ky, T ∗1 Kx〉
〈Ky,Kx〉 =

∫
T2Ky(z) T ∗1 Kx(z)ρ(z) dz

〈Ky,Kx〉

=
∫

T̃2(z, y)K(z, y) · T̃1(x, z)K(x, z)
〈Ky,Kx〉 ρ(z) dz.

In particular,

(̃T1T2)(x, x) =
∫

T̃1(x, z)T̃2(z, x)
|K(x, z)|2
K(x, x)

ρ(x) dx

=
(
Bh[T̃1(x, · )T̃2( · , x)]

)
(x).
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Thus if (♠) holds, i.e.

Bh =
∑

j≥0

hj Qj as h → 0, with Qjf =
∑

α,β

cjαβ ∂α∂βf,

and Cj are defined by Cj(f, g) :=
∑

α,β

cjαβ (∂βf)(∂αg),

then as h → 0

(̃T1T2)(x, x) =
∑

j≥0

hj Qj [T̃1(x, · )T̃2( · , x)](x)

=
∑

j,α,β

hj cjαβ ∂βT̃1(x, · ) ∂αT̃2( · , x)
∣∣
x
.

Hence for T̃ (x) = T̃ (x, x), we get

T̃1T2 =
∑

j,α,β

hj cjαβ ∂βT̃1 ∂αT̃2

=
∑

j

hj Cj(T̃1, T̃2) = T̃1 ∗Bt T̃2,

by the definition of ∗Bt.
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Applying this to Vp gives

p ∗Bt q = ṼpVq for any polynomials p, q in z, z.

Since Ṽp = p, this means that

Ṽp ∗Bt Ṽq = ṼpVq = Ṽp ∗ρh
Ṽq.

Finally, for any f ∈ C∞(Ω), m = 1, 2, . . . , and x ∈ Ω, there exists
a polynomial p(x, x) such that ∂α∂βf(x) = ∂α∂βp(x, x) ∀|α|, |β| ≤ m.
Consequently, the two products ∗Bt and ∗ρh

— which involve finitely
many derivatives in each term — agree not only on polynomials, but
everywhere. ¤
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Remark. It is also possible to derive the B-T quantization from the
asymptotics (♠) of the Berezin transform; that is, to show that

(∗) [Tf , Tg] ≈ hT{f,g}

as the Planck constant h → 0.

Indeed, assume first that f, g are holomorphic. Then for any φ ∈ L2
hol

〈Tfφ,Kx〉 = 〈fφ, Kx〉 = f(x)φ(x) = f(x)〈φ,Kx〉.

It follows that T ∗f Kx = f(x)Kx. Similarly TgKx = g(x)Kx. Hence

T̃fTg(x) =
〈TfTgKx,Kx〉
〈Kx,Kx〉 =

〈TgKx, T ∗f Kx〉
〈Kx,Kx〉

=
〈g(x)Kx, f(x)Kx〉

〈Kx,Kx〉 = f(x)g(x).

Thus T̃fTg = fg.
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On the other hand, by definition and (♠),

T̃fg = Bh(fg) = fg + hQ1(fg) + O(h2).

Subtracting this from T̃fTg = fg gives

(TfTg − Tfg)∼ = −hQ1(fg) + O(h2)

= −hT̃Q1(fg) + O(h2).

“Removing the tilde” we get, for f, g holomorphic,

(‡) TfTg − Tfg = −hTF + O(h2), where F = −C1(g, f),

with the C1 from the Berezin quantization; note that this involves only
∂f and ∂g.
Since for u, v holomorphic and f, g arbitrary,

TgTu = Tgu, TvTf = Tvf ,

while also ∂(gu) = u∂g and ∂(vf) = v∂f , it follows that (‡) remains in
force even for any f, g of the form uv with u, v holomorphic.
By routine approximation argument, one gets it for any smooth f, g. ¤
(Shows that CBT

1 (f, g) = −CB
1 (g, f).)
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Connection between Berezin and Toeplitz quantizations

We have f 7→ Tf (Toeplitz ops), T 7→ T̃ (Berezin symbol).
Composition:

f 7−→ T̃f =: Bhf, the Berezin tsfm of f.

Applying the definition of Berezin star-product

T̃ ∗B S̃ = T̃ S

to T = Tf , S = Tg gives

T̃f ∗B T̃g = T̃fTg = T̃f∗BT g,

or

Bf ∗B Bg = B(f ∗BT g).
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Some examples of Berezin/B-T quantizations

Example 1. Ω = Cn, w(z) = e−α|z|2
(α

π

)n

dm(z) (α > 0)

reproducing kernel:
Kα(x, y) = eα〈x,y〉

Berezin transform:

Bαf(x) =
∫

Cn

f(y)
|K(x, y)|2
K(x, x)

w(y) dm(y)

=
(α

π

)n
∫

Cn

f(y) e−α‖x−y‖2 dm(y).

This is the heat solution operator at time t = 1/4α:

Bαf = e∆/4αf.



46

In particular, as α → +∞, we get Bαf → f , more precisely there is even
an asymptotic expansion

Bαf(x) = e∆/4αf(x) = f(x) +
∆f(x)

4α
+

∆2f(x)
2!(4α)2

+ . . . ,

or more briefly

Bα = e∆/4α =
∞∑

j=0

α−j ∆j

j!4j
.

B-T quantization: works, with

Cj(f, g) =
(−1)j

j!

∑

|α|=j

∂αf∂
α
g.

Berezin quantization: works, with

Cj(f, g) =
1
j!

∑

|α|=j

∂
α
f∂αg.

Both quantize the Euclidean Poisson bracket from the beginning of this
talk.
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Example 2. Ω = D, w(z) = α+1
π (1− |z|2)α (α > −1)

reproducing kernel:

Kα(x, y) =
1

(1− xy)α+2

Berezin transform:

Bαf(x) =
α + 1

π

∫

D

f(y)
(1− |x|2)α+2

|1− xy|2α+4
(1− |y|2)α dm(y).

Can again be shown that as α → +∞

Bαf = f +
∆̃f

4α
+ . . .

where
∆̃f = (1− |z|2)2∆

is the invariant Laplacian on D.
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Berezin quantization: works, with

C0(f, g) = fg, C1(f, g) = (1− |z|2) ∂f ∂g.

Explicit expressions for Cj , j ≥ 2 — unknown.

Berezin-Toeplitz quantization: works, with

C0(f, g) = fg, C1(f, g) = −(1− |z|2) ∂f ∂g.

Explicit expressions for Cj , j ≥ 2 — unknown.

Both quantize the Poisson bracket

{f, g} = (1− |z|2)2(∂f∂g − ∂g∂f)

associated to the invariant (=Poincare, Lobachevsky) metric on D.
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Example 3. Ω = Bn, the unit ball of Cn; w(z) = cα(1− ‖z‖2)α

(α > −1, cα making total mass 1)

reproducing kernel:

Kα(x, y) =
1

(1− 〈x, y〉)α+n+1

Berezin transform:

Bαf(x) = cα

∫

Bn

f(y)
(1− ‖x‖2)α+n+1

|1− 〈x, y〉|2α+2n+2
(1− ‖y‖2)α dm(y).

Again,

Bαf = f +
∆̃f

4α
+ . . .

as α → +∞, with ∆̃ the invariant Laplacian on Bn.

B/B-T quantizations: work, similar formulas as for the disc.
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Summary of the Examples: the Fock space on Cn

w(x) = (α
π )n e−α‖z‖2 , Kw(x, y) = eα〈x,y〉;

the disc

w(z) = α+1
π (1− |z|2)α, Kw(x, y) = (1− xy)−α−2;

the ball

w(z) = cα(1− ‖z‖2)α, Kw(x, y) = (1− 〈x, y〉)−α−n−1.

That is:
• Kw(x, x) is just the reciprocal of the weight w(x), up to the nor-

malization constants and possibly a shift in the power α.
• Bα is an approximate identity as α → +∞, more precisely

Bα = I +
Q1

α
+

Q2

α2
+ . . . ,

where Q1 = 1
4 (invariant Laplacian) etc.
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How to choose the weights ρh

Assume we have our domain Ω ⊂ Cn, with a given Poisson bracket:

(♣) {f, g} =
n∑

j,k=1

gjk(∂jf∂kg − ∂jf∂kg),

where {gjk}n
j,k=1 is a non-degenerate skew-Hermitian matrix.

The inverse matrix {gkj}n
j,k=1 the defines the differential form

ω =
n∑

j,k=1

gjkdzj ∧ dzk,

which in turn determines a nonvanishing volume element ωn on Ω.

Idea for finding the ρh: take guidance from group invariance.
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Assume there is a group G acting on Ω by biholomorphic transformations
preserving the form ω. Naturally, we would then want our quantizations
to be G-invariant, i.e. to satisfy

(f ◦ φ) ∗ (g ◦ φ) = (f ∗ g) ◦ φ, ∀φ ∈ G.

On the level of the Berezin quantization, this corresponds to the oper-
ators Qj in (♠), and, hence, to B itself, to commute with the action
of G. An examination of the formula defining the Berezin transform
shows that this happens if and only if

|K(x, y)|2
K(y, y)

ρ(x) dx =
|K(φ(x), φ(y))|2
K(φ(y), φ(y))

ρ(φ(x)) dφ(x).
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In particular, the ratio

ρ(φ(x)) dφ(x)
ρ(x) dx

=
|K(x, y)|2
K(y, y)

K(φ(y), φ(y))
|K(φ(x), φ(y))|2

has to be the squared modulus of a holomorphic function. Writing

ρ(x) dx = w(x) · ωn(x)

with the (G-invariant) volume element ωn, the last condition translates
into

w(φ(x)) = w(x)|fφ(x)|2

for some holomorphic functions fφ.

Hence, the form ∂∂ log w is G-invariant.
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But the simplest examples of G-invariant forms (and if G is sufficiently
“ample”, the only ones) are clearly the constant multiples of ω. Thus:

∂∂ log w = const.︸ ︷︷ ︸
=:−c

·ω.

Thus ω must lie in the range of ∂∂:

ω = ∂∂
(
− 1

c
log w

)
=: ∂∂Φ

for the real-valued function Φ (a Kähler potential). Then

ωn(x) = det[∂∂Φ(x)] dx,

and the sought weights ρh should thus be of the form

ρh(x) = e−cΦ(x) det[∂∂Φ] ,

with some c = c(h) depending only on h.
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Note that the potential Φ is then always strictly plurisubharmonic, i.e. the
matrix

gkj(z) :=
∂2Φ(z)
∂zk∂zj

is positive definite, ∀z ∈ Ω.

Furthermore, the condition C1(f, g)−C1(g, f) = − i
2π{f, g} in the Berezin

quantization will be satisfied if the operator Q1 in (♠) equals

Q1 =
n∑

j,k=1

gjk∂k∂j =: ∆,

the Laplace-Beltrami operator associated to ω.
Indeed, then

C1(f, g) =
n∑

j,k=1

gjk(∂kf)(∂jg),

and the claim follows by (♣).
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We have thus arrived at the final recipe for the Berezin and Berezin-
Toeplitz quantizations on a domain Ω ⊂ Cn with a given Poisson bracket:
namely, let

Φ be a potential for ω, i.e. ω = ∂∂Φ;
L2

hol(Ω, e−cΦ det[∂∂Φ]) the Bergman space (c ∈ R);
Kc(x, y) its reproducing kernel;
Bcf(x) the associated Berezin transform;

T
(c)
f the Toeplitz operator associated to f ;

and see if c = c(h) can be chosen so that

Bc = I + h∆ + h2Q2 + h3Q3 + . . . as h → 0

with some differential operators Qj , Q0 = I, Q1 = ∆; respectively, if

T
(c)
f T (c)

g =
∑

j≥0
hj T

(c)
Cj(f,g) as h ↘ 0 (in norm),

with C0(f, g) = fg and C1(f, g)− C1(g, f) = − i
2π{f, g}.
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Answer: works!, with c(h) = 1/h.

How to get this:
Asymptotics of Bc, T

(c) ! asymptotics of Kc(x, y), c = c(h), as h → 0.

Thus we need to study the asymptotics of

Kc(x, y) = the RK of L2
hol(Ω, e−cΦ det[∂∂Φ])

as c → +∞.
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To recapitulate: quantization has lead us to the following problem on
weighted Bergman kernels:

Ω ⊂ Cn a domain, Φ a strictly-PSH function on Ω

gkj = ∂k∂jΦ

measures dµh(z) := e−Φ(z)/h det[gkj(z)] dz, h > 0

weighted Bergman spaces L2
hol(Ω, dµh)

Bergman kernels Kh(x, y), Berezin transforms Bh, Toeplitz operators Tf .

Question: to find
• asymptotics of Kh(x, y) as h ↘ 0
• asymptotics of Bh as h ↘ 0

(
Bh =

∑
j hjQj

)

• asymptotics of TfTg as h ↘ 0
(
TfTg =

∑
j hj TCj(f,g)

)
.

Notation: α = 1/h → +∞.
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On manifolds Ω instead of domains:
• similar, only pass from functions to sections of a holomorphic line

bundle L, with the Hermitian metric (in the fibers) given locally
by e−Φ; (i.e. curvature form = −ω)

• and instead of L2
hol(Ω, dµh) ! space of holomorphic L2 sections

of ⊗mL, where m = 1/h = 1, 2, . . . .

• L exists ⇐⇒ [gkj ] ∈ H2(Ω,R) lies actually in H2(Ω,Z).
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Two approaches: independently 1997–1998

• compact manifolds:
– [Zelditch 1998] asymptotics of Kh(x, x), h → 0;

[Catlin 1999] ditto for Kh(x, y).
– Did not consider Bh, Tf , but rather — inspired by [Tian 1990]

(Ã[Ruan 1996]).
– Proofs — via Boutet de Monvel–Guillemin theory of Fourier

integral operators of Hermitian type.
– Actually — appeared already in [Bordemann, Meinrenken, Schli-

chenmaier 1994], who used it get the result about Tf , but
not Kh, Bh.

Will describe this one. (Strongest.)
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• domains in Cn:
– Kh, Bh: bare hands and ∂-techniques [M.E. 1996–2000]

(notably: Fefferman/BdMonvel-Sjöst & Kerzman/Boas,Bell);
needs some hypothesis on the behaviour of Φ at the boundary;

– Tf : only for bounded domains & has to resort to BdM-G.
– for n = 1 (Riemann surfaces) with Poincare metric — [Klimek-

Lesniewski 1991] (uniformization)

– for Ω = Cn, Euclidean metric (gkj = δjk, Φ(z) = ‖z‖2):
[Coburn 1993] [Borthwick 1994 – ?]

– [Berezin 1975] — Berezin quantization on Cn, bded symm doms
– [Borthwick-Lesniewski-Upmeier 1994]: B-T on bded symm doms

(extension [M.E. 2004])
[Karabegov ca 1995]: equivalence of ∗Bt & ∗Bq

– [Ma-Marinescu]; [Berndtsson-Berman-Sjöstrand]; [Schlichenmaier].
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Basics notions of several complex variables

Ω a domain in Cn

Φ : Ω → R is called strictly-plurisubharmonic (strictly-PSH) if for any
z ∈ Ω and v ∈ Cn, the function of one complex variable

t 7→ Φ(z + tv), t ∈ C

is strictly subharmonic where defined.
Equivalently, Φ is strictly-PSH if the matrix of mixed second derivatives

[ ∂2Φ
∂zj∂zk

]n

j,k=1

is positive definite.
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A bounded domain Ω ⊂ Cn with smooth boundary is called strictly
pseudoconvex if there exists a function r such that

r > 0 on Ω, r = 0, ‖∇r‖ > 0 on ∂Ω,

−r is strictly-PSH in a neighbourhood of Ω.

One calls r a strictly-PSH defining function for Ω.

Similarly: PSH functions, pseudoconvex domains.

Pseudoconvex domains are the natural domains in Cn on which holo-
morphic functions live. (in dim=1: all)

Strictly pseudoconvex are the manageable ones.
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Theorem B. Ω ⊂ Cn smoothly bounded strictly pseudoconvex,
Φ a strictly-PSH function on Ω,
such that e−Φ = r is a defining function for Ω.

Then for the weights w = e−αΦ det[∂∂Φ], we have as α → +∞, α ∈ Z,

Kα(x, x) ≈ eαΦ(x) αn

πn

∞∑

j=0

bj(x)
αj

,

where b0 = det[ ∂2Φ
∂zj∂zk

];

Bαf =
∞∑

j=0

Qjf

αj

where Qj are some differential operators, in particular Q0 = I and

Q1 =
n∑

j,k=1

gjk ∂2

∂zk∂zj
,

gjk being the inverse matrix to gjk := ∂2Φ
∂zj∂zk

.
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Previous examples: for Ω = Bn (including Ω = D for n = 1), choos-
ing

Φ(z) = log
1

1− ‖z‖2 ,

then Φ is strictly-PSH,

e−Φ(z) = 1− ‖z‖2

is a defining function for Bn, and

b0(z) = det[
∂2Φ

∂zj∂zk
] =

1
(1− ‖z‖2)n+1

.

Thus we recover the formulas from the examples (b0 explains the “shift
in the power α”). Also, we see that cα ∼ αn.

Works also for the Fock space: Ω = Cn, Φ(z) = ‖z‖2.
Then b0(z) = det[δjk] = 1, so there is no “shift” this time.
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Prerequisites for the proof of Thm B

(Will gloss over some technical details.)

• Hartogs domains: for a domain Ω ⊂ Cn and a real-valued smooth
function φ on it, it is

Ω̃ := {(z, t) ∈ Ω×C : |t|2 < e−φ(z)}.

– Pseudoconvex ⇐⇒ φ PSH, Ω pscvx;
– strictly pseudoconvex and smoothly bounded if Ω strictly-pscvx,

φ is strictly-PSH and e−φ = r is a defining function for Ω.

– Then
r̃(z, t) := r(z)− |t|2 = e−φ(z) − |t|2

is a defining function for Ω̃.
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• Hardy space: Consider the compact manifold X := ∂Ω̃ equipped
with the measure

dσ :=
J [r̃]
‖∂r̃‖ dS,

where dS stands for the surface measure on X and J [r̃] for the
Monge-Ampére determinant

J [r̃] = −det
[

r̃ ∂r̃
∂r̃ ∂∂r̃

]
> 0.

Let H2(X) = H2 be the subspace in L2(X, dσ) of functions whose
Poisson extension into Ω̃ is holomorphic.

Measure — natural (contact form).
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• Szegö kernel: For each (z, t) ∈ Ω̃, the evaluation functional f 7→
f(z, t) on H2 turns out to be continuous, hence is given by the
scalar product with a certain element k(z,t) ∈ H2. The function

KSzegö((x, t), (y, s)) := 〈k(y,s), k(x,t)〉H2

on Ω̃× Ω̃ is called the Szegö kernel.

Note: Introducing the coordinates

(z, t) = (z, eiθe−φ(z)/2), z ∈ Ω, θ ∈ [0, 2π]

on X, we have (recall r(z) = e−φ(z), r̃(z, t) = r(z)− |t|2)

dS =
√

r + ‖∂r‖2 dz dθ, ‖∂r̃‖ =
√

r + ‖∂r‖2,
J [r̃] = J [r] = e−(n+1)φ det[∂∂φ],

so dσ(z, t) = e−(n+1)φ det[∂∂φ] dz dθ.
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• Ligocka’s formula: [Ligocka 1989] If f is holomorphic on Ω̃, then

f(z, t) =
∑

j≥0
fj(z) tj

with fj holomorphic on Ω. Also

f(z) tj⊥ g(z) tk ∀f, g if k 6= j

(orthogonality in H2). Thus by a simple computation,
∫

X

|f(z, t)|2 dσ(z, t)

=
∑

j≥0

∫

Ω

|fj(z)|2
( ∫ 2π

0

|eiθe−φ(z)/2|2j dθ
)

e−(n+1)φ(z) det[∂∂φ(z)] dz

=
∑

j≥0
2π

∫

Ω

|fj |2 e−(j+n+1)φ det[∂∂φ(z)] dz.

It follows that H2(X) =
⊕∞

j=1 L2
hol(Ω, 2πe−(j+n+1)φ det[∂∂φ(z)] dz),

and

KSzegö((x, t), (y, s)) =
1
2π

∞∑

k=0

Ke−(j+n+1)φ det[∂∂φ(z)](x, y) (ts)j .
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• Fefferman’s theorem [1972]: Let D ⊂ Cn be a bounded strictly
pseudoconvex with smooth boundary, and r a C∞ defining func-
tion for D. Then there are functions a, b ∈ C∞(Cn) such that

(a) for x ∈ ∂D, a(x) > 0 (an explicit formula is available);
(b) the Szegö kernel of D is given by the formula

KSzegö(x, x) =
a(x)
r(x)n

+ b(x) log r(x).

Extends also to KSzegö(x, y) with x 6= y:

KSzegö(x, y) =
a(x, y)
r(x, y)n

+ b(x, y) log r(x, y),

where a(x, y) etc. are almost-sesquiholomorphic extensions of
a(x) = a(x, x) etc.

(c) KSzegö(x, y) is smooth on Ω× Ω\U , for any neighbourhood U of
the boundary diagonal {(x, x) : x ∈ ∂Ω}.
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• Resolution of singularities:

∞∑

k=0

kj zk =

{
j! (1− z)−j−1 + O((1− z)−j) if j ≥ 0,

(−1)j

j! (1− z)j log(1− z) + Cj(D) if j < 0;

f(z) =
∞∑

k=0

fkzk ∈ Cj(D) =⇒ fk = O(k−j) as k → +∞.

Hence, if f(z) =
∑∞

k=0 fkzk is holomorphic in D and

f(z) =
a(z)

(1− z)n+1
+ b(z) log(1− z), a, b ∈ C∞(D),

=
n+1∑

j=1

αj

(1− z)j
+

M∑

j=0

βj (1− z)j log(1− z) + CM (D)

(M = 0, 1, 2, . . . ), then

fk ≈ ankn + an−1k
n−1 + · · ·+ a0 +

a−1

k
+ . . . ,

for some constants an, an−1, . . . , as k →∞.
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Sketch of proof of Theorem B

Take the Hartogs domain

Ω̃ = {(z, t) ∈ Ω×C : |t|2 < e−Φ(z)}.

The hypotheses imply that Ω̃ is smoothly bounded, strictly pscvx, with

r̃(z, t) := e−Φ(z) − |t|2

a defining function.

Consider the Hardy space H2(X) on the boundary X = ∂Ω̃.
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As mentioned above, by Ligocka’s formula

(‡) H2(X) =
∞⊕

k=n+1

L2
hol(Ω, e−kΦ det[∂∂Φ])

(where n = dim Ω, so n + 1 = dim Ω̃), and

KSzegö((x, t), (y, s)) =
1
2π

∞∑

k=0

Kk+n+1(x, y) (st)k,

where
Kk(x, y) := the RK of L2

hol(Ω, e−kΦ det[∂∂Φ]).

Fefferman’s theorem for the Szegö kernel:

KSzegö =
a

r̃n+1
+ b log r̃, a, b ∈ C∞(Ω̃× Ω̃).
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Hence

1
2π

∞∑

k=0

Kk+n+1(x, x) sk = K̃Szegö((x, s), (x, 1))

=
a(x, s)

(e−Φ(x) − s)n+1
+ b(x, s) log(e−Φ(x) − s)

=
a(x, s)e(n+1)Φ(x)

(1− seΦ(x)

︸ ︷︷ ︸
z

)n+1
+ b(x, s) log(1− seΦ(x))− b(x, s)Φ(x)

=
A(x, z)

(1− z)n+1
+ b(x, z) log(1− z),

with A(x, z) = a(x, ze−Φ(x))e(n+1)Φ(x) − b(x, ze−Φ(x))Φ(x)(1− z)n+1.
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So for each x,

∞∑

k=0

e−kΦ(x) Kk+n+1(x, x) zk =
A(x, z)

(1− z)n+1
+ b(x, z) log(1− z).

Employing the resolution of singularities implies

Kk(x, x) =
kn

πn
ekΦ(x)

∞∑

j=0

bj(x)
kj

,

proving the first part of Theorem B.

Can be extended also to x 6= y:

Kk(x, y) =
kn

πn
ekΦ(x,y)

∞∑

j=0

bj(x, y)
kj

for (x, y) near the diagonal, where Φ(x, y), bj(x, y) are some almost-
sesquiholomorphic extensions of Φ(x) = Φ(x, x) and bj(x) = bj(x, x).
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The second part of Theorem B is proved by first showing that in the
integral defining Bh

Bhf(x) =
∫

Ω

f(y)
|Kα(x, y)|2
Kα(x, x)

e−αΦ(y) det[∂∂Φ(y)] dy

the main contribution comes from a small neighbourhood of x.

In that neighbourhood, one replaces Kα(x, y) by its asymptotic expan-
sion just proved. This reduces the problem to estimating integrals of the
form ∫

neighbourhood of x

F (y) eα
(
Φ(x,y)+Φ(y,x)−Φ(x)−Φ(y)

)
dy.

Finally, this kind of integrals is handled by the standard stationary-phase
(Laplace, WJKB) method, yielding the result.

The first two terms can be evaluated explicitly, giving the desired out-
comes Q0 = I and Q1 = ∆. ¤
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Berezin-Toeplitz quantization

For f ∈ L∞(Ω), let T
(m)
f denote the Toeplitz operator with symbol f on

L2
hol(Ω, e−mΦ det[∂∂Φ]).

Theorem BT. Let
• Ω be a smoothly bounded strictly pseudoconvex domain in Cn,
• Φ : Ω → R a smooth strictly-PSH function, such that
• e−Φ = r, a defining function for Ω.

Then:

(i) for any f ∈ C∞(Ω), ‖T (m)
f ‖ → ‖f‖∞ as m →∞;

(ii) there exist bilinear differential operators Cj (j = 0, 1, 2, . . . ) such

that for any f, g ∈ C∞(Ω) and any integer M ,

∥∥∥T
(m)
f T (m)

g −
M∑

j=0

m−jT
(m)
Cj(f,g)

∥∥∥ = O(m−M−1) as m →∞.

Furthermore, C0(f, g) = fg, C1(f, g)− C1(g, f) = i
2π{f, g}.

Hence, f ∗ g :=
∑∞

j=0 hjCj(f, g) defines a star-product on Ω.
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Sketch of proof. Consider again the Hartogs domain Ω̃

Ω̃ = {(z, t) ∈ Ω×C : |t|2 < e−Φ(z)}.

The hypothesis imply that Ω̃ is smoothly bounded, strictly pscvx, with
a defining function r̃(z, t) := e−Φ(z) − |t|2.
As before, consider the Szegö kernel on the compact manifold X = ∂Ω̃
with respect to the measure

dσ :=
J [r̃]
‖∂r̃‖ dS.

We have already seen that (Ligocka’s formula)

KSzegö(x, t; y, s) =
1
2π

∞∑

k=0

Kk+n+1(x, y) (st)k,

H2(X) =
∞⊕

k=n+1

L2
hol(Ω, e−kΦ det[∂∂Φ]).(‡)
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In addition, it is also the case that

∞⊕
m=n+1

T
(m)
f = TF , where F (x, t) := f(x),

TF being the Toeplitz operator on H2(X) with symbol F ∈ C∞(X):

TF ψ := PSzegö(Fψ),

where PSzegö : L2(X, dσ) → H2(X) is the orthogonal projection.

Now following the ideas of Boutet de Monvel & Guillemin, we define
Toeplitz operators TQ by the same recipe also for pseudodifferential
operators Q on X; i.e.

TQψ := PSzegöQψ.

(For Q the operator of multiplication by a function F on X, one recovers
the Toeplitz operators TF of the previous definition as a particular case.)
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The order ord(TQ) and the symbol σ(TQ) of TQ are defined as the order of
Q and the restriction of the principal symbol σ(Q) of Q to the symplectic
submanifold

Σ := {(x, ξ) : ξ = t(∂r − ∂r)x, t > 0}
of the cotangent bundle of X, respectively. It can be shown that these
two definitions are unambiguous, and

(P1) the generalized Toeplitz operators form an algebra under com-
position (i.e. ∀Q1, Q2 ∃Q3 : TQ1TQ2 = TQ3);

(P2) ord(T1T2) = ord(T1) + ord(T2); σ(T1T2) = σ(T1)σ(T2);
(P3) σ([T1, T2]) = {σ(T1), σ(T2)}Σ;
(P4) if ord(T ) = 0, then T is a bounded operator on H2; and
(P5) if ord(T1) = ord(T2) = k and σ(T1) = σ(T2), then ord(T1−T2) ≤

k − 1.
(P6) for F ∈ C∞(X) and (x, ξ) ∈ Σ, σ(TF )(x, ξ) = F (x).
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Let T be the subalgebra of all generalized Toeplitz operators which com-
mute with the circle action on H2

Uθ : f(z, w) 7→ f(z, eiθw), (z, w) ∈ X, θ ∈ R.

Clearly, the operators TF with F (x, t) = f(x), for some f on Ω (i.e. F
constant along fibers), belong to T .
Let D : H2(X) → H2(X) be the infinitesimal generator of the semi-
group Uθ. Then D acts as multiplication by im on the m-th summand
in (‡), for each m:

D =
⊕
m

imI;

and also
D = T∂/∂θ

is a generalized Toeplitz operator of order 1.
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Using (P1)–(P6) it can be shown that if T ∈ T is of order 0, then

T = TF + D−1R

for some (uniquely determined) F ∈ C∞(X) which is constant along
the fibers (hence, descends to a function on Ω), and R ∈ T of order 0.
Repeated application of this formula reveals that, for each k ≥ 0,

T =
k∑

j=0

D−jTFj + D−k−1Rk,

with Fj(x, t) = fj(x) for some fj ∈ C∞(Ω) and Rk ∈ T of order 0.
Invoking the fact that zeroth order operators are bounded, it follows
that

Dk+1
(
T −

k∑

j=0

D−jTFj

)
= Rk

is a bounded operator on H2.
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In view of the decomposition TF = ⊕mT
(m)
f , this means that

∥∥∥T
∣∣
L2(Ω,e−mΦ det[∂∂Φ])

−
k∑

j=0

m−jT
(m)
fj

∥∥∥ = O(m−k−1).

Taking for T the product TF TG, with F (x, t) = f(x), G(x, t) = g(x)
for some f, g ∈ C∞(Ω), & setting Cj(f, g) := fj , we obtain the desired
asymptotic expansion for T

(m)
f T

(m)
g .

Finally, the assertions concerning C0 and C1 follow from the above prop-
erties (P2) and (P3) of the symbol. ¤

[Coburn 1994] — ΨDO’s; [Klimek-Lesn] [Bwick-Lesn-Upm] — bare-hands.
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Concluding remarks

• surveys: [Schlichenmaier – arXiv 2010], [Ali-E RMP 2005]

• α = 1/h → +∞ noninteger

• generalizations of Fefferman:
– weakly pscvx — difficult!, unsolved (h-regular [Kamimoto])
– weighted — ok for rα, rα + rα+1 log r; [Blaschke]
– metric bad at the boundary — e−Φ 6= r (Cheng-Yau): partly

• generalizations of BdM-G: ([Bravermann])

• balanced metrics: Kα(x, x) = (α
π )n eαΦ(x)

det[∂∂Φ(x)]
— [Donaldson]

• range of the Berezin symbol: [Coburn] [Xia] [Bommier-Hato] (cur-
vature conditions)

• asymptotic of harmonic Bergman kernels: Rn
+ [Jahn], Bn [Blaschke],

radial/horizontal [Englis 2015]



Berezin-Toeplitz quantization

and noncommutative geometry

(joint with B. Iochum & K. Falk, CPT, Marseille)
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Bergman space

Ω a domain in Cn

dz the Lebesgue measure

L2(Ω) ⊃ L2
hol(Ω) the Bergman space

K(x, y) := Ky(x) = Kx(y) the reproducing kernel for L2
hol(Ω)
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Toeplitz operators

Toeplitz operator with symbol φ ∈ L∞(Ω):

Tφ : L2
hol → L2

hol, Tφf = P (φf)

where P : L2 → L2
hol is the orthogonal projection (Bergman projection).

Explicitly:

Tφf(x) =
∫

Ω

f(y)φ(y)K(x, y) dy.

Properties:

• f 7→ Tf linear
• T∗f = Tf

• T1 = I
• ‖Tf‖ ≤ ‖f‖∞.

Weighted variants.
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Spectral triples
[Connes 1990–1995, Noncommutative geometry]

X a topological space ←→ the algebra C(X)

Recovers X as Spec C(X).

Recovering Riemmannian metric etc.: spectral triples.
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Definition. Spectral triple (A,H,D) =following data:
– a unital algebra A with involution,
– a faithful representation π of A on a Hilbert space H
– a selfadjoint operator D on H with compact resolvent such that

the commutator [D, π(A)] is bounded for any a ∈ A.
(more precisely: extends to a bounded operator)

Example. M a spinc-manifold,
A = C∞(M),
H = L2(M, S), S =spinor bundle,
D = D/, the Dirac operator.

Connes’ Reconstruction Thm. All commutative spectral triples (with
certain extra structure) arise (essentially) in this way.

M = Spec(A‖·‖)
distM (x, y) = sup{|a(x)− a(y)| : ‖[D, a]‖ ≤ 1}

dim M = sup{d : |D|−1/d is trace class}.
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Aim of this talk: see if can get interesting examples of spectral triples
using Toeplitz operators and Berezin-Toeplitz quantization.

(Work in progress.)

Will review some stuff first.
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Scenario

Ω a bounded domain in Cn with smooth (C∞) boundary
(manifolds — later)

r a (positively-signed) defining function for Ω:

r ∈ C∞(Ω), r > 0 on Ω,

r = 0, ‖∇r‖ > 0 on ∂Ω.

Domain strictly pseudoconvex if r can be chosen so that
[ ∂2r

∂zj∂zk

]n

j,k=1
< 0 on Ω.

Guarantees that the one-form

η := Im ∂r|∂Ω =
∂r − ∂r

2i

∣∣∣
∂Ω

is a contact form, i.e.
η ∧ (dη)n−1

is a nonvanishing volume element on the boundary ∂Ω.
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Boutet de Monvel’s calculus

K the Poisson extension operator:

(*) K : L2(∂Ω) → L2(Ω), ∆Ku = 0 on Ω, Ku|∂Ω = u.

Bounded L2 → L2; in fact

K : W s(∂Ω) →
≈

W
s+ 1

2
harm(Ω), ∀s ∈ R.

Adjoint K∗ : L2(Ω) → L2(∂Ω). The composition

(**) Λ := K∗K

is a (classical) ΨDO on ∂Ω of order −1, with σ(Λ)(x, ξ) = 1/(2|ξ|).
Comparing (*) and (**), we see that

Λ−1K∗ =: γ

is the operator of taking the boundary values of harmonic functions.
Bijection W

s+ 1
2

harm(Ω) → W s(∂Ω), ∀s ∈ R.
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Boutet de Monvel calculus: operators of the form

Λw := K∗wK, w a function on Ω.

If w is of the form

w = rαg, α > −1, g ∈ C∞(Ω),

then Λw is a ΨDO on ∂Ω of order −α− 1, with

σ(Λw)(x, ξ) =
Γ(α + 1)g(x)

2|ξ|α+1
‖ηx‖α.

(All this holds in fact for domains in Rn not only Cn.)
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Hardy space Toeplitz operators

Hardy space:

H2(∂Ω) := {u ∈ L2(∂Ω) : Ku is holomorphic on Ω}.

(Here L2(∂Ω) is taken with respect to η∧ (dη)n−1, but we could in prin-
ciple choose any other surface element mutually absolutely continuous
with respect to it.)

Szegö projection:

S : L2(∂Ω) → H2 orthogonal.

Toeplitz operator: for f ∈ C∞(∂Ω), the operator on H2 defined by

Tfu = S(fu).

Clearly, f 7→ Tf is linear, T ∗f = Tf , T1 = I (the identity operator) and
‖Tf‖ ≤ ‖f‖∞.
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Generalized Toeplitz operators

For P a ΨDO on ∂Ω, the operator TP on H2 defined by

TP = SP |H2 .

Alternatively, can be viewed as

TP = SPS

on all of L2(∂Ω) (by prolonging by zero).

For P the operator of multiplication by a function f ∈ C∞(∂Ω), recovers
TP = Tf we had before.
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Symbol calculus of GTO’s: it can happen that TP = TQ, but the restric-
tion of σ(P ) to the half-line bundle

Σ := {(x, tηx) ∈ T ∗∂Ω : t > 0}

is determined uniquely. =⇒ One can define unambiguously the order
and the principal symbol of a GTO by

ord(TP ) := inf{ord(Q) : TQ = TP },
σ(TP ) := σ(Q)|Σ for any Q with TQ = TP and ord(Q) = ord(TP ).

(The order can be −∞; in that case the symbol is not defined.)

ord(TP TQ) = ord(TP ) + ord(TQ),

σ(TP TQ) = σ(TP )σ(TQ),

σ([TP , TQ]) = {σ(TP ), σ(TQ)}Σ.
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Perhaps the most important property of GTOs is that for any TP , there
exists a Q such that

TP = TQ and QS = SQ.

An immediate consequence is that GTOs form an algebra: for any P, Q,
TP TQ = TR for some R.

The operators TP have the standard mapping properties on the scale of
holomorphic Sobolev spaces

W s
hol(∂Ω) := {u ∈ W s(∂Ω) : Ku is holomorphic on Ω},

namely,

TP : W s
hol(∂Ω) → W s−m

hol (∂Ω), m = ord(TP ).

In particular, TP is bounded on any W s
hol(∂Ω) if m ≤ 0, and compact if

m < 0.
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A GTO is elliptic if σ(TP ) does not vanish.

In that case, TP has a parametrix, i.e. there exists a GTO TQ of or-
der −m such that TP TQ − I and TQTP − I are smoothing operators
(i.e. of order −∞).

In particular, if TP is elliptic of order m 6= 0 with σ(TP ) > 0 and is
positive and selfadjoint as an operator on H2, then the inverse T−1

P is
also a GTO.
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Relationship between Bergman and Hardy space Toeplitz ops

For f = Ku ∈ L2
hol(Ω, w):

(*)

‖Ku‖2w = 〈wKu,Ku〉L2(Ω) = 〈K∗wKu, u〉L2(∂Ω)

= 〈Λwu, u〉L2(∂Ω)

= 〈TΛw
u, u〉H2 ,

because u = Su for Ku holomorphic.

For f ∈ C∞(Ω) and u, v ∈ H2, similarly as above

〈TfKu,Kv〉w = 〈fKu,Kv〉w = 〈wfKu,Kv〉L2(Ω)

= 〈Λwfu, v〉L2(∂Ω) = 〈TΛwf
u, v〉H2

= 〈KT−1
Λw

TΛwf
u,Kv〉w

by (*). Thus

γTfK = T−1
Λw

TΛwf
.

For w = rαg, g ∈ C∞(Ω), and f vanishing on ∂Ω to order k, the rhs is
a GTO of order −k.
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Examples of spectral triples: Bergman spaces

Let w be a positive weight on Ω of the form

w = rαg, g ∈ C∞(Ω), α > −1, g > 0 on ∂Ω.

Claim. Let
– H be the Hilbert space L2

hol(Ω, w);
– A be the algebra (no closures taken) generated by the Toeplitz

operators Tf , f ∈ C∞(Ω), on L2
hol(Ω, w);

– D the operator D = T−1
r on L2

hol(Ω, w).
Then (A,H,D), with π the identity representation, is a spectral triple.

Here we note that

〈Trf, f〉w =
∫

Ω

r|f |2w > 0

for any f 6= 0, so Tr is a (bounded) positive selfadjoint operator on L2
hol(Ω, w);

hence it has a densely defined positive selfadjoint inverse T−1
r .
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Proof.

– a unital algebra A with involution:
Clear. (T1 = I, T∗f = Tf )

– a faithful representation π of A on a Hilbert space H:
Clear.

– a selfadjoint operator D on H with compact resolvent such that
the commutator [D, π(A)] is bounded for any a ∈ A.

D−1 = Tr is compact, since γTrK = T−1
Λw

TΛrw is a GTO of order
α + 1− (α + 2) = −1, hence compact.
Boundedness of [T−1

r , A] for A ∈ A:
enough to check for A = Tf ; but using γTfK = T−1

Λw
TΛwf

,

[T−1
r ,Tf ] = K[T−1

Λrw
TΛw

, T−1
Λw

TΛwf
]γ = K[GTO1, GTO0]γ.

The commutator on the rhs is a GTO of order 0, hence bounded. ¤

Principal symbol — can be expressed using Reeb vector field.
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Examples of spectral triples: Hardy spaces

Claim. Let
– H be the Hardy space H2 on ∂Ω;
– A be the algebra (no closures taken) generated by Tf , f ∈ C∞(∂Ω),

on H2;
– D be the operator D = T−1

P on H2, where P is a positive selfad-
joint ΨDO on ∂Ω of order −1.

Then (A,H,D), with π the identity representation, is a spectral triple.

An example of P in the last item is e.g. P = Λ = K∗K: indeed, 〈Λu, u〉 =
‖Ku‖2 > 0 for u 6= 0 since K is injective.

Proof. Analogous. ¤

In fact, could take A =GTOs of order 0.

Generalization: to arbitrary contact manifolds admitting a “Toeplitz structure”.
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Examples of spectral triples: Berezin-Toeplitz quantization

From now on, we fix a sequence of real numbers α > −1 tending to +∞,
e.g. α = 0, 1, 2, . . . .

Assume that log 1
r is strictly plurisubharmonic on Ω (defining functions r

with this property exist in abundance due to the strict pseudoconvexity
of Ω). So that

gjk(z) :=
∂2

∂zj∂zk
log

1
r(z)

defines a Kähler metric on Ω; and let

g = rn+1 det[gjk] = −det
[

r ∂r
∂r ∂∂r

]
.
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Consider the weighted Bergman spaces L2
hol(Ω, rαg). Let

H =
⊕

α

L2
hol(Ω, rαg)

and let πm stand for the orthogonal onto the summand α = m.

For f ∈ C∞(Ω), we then have the orthogonal sums

T⊕f :=
⊕

α

(Tf on L2
hol(Ω, rαg))

of the Toeplitz operators Tf , acting on H. Clearly each T⊕f is again
bounded with ‖T⊕f ‖ ≤ ‖f‖∞, and [T⊕f , πm] = 0 for all m.
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Let B = {M bounded linear on H : [M,πm] = 0 for all m and

(*) M ≈
∞∑

m=0

α−mT⊕fm
as m → +∞

with some fm ∈ C∞(Ω) (depending on M)}. Here “≈” means that

∥∥∥πj

(
M −

k−1∑
m=0

α−mT⊕fm

)
πj

∥∥∥ = O(j−k) as j → +∞

for any k = 0, 1, 2, . . . .
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Berezin-Toeplitz quantization =⇒ finite products of T⊕f belong to B.
More specifically,

T⊕f T⊕g ≈
∞∑

m=0

α−mT⊕Cm(f,g)

where ∞∑

j=0

hjCj(f, g) =: f ? g

defines a star product on (Ω, gjk). Symbolically, we can write

T⊕f T⊕g = T⊕f?g.

Another result is, incidentally, that

‖πmT⊕f πm‖ → ‖f‖∞ as m → +∞,

implying, in particular, that for a given M ∈ B the sequence {fm} in (*)
is determined uniquely.
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Another depiction: consider the “unit disc bundle”

Ω̃ := {(z, t) ∈ Ω×C : |t|2 < r(z)}.

r defining function =⇒ Ω̃ smoothly bounded;
Ω is strictly pseudoconvex, log 1

r is strictly plurisubharmonic
=⇒ Ω̃ is strictly pseudoconvex.

Thus we have the Hardy space H2(Ω̃) =: H̃ of Ω̃ and the GTOs T̃P

there, whose symbols P are now ΨDOs on ∂Ω̃.

A function in H̃ has the Taylor expansion in the fiber variable

f(z, t) =
∞∑

m=0

fm(z)tm.

Denote by H̃m (m = 0, 1, 2, . . . ) the subspace in H̃ of functions with
fj = 0 ∀j 6= m.
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Then the correspondence

fm(z)tm ←→ fm(z)

is an isometry (up to a constant factor) of H̃m onto L2
hol(Ω, rm−n−1g).

Thus

H̃ =
∞⊕

m=0

H̃m+n+1
∼=

∞⊕
m=0

L2
hol(Ω, rmg) = H.

Furthermore, viewing a function f ∈ C∞(Ω) also as the function f(z, t) :=
f(z) on ∂Ω̃ (i.e. identifying f with its pullback via the projection map),
one has, under the above isomorphism,

T̃f
∼=

⊕
m

(Tf on L2
hol(Ω, rmg)) = T⊕f .
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Finally, let K̃ be the Poisson operator for Ω̃, and as before set

Λ̃ := K̃∗K̃.

Thus Λ̃ is a ΨDO on ∂Ω̃ of order −1, and a positive selfadjoint compact
operator on H̃.

Since the fiber rotations (z, t) 7→ (z, eiθt), θ ∈ R, preserve holomorphy
and harmonicity of functions, both K̃, Λ̃ and the Szegö projection S̃ :
L2(∂Ω̃) → H̃ must commute with them.

The GTOs T̃eΛ on H̃ therefore likewise commutes with these rotations,
and hence commutes also with the projections in H̃ onto H̃m, i.e. is
diagonalized by the decomposition H̃ =

⊕
m H̃m.

Denote by L =
⊕

m Lm the operator corresponding to T̃eΛ under the
isomorphism H̃ ∼= H =

⊕
m L2

hol(Ω, rmg).
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Claim. Let
– H be the Hilbert space H;
– A be the algebra (no closures taken) generated by T⊕f , f ∈ C∞(Ω),

on H;
– D be the operator D = L−1.

Then (A,H,D), with π the identity representation, is a spectral triple.

Proof. “Direct sum” of the previous, using the above formalism. ¤
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Examples of spectral triples: Star products

Can alternatively define A in the last example as an algebra of formal
power series.

More specifically, let κ be the linear map from B into the ring of formal
power series

N = C∞(Ω)[[h]]

given by

(*) κ : M 7−→
∞∑

m=0

hmfm(z)

if

M ≈
∞∑

m=0

α−mT⊕fm
as m → +∞.

Note: κ is well defined and, owing to the B-T quantization, extending
as usual ? from functions to all of N by C[[h]]-linearity,

κ(MN) = κ(M) ? κ(N),

i.e. κ : (B, ◦) → (N , ?) is an algebra homomorphism.
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Claim. Let
– H be the space H;
– A be the subalgebra (no closures) of (N , ?) generated by κ(T⊕f ),

f ∈ C∞(Ω), and h;
– π be the representation

π
( ∞∑

m=0

hmfm

)
=

∑
m

α−mT⊕fm

which is well-defined from A into B;
– D be the operator D =

⊕
m L−1

m on H.
Then (A,H,D) is a spectral triple.
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Proof. In view of the preceding result, the only thing we need to check is
that π is well-defined (i.e. the right-hand side in (*) converges and defines
a bounded operator in B) and faithful. The former is immediate from
the fact that A consists of finite sums of finite products of κ(T⊕f ), while
κ : (B, ◦) → (N , ?) is an algebra homomorphism and π(κ(T⊕f )) = T⊕f
by the definitions. For the faithfulness, note that κ ◦ π = id on A; thus
π(A) = 0 implies A = κ(π(A)) = 0. ¤
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. . . what to do yet

(1) non-positive (natural/canonical) D?
(For Ω =ball — Howe correspondence & Bargmann transform.
Not quite right.)
(“Phase” — conformal structure.)

(2) (In fact: D−1 /∈ A desirable.)
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(3) spectral dimension: n for Bergman/Hardy, n+1 for star product
Geodesic distance? (Was sup{|a(x)− a(y)|, ‖[D, A]‖ ≤ 1}.)
???

(4) manifolds not domains?

Bergman — boundary needed
Hardy — any with “contact structure”
star products — unit disc bundle, ok for polarized compact

(5) Utilization in physics?
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Thanks for your attention!


