# Deformation quantization and applications to noncommutative geometry 

Miroslav Engliš (Prague \& Opava)

EQuaLS8, Jan 18 - 22, 2016

Assignment

$$
\begin{aligned}
f & \longmapsto Q_{f} \\
\text { functions on } M & \rightarrow \text { operators on } H .
\end{aligned}
$$

$M$ - classical phase space (symplectic manifold);
$H$ - (fixed) Hilbert space.
$f$ - classical observables; $Q_{f}$ - quantum observables.

Physical interpretation.

Dirac, von Neumann, Weyl.

Example. $M=\mathbf{R}^{2 n} \ni(p, q)$,
$H=L^{2}\left(\mathbf{R}^{n}\right)$ functions of $q$,

$$
\begin{aligned}
Q_{q_{j}}: f(q) & \longmapsto q_{j} f(q), \\
Q_{p_{j}}: f(q) & \longmapsto \frac{h}{2 \pi i} \frac{\partial f(q)}{\partial q_{j}} .
\end{aligned}
$$

(Schrödinger representation)
Satisfies canonical commutation relations (CCR)

$$
\begin{gathered}
{\left[Q_{q_{j}}, Q_{q_{k}}\right]=\left[Q_{p_{j}}, Q_{p_{k}}\right]=0, \quad \forall j, k,} \\
{\left[Q_{q_{j}}, Q_{p_{k}}\right]=0 \text { for } j \neq k,} \\
{\left[Q_{q_{j}}, Q_{p_{j}}\right]=\frac{i h}{2 \pi} I,}
\end{gathered}
$$

where $[A, B]:=A B-B A$ denotes the commutator of two operators.
What about $Q_{f}$ for more general functions $f$ ?
(1) $f \mapsto Q_{f}$ is linear;
(2) for any polynomial $\phi: \mathbf{R} \rightarrow \mathbf{R}$,

$$
Q_{\phi \circ f}=\phi\left(Q_{f}\right) ;
$$

(in particular: $Q_{\mathbf{1}}=I$ ) (von Neumann rule)
(3) $\left[Q_{f}, Q_{g}\right]=-\frac{i h}{2 \pi} Q_{\{f, g\}}$, where

$$
\{f, g\}=\sum_{j=1}^{n}\left(\frac{\partial f}{\partial p_{j}} \frac{\partial g}{\partial q_{j}}-\frac{\partial f}{\partial q_{j}} \frac{\partial g}{\partial p_{j}}\right)
$$

is the Poisson bracket of $f$ and $g$.
(Extends to general symplectic manifolds instead of $\mathbf{R}^{2 n}$.)
Solutions?
Bad news.

Unfortunately, the above axioms are inconsistent (even on $\mathbf{R}^{2 n}$ ). Denote for brevity $P=Q_{p_{1}}, Q=Q_{q_{1}}, p=p_{1}, q=q_{1}$; then

$$
\begin{gathered}
p q=\frac{(p+q)^{2}-p^{2}-q^{2}}{2} \mapsto \frac{(P+Q)^{2}-P^{2}-Q^{2}}{2}=\frac{P Q+Q P}{2} ; \\
p^{2} q^{2}=\frac{\left(p^{2}+q^{2}\right)^{2}-p^{4}-q^{4}}{2} \mapsto \frac{P^{2} Q^{2}+Q^{2} P^{2}}{2} \neq\left(\frac{P Q+Q P}{2}\right)^{2} .
\end{gathered}
$$

So

- linearity + von Neumann $\Longrightarrow$ contradiction;
[Groenewold 1946, van Hove 1951]:
- linearity + brackets $\Longrightarrow$ contradiction.
[Engliš 2001]:
- von Neumann + brackets $\Longrightarrow$ contradiction.

From a purely mathematical viewpoint, it can, in fact, be shown that already the von Neumann rule and the canonical commutation relations by themselves lead to a contradiction.

Namely, recall that there exists a continuous function $f$ (Peáno curve) which maps $\mathbf{R}$ continuously and surjectively onto $\mathbf{R}^{2 n}$. Let $g$ be a right inverse for $f$, so that $g: \mathbf{R}^{2 n} \rightarrow \mathbf{R}$ and $f \circ g=\mathrm{id}$; such $g$ exists owing to the surjectivity of $f$, and can be chosen to be measurable and locally bounded.

Set $T=Q_{g}$ and consider the functions $\phi=p_{1} \circ f, \psi=q_{1} \circ f$. Then by (von Neumann),

$$
\phi(T)=Q_{p_{1} \circ f \circ g}=Q_{p_{1}}, \quad \psi(T)=Q_{q_{1} \circ f \circ g}=Q_{q_{1}},
$$

and

$$
0=\phi(T) \psi(T)-\psi(T) \phi(T)=\left[Q_{p_{1}}, Q_{q_{1}}\right]=-\frac{i h}{2 \pi} I,
$$

a contradiction.
In the physical realm one usually deals only with smooth observables, which rules out such pathologies.

## What to do?

In any case, discard the von Neumann rule, except for $\phi=1$, i.e.

$$
Q_{1}=I
$$

First avenue: Insist on all other axioms, but restrict the space of quantizable observables (the domain of the map $f \mapsto Q_{f}$ ).
For instance, for quantization on $\mathbf{R}^{n}$ - allow only functions at most linear in the $p_{j}$. Then the recipe

$$
Q_{f}: \psi \longmapsto-\frac{i h}{2 \pi}\left(\sum_{j} \frac{\partial f}{\partial p_{j}} \frac{\partial \psi}{\partial q_{j}}\right)+\left(f-\sum_{j} p_{j} \frac{\partial f}{\partial p_{j}}\right) \psi,
$$

where $\psi=\psi(q) \in L^{2}\left(\mathbf{R}^{n}\right)$, works.
In general, restrict to "functions depending on only half of the variables". Requires the use of polarizations of $(\Omega, \omega)$, and leads to Geometric quantization. [Kostant 1970], [Souriau 1969]

Second avenue: Relax (Poisson brackets) to hold only asymptotically as $h \rightarrow 0$ :

$$
\left[Q_{f}, Q_{g}\right]=-\frac{i h}{2 \pi} Q_{\{f, g\}}+O\left(h^{2}\right)
$$

Simplest example on $\mathbf{R}^{2 n}$ : An "arbitrary" function $f(p, q)$ can be expanded into exponentials via the Fourier transform,

$$
f(p, q)=\iint \hat{f}(\xi, \eta) e^{2 \pi i(\xi p+\eta q)} d \xi d \eta
$$

Let us now postulate that

$$
Q_{f}=\iint \hat{f}(\xi, \eta) e^{2 \pi i\left(\xi Q_{p}+\eta Q_{q}\right)} d \xi d \eta=: W(f)
$$

This is the celebrated Weyl calculus of pseudodifferential operators.

It can be shown that for nice $f$ and $g$,

$$
W(f) W(g)=W_{f g}+h W_{C_{1}(f, g)}+O\left(h^{2}\right)
$$

as $h \searrow 0$, where

$$
C_{1}(f, g)=\frac{i}{4 \pi} \sum_{j=1}^{n}\left(\frac{\partial f}{\partial q_{j}} \frac{\partial g}{\partial p_{j}}-\frac{\partial f}{\partial p_{j}} \frac{\partial g}{\partial q_{j}}\right)
$$

satisfies

$$
C_{1}(f, g)-C_{1}(g, f)=-\frac{i}{2 \pi}\{f, g\}
$$

Hence

$$
\left[W_{f}, W_{g}\right]=-\frac{i h}{2 \pi} W_{\{f, g\}}+O\left(h^{2}\right)
$$

and so ( $\mathbf{(}$ ) holds for the $Q_{f}=W_{f}$.

The product formula

$$
W(f) W(g)=W_{f g}+h W_{C_{1}(f, g)}+O\left(h^{2}\right),
$$

can even be improved to higher order: there exist $C_{2}, C_{3}, \ldots$ such that

$$
\begin{gathered}
W_{f} W_{g}=W_{f g}+h W_{C_{1}(f, g)}+h^{2} W_{C_{2}(f, g)}+O\left(h^{3}\right), \\
W_{f} W_{g}=W_{f g}+h W_{C_{1}(f, g)}+h^{2} W_{C_{2}(f, g)}+h^{3} W_{C_{3}(f, g)}+O\left(h^{4}\right),
\end{gathered}
$$

and so on. Symbolically,

$$
W_{f} W_{g}=W_{f * g}
$$

where

$$
f * g=f g+h C_{1}(f, g)+h^{2} C_{2}(f, g)+h^{3} C_{3}(f, g)+\ldots .
$$

In fact, in quantization it is often not really necessary to have the operators $Q_{f}$, but suffices to have the noncommutative product like $*$.
This is the deformation quantization.
$C^{\infty}(\Omega)[[h]]=$ the ring of all formal power series in $h$ over $C^{\infty}(\Omega)$. A star product is an associative $\mathbf{C}[[h]]$-bilinear mapping $*$ such that

$$
f * g=\sum_{j=0}^{\infty} h^{j} C_{j}(f, g), \quad \forall f, g \in C^{\infty}(\Omega)
$$

where the bilinear operators $C_{j}$ satisfy

$$
\begin{gathered}
C_{0}(f, g)=f g, \quad C_{1}(f, g)-C_{1}(g, f)=-\frac{i}{2 \pi}\{f, g\}, \\
C_{j}(f, \mathbf{1})=C_{j}(\mathbf{1}, f)=0 \quad \forall j \geq 1
\end{gathered}
$$

Weyl calculus - example of deformation quantization on $\mathbf{R}^{2 n}$.
Unfortunately, does not readily extend to more general phase spaces than $\mathbf{R}^{2 n}$. Fourier transform.

Deformation quantization on general symplectic manifolds:

- introduced: [Bayen,Flato,Fronsdal,Lichnerowicz,Sternheimer 1977]
- existence: [DeWilde \& Lecomte 1983], [Fedosov 1985], [Omori, Maeda\& Yoshioka 1991] ([Kontsevich 1997] even on any Poisson)
- classification up to equivalence: by $H^{2}(\Omega, \mathbf{R})[[h]]$.

Drawback:
In general, only formal power series - no convergence guaranteed for a given value of $h$. Difficult for calculations.

This talk: special deformation quantizations on phase spaces which are domains in $\mathbf{C}^{n}$ (more generally - Kähler manifolds):
Berezin and Berezin-Toeplitz quantizations.
First - an example.

## Fock space on $\mathbf{C}$

On $\mathbf{C}: \quad \mathcal{F}(\mathbf{C})=\mathcal{F}:=L_{\text {hol }}^{2}\left(\mathbf{C}, \pi^{-1} e^{-|z|^{2}} d z\right)$.
Let us compute the norm of $f(z)=\sum_{j=0}^{\infty} f_{j} z^{j}$ :

$$
\begin{aligned}
\int_{|z|<R}|f(z)|^{2} e^{-|z|^{2}} \frac{d z}{\pi} & =\int_{|z|<R} \sum_{j, k=0}^{\infty} f_{j} z^{j} \overline{f_{k} z^{k}} e^{-|z|^{2}} \frac{d z}{\pi} \\
& =\int_{|z|<R} \sum_{j, k=0}^{\infty} f_{j} \overline{f_{k}} r^{j+k} e^{(j-k) i \theta} e^{-r^{2}} \frac{r d r d \theta}{\pi} \\
& =\int_{r<R} \sum_{j=0}^{\infty}\left|f_{j}\right|^{2} r^{2 j} e^{-r^{2}} 2 r d r \\
& =\int_{0}^{\sqrt{R}} \sum_{j=0}^{\infty}\left|f_{j}\right|^{2} t^{j} e^{-t} d t
\end{aligned}
$$

Letting $R \rightarrow+\infty$ yields

$$
\|f\|^{2}=\sum_{j=0}^{\infty}\left|f_{j}\right|^{2} \int_{0}^{\infty} t^{j} e^{-t} d t=\sum_{j=0}^{\infty}\left|f_{j}\right|^{2} j!
$$

Thus $f \in \mathcal{F}$ iff its Taylor coefficients satisfy $\sum_{j}\left|f_{j}\right|^{2} j!<\infty$.
Similar computation (using Cauchy-Schwarz and Fubini) gives a formula for the inner product in $\mathcal{F}$ :

$$
\langle f, g\rangle=\sum_{j=0}^{\infty} f_{j} \overline{g_{j}} j!.
$$

In particular, the monomials $z^{n}, n=0,1,2, \ldots$, form an orthogonal basis of $\mathcal{F}$, and

$$
\frac{z^{n}}{\sqrt{n!}}, \quad n=0,1,2, \ldots
$$

is an orthonormal basis.

Reproducing kernels for $\mathcal{F}$ : For any $z \in \mathbf{C}$ we have

$$
\begin{aligned}
|f(z)| & =\left|\sum_{j} f_{j} z^{j}\right| \leq \sum_{j}\left|f_{j}\right||z|^{j}=\sum_{j}\left|f_{j}\right| \sqrt{j!} \frac{|z|^{j}}{\sqrt{j!}} \\
& \leq\left(\sum_{j}\left|f_{j}\right|^{2} j!\right)^{1 / 2}\left(\sum_{j} \frac{|z|^{2 j}}{j!}\right)^{1 / 2}=\|f\| e^{|z|^{2} / 2} .
\end{aligned}
$$

Thus, first, $f \mapsto f(z)$ is a bounded linear functional on $\mathcal{F}$; and second, it is in fact uniformly bounded for $z$ in a bounded set in $\mathbf{C}$.

The latter implies (since locally uniform limits of holomorphic functions are holomorphic) that $\mathcal{F}$ is a closed subspace in $L^{2}\left(\mathbf{C}, e^{-|z|^{2}} d z\right)$, hence a Hilbert space on its own right.

The former implies that there exist $K_{z} \in \mathcal{F}$ such that

$$
f(z)=\left\langle f, K_{z}\right\rangle \quad \forall f \in \mathcal{F} .
$$

In fact, it is not difficult to compute what $K_{z}$ is explicitly.

Indeed, for any $f \in \mathcal{F}$ and $z \in \mathbf{C}$

$$
f(z)=\sum_{j} f_{j} z^{j}=\sum_{j} f_{j} \frac{z^{j}}{j!} j!=\left\langle f, K_{z}\right\rangle,
$$

where

$$
K_{z}(w)=\sum_{j} \frac{\overline{z^{j}}}{\overline{j!}} w^{j}=e^{\bar{z} w} .
$$

Thus $K_{z}(w)=e^{\bar{z} w}$.
The function of two variables

$$
K(w, z):=K_{z}(w)=e^{\bar{z} w}
$$

is called the reproducing kernel of $\mathcal{F}$.
Will play important role throughout.

Toeplitz operators on $\mathcal{F}$ : for $f \in L^{\infty}(\mathbf{C})$, defined by

$$
T_{f} u=P(f u)
$$

where $P: L^{2}\left(\mathbf{C}, \pi^{-1} e^{-|z|^{2}} d z\right) \rightarrow \mathcal{F}$ is the orthogonal projection.
In other words

$$
T_{f}=\left.P M_{f}\right|_{\mathcal{F}}
$$

where $M_{f}: u \mapsto f u$ is the operator of "multiplication by $f$ ".
$f$ is called the symbol of $T_{f}$.

## Properties:

- $T_{f+g}=T_{f}+T_{g}, T_{c f}=c T_{f}$ for $c \in \mathbf{C}$;
- $\left\|T_{f}\right\| \leq\left\|M_{f}\right\|=\|f\|_{\infty}$; in particular, bounded;
- $T_{\mathbf{1}}=I$;
- $T_{f}^{*}=T_{\bar{f}}$.

Sometimes $T_{f}$ makes sense even for unbounded $f$ : for instance,

$$
T_{z} u=P(z u)=z u
$$

(if $z u \in L^{2}$ ), so $T_{z}$ is just "multiplication by $z$ " on $\mathcal{F}$. Similarly, $T_{z^{m}}$ for any $m=0,1,2, \ldots$, is just "multiplication by $z^{m "}$.
Densely defined operators.
More generally, for any $f \in L^{\infty}$,

$$
T_{z f} u=P(z f u)=P(f P(z u))=T_{f} T_{z} u
$$

(if $z u \in L^{2}$ ). Thus $T_{z f}=T_{f} T_{z}$. Similarly

$$
T_{z^{m} f}=T_{f} T_{z^{m}}=T_{f} z^{m}
$$

for any $m=0,1,2, \ldots$.
Taking adjoints gives:

$$
T_{\bar{z}^{m} f}=T_{\bar{z}^{m}} T_{f} .
$$

In general, however, $T_{f} T_{g} \neq T_{f g}$.

What is $T_{z}^{*}=T_{\bar{z}}$ ?

$$
\begin{aligned}
\left(T_{z}^{*} z^{m}\right)(w) & =\left\langle T_{z}^{*} z^{m}, K_{w}\right\rangle=\left\langle z^{m}, T_{z} K_{w}\right\rangle=\left\langle z^{m}, z K_{w}\right\rangle \\
& =\left\langle z^{m}, z \sum_{j} z^{j} \frac{\bar{w}^{j}}{j!}\right\rangle \\
& =\left\langle z^{m}, \sum_{j} z^{j+1} \frac{\bar{w}^{j}}{j!}\right\rangle \\
& =\frac{w^{m-1}}{(m-1)!}\left\langle z^{m}, z^{m}\right\rangle=\frac{m!}{(m-1)!} w^{m-1} \\
& =m w^{m-1}
\end{aligned}
$$

Thus $T_{z}^{*} z^{m}=m z^{m-1}$, or

$$
T_{z}^{*}=\frac{\partial}{\partial z} \equiv \partial
$$

Similarly $T_{z^{m}}^{*}=\partial^{m}$.

Commutation relation:

$$
\left[T_{z}, T_{\bar{z}}\right] u=[z, \partial] u=z \partial u-\partial(z u)=-(\partial z u)=-u
$$

or $\left[T_{z}, T_{\bar{z}}\right]=-I$.
Setting $z=p+i q$ for the real and imaginary parts, this gives

$$
\left[T_{p}, T_{q}\right]=\frac{1}{2 i} I
$$

which agrees with the CCR for the Schrödinger representation, except for the constant factor. This is easily remedied.

Replace $\pi^{-1} e^{-|z|^{2}}$ by the scaled Gaussian:

$$
\mathcal{F}_{\alpha}(\mathbf{C})=\mathcal{F}_{\alpha}:=L_{\mathrm{hol}}^{2}\left(\mathbf{C}, \frac{\alpha}{\pi} e^{-\alpha|z|^{2}} d z\right), \quad \alpha>0
$$

Reproducing kernel:

$$
K_{\alpha}(z, w)=e^{\alpha \bar{w} z}
$$

Toeplitz operators:

$$
T_{z}=z, \quad T_{z}^{*}=\frac{1}{\alpha} \partial
$$

Reduces to $\mathcal{F}$ for $\alpha=1$.
Commutation relations for $T_{p}, T_{q}, z=p+i q \in \mathbf{C} \cong \mathbf{R}^{2}$ :

$$
\left[T_{q}, T_{p}\right]=\frac{1}{2 \alpha i} I
$$

Taking $\alpha=\pi / h$ thus exactly recovers the Schrödinger representation!
What about more complicated functions than $z, \bar{z}($ or $q, p) ?$

Recall $T_{\bar{z}}=\frac{1}{\alpha} \partial$. By Leibniz

$$
T_{\bar{z} z^{m}} u=T_{\bar{z}} T_{z^{m}} u=\frac{1}{\alpha} \partial\left(z^{m} u\right)=\frac{m z^{m-1}}{\alpha} u+z^{m} \frac{1}{\alpha} \partial u,
$$

or $T_{\bar{z} z^{m}}=T_{z^{m}} T_{\bar{z}}+\frac{1}{\alpha} T_{m z^{m-1}}$. Thus

$$
T_{z^{m}} T_{\bar{z}}=T\left[\bar{z} z^{m}-\frac{1}{\alpha}\left(z^{m}\right)^{\prime}\right]=T\left[\left(\bar{z}-\frac{1}{\alpha} \partial\right) z^{m}\right] .
$$

It follows by linearity that

$$
T_{p} T_{\bar{z}}=T\left[\left(\bar{z}-\frac{1}{\alpha} \partial\right) p\right]
$$

for any polynomial $p$ in $z$.
Since $T_{\bar{z}^{k} f}=T_{\bar{z}^{k}} T_{f}$ for any $f$, and $\partial$ commutes with $\bar{z}$, we even have

$$
T_{p} T_{\bar{z}}=T\left[\left(\bar{z}-\frac{1}{\alpha} \partial\right) p\right]
$$

for any polynomial $p$ in $z, \bar{z}$.

Iterating this gives

$$
T_{p} T_{\bar{z}^{k}}=T\left[\left(\bar{z}-\frac{1}{\alpha} \partial\right)^{k} p\right]
$$

which by the binomial theorem equals

$$
\sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \frac{(-1)^{j}}{\alpha^{j}} \bar{z}^{k-j} \partial^{j} p=\sum_{j} \frac{(-1)^{j}}{j!\alpha^{j}}\left(\bar{\partial}^{j} \bar{z}^{k}\right)\left(\partial^{j} p\right) .
$$

Finally, since $T_{f z^{m}}=T_{f} T_{z^{m}}$ for any $f$, and $\bar{\partial}$ commutes with $z$, we even have the same with $\bar{z}^{k}$ replaced by $\bar{z}^{k} z^{m}$. By linearity, we thus get

$$
T_{p} T_{q}=T\left[\sum_{j} \frac{(-1)^{j}}{j!\alpha^{j}}\left(\bar{\partial}^{j} q\right) \partial^{j} p\right]=\sum_{j} \alpha^{-j} T_{(-1)^{j}\left(\bar{\partial}^{j} q\right) \partial^{j} p / j!}
$$

for any polynomials $p, q$ in $z, \bar{z}$. (The sum is finite.)
The beginning of this expansion reads

$$
T_{f} T_{g}=T_{f g}-\frac{1}{\alpha} T_{(\partial f)(\bar{\partial} g)}+O\left(\alpha^{-2}\right)
$$

For $\alpha=\pi / h$, taking antisymmetrization produces the Poisson bracket.
Conclusion: $f \mapsto T_{f}$ on $\mathcal{F}_{\alpha}, \alpha=\frac{\pi}{h}$, produces a deformation quantization on $\mathbf{C}$ ! For $f$ a polynomial in $z, \bar{z}$.

$$
\mathcal{F}_{\alpha}\left(\mathbf{C}^{n}\right):=L_{\mathrm{hol}}^{2}\left(\mathbf{C}^{n}, e^{-\alpha\|z\|^{2}}(\alpha / \pi)^{n} d z\right)
$$

Reproducing kernel:

$$
K_{\alpha}(z, w)=e^{\alpha\langle z, w\rangle} .
$$

Toeplitz operators:

$$
T_{z_{j}}=z_{j}, \quad T_{z_{j}}^{*}=\frac{1}{\alpha} \partial_{j} .
$$

Product of Toeplitz operators:

$$
T_{f} T_{g}=\sum_{j \text { multiindex }} \frac{(-1)^{|j|}}{j!\alpha^{|j|}} T\left[\left(\partial^{j} f\right)\left(\bar{\partial}^{j} g\right)\right],
$$

at least for $f, g$ polynomials in $z_{j}, \bar{z}_{j}, j=1, \ldots, n$. So, again deformation quantization on $\mathbf{C}^{n}$.

Remark. There is actually an isomorphism, the Bargmann transform, mapping $L^{2}\left(\mathbf{R}^{n}\right)$ unitarily onto $\mathcal{F}_{\alpha}\left(\mathbf{C}^{n}\right)$.

Transferring $W_{f}$ to $\mathcal{F}_{\alpha}$ via this isomorphism, $W_{f}$ actually becomes precisely $T_{f}$ for $f$ a first-degree polynomial in $z_{j}, \bar{z}_{j}$; but this is no longer true for more general $f$. $\square$

Some caveats: the above is nice, but

- $T_{z}, T_{\bar{z}}$ are unbounded operators - not so nice
- how to make sense of

$$
T_{f} T_{g}=\sum_{j \text { multiindex }} \frac{(-1)^{|j|}}{j!\alpha^{|j|}} T\left[\left(\partial^{j} f\right)\left(\bar{\partial}^{j} g\right)\right],
$$

when $f, g$ are not polynomials (the sum is infinite - convergence?!)

- We also want other domains than $\mathbf{C}^{n}$.

Answer $=$ rest of this talk.

## Bergman space

$\Omega$ a bounded domain in $\mathbf{C}^{n}$
$d m(z)$ or $d z$ the normalized Lebesgue measure on $\Omega$
$L^{2}(\Omega) \supset L_{\text {hol }}^{2}(\Omega)$ the Bergman space
$K(x, y) \equiv K_{y}(x)$ reproducing kernel: $K_{y} \in L_{\text {hol }}^{2}(\Omega)$,

$$
f(y)=\left\langle f, K_{y}\right\rangle=\int_{\Omega} f(x) K(y, x) d x \quad \forall f \in L_{\mathrm{hol}}^{2} .
$$

Note:

$$
K(x, y)=K_{y}(x)=\left\langle K_{y}, K_{x}\right\rangle
$$

is holomorphic in $x, \bar{y}$.
Note also: since $\Omega$ is assumed bounded, $\mathbf{1} \in L_{\text {hol }}^{2}(\Omega)$, and

$$
1=\mathbf{1}(x)=\left\langle\mathbf{1}, K_{x}\right\rangle \leq\|\mathbf{1}\|\left\|K_{x}\right\| .
$$

Thus $\left\|K_{x}\right\|>0$ for all $x \in \Omega$.

## Berezin symbols

Berezin symbol (or transform) of operators on $L_{\text {hol }}^{2}(\Omega)$

$$
\widetilde{T}(x)=\frac{\left\langle T K_{x}, K_{x}\right\rangle}{\left\langle K_{x}, K_{x}\right\rangle}=\left\langle T k_{x}, k_{x}\right\rangle, \quad k_{x}:=\frac{K_{x}}{\left\|K_{x}\right\|} .
$$

(Note: denominator $\neq 0$.) A function on $\Omega$.
Properties:

$$
\begin{array}{ll}
T \mapsto \widetilde{T} \text { linear } & \widetilde{T^{*}}=\overline{\widetilde{T}} \\
\widetilde{I}=\mathbf{1} & \|\widetilde{T}\|_{\infty} \leq\|T\|
\end{array}
$$

Also, $\widetilde{T}$ is real-analytic: it is the restriction to $x=y$ of the function

$$
\widetilde{T}(x, y):=\frac{\left\langle T K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}=\frac{\left\langle T K_{y}, K_{x}\right\rangle}{K(x, y)}
$$

holomorphic in $x, \bar{y}$.
Important property:

$$
T \mapsto \widetilde{T} \quad \text { is } 1 \text {-to-1. }
$$

Indeed, suppose $\widetilde{T}(x)=\widetilde{T}(x, x)=0 \forall x$. Setting $x=u+i v, y=$ $u-i v$, it follows that $\widetilde{T}(u+i v, \overline{u+i v})=0$ for all $u, v$ real, while being holomorphic in $u, v$. By uniqueness principle for holomorphic functions, $\widetilde{T}(x, y)=0 \forall x, y$, hence $\left\langle T K_{x}, K_{y}\right\rangle=T K_{x}(y)=0 \forall x, y$. However,

$$
\widetilde{T}^{*} f(x)=\left\langle T^{*} f, K_{x}\right\rangle=\left\langle f, T K_{x}\right\rangle=\int_{\Omega} f(y) \overline{T K_{x}(y)} d y=0
$$

for all $f$ and $x$. Hence $T^{*}=0$ and $T=0$.

## Toeplitz operators

Toeplitz operator with symbol $\phi \in L^{\infty}(\Omega)$ :

$$
T_{\phi}: L_{\mathrm{hol}}^{2} \rightarrow L_{\mathrm{hol}}^{2}, \quad T_{\phi} f=P(\phi f)
$$

where $P: L^{2} \rightarrow L_{\text {hol }}^{2}$ is the Bergman projection (orthogonal)
Properties:

$$
\begin{array}{ll}
f \mapsto T_{f} \text { linear } & T_{f}^{*}=T_{\bar{f}} \\
T_{\mathbf{1}}=I & \left\|T_{f}\right\| \leq\|f\|_{\infty}
\end{array}
$$

Furthermore, for $\phi$ holomorphic and $f$ arbitrary,

$$
T_{f \phi}=T_{f} T_{\phi}, \quad T_{\bar{\phi} f}=T_{\bar{\phi}} T_{f},
$$

and $T_{\phi}$ is just the operator of "multiplication by $\phi$ ".
Same situation we saw for the Fock space - except now the operators are bounded.

## BEREZIN TRANSFORM

Berezin transform $B f$ or $\tilde{f}$ of functions on $\Omega$ :

$$
\widetilde{f}:=\widetilde{T_{f}}
$$

Again a function on $\Omega$; integral operator:

$$
\widetilde{f}(x)=\frac{\left\langle f K_{x}, K_{x}\right\rangle}{\left\langle K_{x}, K_{x}\right\rangle}=\int_{\Omega} f(y) \frac{|K(x, y)|^{2}}{K(x, x)} d m(y) .
$$

Properties:

$$
\begin{array}{ll}
f \mapsto B_{f} \text { linear } & B \bar{f}=\overline{B f} \\
B \mathbf{1}=\mathbf{1} & \|B f\|_{\infty} \leq\|f\|_{\infty}
\end{array}
$$

Also, $B f$ is always a real-analytic function on $\Omega$.

## Weighted variants

$w>0$ a positive continuous weight on $\Omega$
$L^{2}(\Omega, w) \supset L_{\text {hol }}^{2}(\Omega, w)$ the weighted Bergman space
$K_{w}(x, y) \equiv K_{w, y}(x)$ reproducing kernel
Berezin symbol of operators on $L_{\text {hol }}^{2}(\Omega, w)$

$$
\widetilde{T}(x)=\frac{\left\langle T K_{w, x}, K_{w, x}\right\rangle}{\left\langle K_{w, x}, K_{w, x}\right\rangle}=\left\langle T k_{w, x}, k_{w, x}\right\rangle, \quad k_{w, x}:=\frac{K_{w, x}}{\left\|K_{w, x}\right\|} .
$$

Toeplitz operator with symbol $\phi \in L^{\infty}(\Omega)$ :

$$
T_{\phi}: L_{\mathrm{hol}}^{2} \rightarrow L_{\mathrm{hol}}^{2}, \quad T_{\phi} f=P_{w}(\phi f)
$$

where $P_{w}: L^{2}(\Omega, w) \rightarrow L_{\text {hol }}^{2}(\Omega, w)$ is the weighted Bergman projection.
Weighted Berezin transform of functions on $\Omega: \widetilde{f}:=\widetilde{T_{f}}$,

$$
\widetilde{f}(x)=\frac{\left\langle f K_{w, x}, K_{w, x}\right\rangle}{\left\langle K_{w, x}, K_{w, x}\right\rangle}=\int_{\Omega} f(y) \frac{\left|K_{w}(x, y)\right|^{2}}{K_{w}(x, x)} w(y) d m(y) .
$$

Notation: instead of $\widetilde{f}$, will also use $B_{w} f$.

- Berezin-Toeplitz quantization: Find family of weights $\rho_{h}, h>0$, such that

$$
T_{f} T_{g}=\sum_{j=0}^{\infty} h^{j} T\left[C_{j}(f, g)\right],
$$

where $C_{j}$ are some bidifferential operators such that $C_{0}(f, g)=f g$ and

$$
C_{1}(f, g)-C_{1}(g, f)=\frac{i}{2 \pi}\{f, g\}
$$

for some given Poisson bracket $\{\cdot, \cdot\}$ on $\Omega$.
We saw this for $\Omega=\mathbf{C}$, with $C_{j}(f, g)=\frac{1}{j!}\left(\partial^{j} f\right)\left(\bar{\partial}^{j} g\right)$. (And similarly for $\mathbf{C}^{n}$.)

- Berezin quantization: For any given $\rho$, since $T \rightarrow \widetilde{T}$ is 1 -to-1, we can introduce a noncommutative product $*_{\rho}$ by

$$
\widetilde{S} *_{\rho} \widetilde{T}:=\widetilde{S T}
$$

Defined on $\left\{\widetilde{T}: T\right.$ a bded linear operator on $\left.L_{\text {hol }}^{2}(\Omega, \rho)\right\}$. (Depends on $\rho$.)
Find family of weights $\rho_{h}, h>0$, such that as $h \rightarrow 0$

$$
f *_{\rho_{h}} g=\sum_{j=0}^{\infty} h^{j} C_{j}(f, g),
$$

where $C_{j}$ are some bidifferential operators such that $C_{0}(f, g)=f g$ and

$$
C_{1}(f, g)-C_{1}(g, f)=\frac{i}{2 \pi}\{f, g\}
$$

for a given Poisson bracket $\{\cdot, \cdot\}$ on $\Omega$.

- Alternative description of the last via the Berezin transform: Find family of weights $\rho_{h}, h>0$, such that as $h \rightarrow 0$, the corresponding Berezin transforms $B_{\rho_{h}} \equiv B_{h}$ have an asymptotic expansion
( $\mathbf{~}$ )

$$
B_{h}=Q_{0}+h Q_{1}+h^{2} Q_{2}+\ldots
$$

with some differential operators $Q_{j}$, with $Q_{0}=I$. Let

$$
Q_{j} f=: \sum_{\alpha, \beta} c_{\text {multiindices }} c_{j \alpha \beta} \partial^{\alpha} \bar{\partial}^{\beta} f
$$

be the coefficients of $Q_{j}$, and set $f *_{B t} g:=\sum_{j=0}^{\infty} h^{j} C_{j}(f, g)$, with

$$
C_{j}(f, g):=\sum_{\alpha, \beta} c_{j \alpha \beta}\left(\bar{\partial}^{\beta} f\right)\left(\partial^{\alpha} g\right)
$$

If it happens that

$$
C_{1}(f, g)-C_{1}(g, f)=\frac{i}{2 \pi}\{f, g\}
$$

then we obtain a star-product from the preceding slide.
We first prove the last claim, and then proceed to construct the $\rho_{h}$.

Sketch of proof of the equivalence:
Let $Z_{j}=T_{z_{j}}$ be the operators on $L_{\text {hol }}^{2}\left(\Omega, \rho_{h}\right): f(z) \mapsto z_{j} f(z)$;
$Z_{j}^{*}$ their adjoints;
for $p(z, \bar{z})=\sum_{\alpha, \beta} p_{\alpha \beta} z^{\alpha} \bar{z}^{\beta}$ a polynomial in $z, \bar{z}$, define

$$
V_{p}:=\sum_{\alpha, \beta} p_{\alpha \beta} Z^{\alpha} Z^{* \beta} .
$$

Recall the notation $K_{y}=K_{\rho_{h}}(\cdot, y)$ for the reproducing kernel, and the notation, for any operator $T$ on $L_{\text {hol }}^{2}\left(\Omega, \rho_{h}\right)$,

$$
\widetilde{T}(x, y):=\frac{\left\langle T K_{y}, K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}=\frac{T K_{y}(x)}{K(x, y)}=\frac{\overline{T^{*} K_{x}(y)}}{K(x, y)}
$$

(a function on $\Omega \times \Omega$ ).

Then

$$
\begin{aligned}
\widetilde{V}_{p}(x, y) & =\frac{V_{p} K_{y}(x)}{K(x, y)}=\frac{\sum_{\alpha, \beta} p_{\alpha \beta}\left(Z^{\alpha} Z^{* \beta} K_{y}\right)(x)}{K(x, y)} \\
& =\frac{\sum_{\alpha, \beta} p_{\alpha \beta} x^{\alpha}\left(Z^{* \beta} K_{y}\right)(x)}{K(x, y)}=\frac{\sum_{\alpha, \beta} p_{\alpha \beta} x^{\alpha}\left\langle Z^{* \beta} K_{y}, K_{x}\right\rangle}{K(x, y)} \\
& =\frac{\sum_{\alpha, \beta} p_{\alpha \beta} x^{\alpha}\left\langle K_{y}, Z^{\beta} K_{x}\right\rangle}{K(x, y)}=\frac{\sum_{\alpha, \beta} p_{\alpha \beta} x^{\alpha} \overline{y^{\beta} K_{x}(y)}}{K(x, y)} \\
& =\sum_{\alpha, \beta} p_{\alpha \beta} x^{\alpha} \bar{y}^{\beta}=p(x, \bar{y}) \quad \text { for any } h .
\end{aligned}
$$

In particular, $\widetilde{V}_{p}(x, x)=\widetilde{V}_{p}(x)=p(x, \bar{x})$.

Now, for any two operators $T_{1}, T_{2}$

$$
\begin{aligned}
\widetilde{\left(T_{1} T_{2}\right)}(x, y) & =\frac{\left\langle T_{2} K_{y}, T_{1}^{*} K_{x}\right\rangle}{\left\langle K_{y}, K_{x}\right\rangle}=\frac{\int T_{2} K_{y}(z) \overline{T_{1}^{*} K_{x}(z)} \rho(z) d z}{\left\langle K_{y}, K_{x}\right\rangle} \\
& =\int \frac{\widetilde{T}_{2}(z, y) K(z, y) \cdot \widetilde{T}_{1}(x, z) K(x, z)}{\left\langle K_{y}, K_{x}\right\rangle} \rho(z) d z .
\end{aligned}
$$

In particular,

$$
\begin{aligned}
\widetilde{\left(T_{1} T_{2}\right)}(x, x) & =\int \widetilde{T}_{1}(x, z) \widetilde{T}_{2}(z, x) \frac{|K(x, z)|^{2}}{K(x, x)} \rho(x) d x \\
& =\left(B_{h}\left[\widetilde{T}_{1}(x, \cdot) \widetilde{T}_{2}(\cdot, x)\right]\right)(x) .
\end{aligned}
$$

Thus if ( $\boldsymbol{\oplus}$ ) holds, i.e.

$$
\begin{aligned}
& B_{h}=\sum_{j \geq 0} h^{j} Q_{j} \quad \text { as } h \rightarrow 0, \quad \text { with } Q_{j} f=\sum_{\alpha, \beta} c_{j \alpha \beta} \partial^{\alpha} \bar{\partial}^{\beta} f, \\
& \text { and } C_{j} \text { are defined by } \quad C_{j}(f, g):=\sum_{\alpha, \beta} c_{j \alpha \beta}\left(\bar{\partial}^{\beta} f\right)\left(\partial^{\alpha} g\right),
\end{aligned}
$$

then as $h \rightarrow 0$

$$
\begin{aligned}
\widetilde{\left(T_{1} T_{2}\right)}(x, x) & =\sum_{j \geq 0} h^{j} Q_{j}\left[\widetilde{T}_{1}(x, \cdot) \widetilde{T}_{2}(\cdot, x)\right](x) \\
& =\left.\sum_{j, \alpha, \beta} h^{j} c_{j \alpha \beta} \bar{\partial}^{\beta} \widetilde{T}_{1}(x, \cdot) \partial^{\alpha} \widetilde{T}_{2}(\cdot, x)\right|_{x}
\end{aligned}
$$

Hence for $\widetilde{T}(x)=\widetilde{T}(x, x)$, we get

$$
\begin{aligned}
\widetilde{T_{1} T_{2}} & =\sum_{j, \alpha, \beta} h^{j} c_{j \alpha \beta} \bar{\partial}^{\beta} \widetilde{T}_{1} \partial^{\alpha} \widetilde{T}_{2} \\
& =\sum_{j} h^{j} C_{j}\left(\widetilde{T}_{1}, \widetilde{T}_{2}\right)=\widetilde{T}_{1} *_{B t} \widetilde{T}_{2},
\end{aligned}
$$

by the definition of $*_{B t}$.

Applying this to $V_{p}$ gives

$$
p *_{B t} q=\widetilde{V_{p} V_{q}} \quad \text { for any polynomials } p, q \text { in } z, \bar{z}
$$

Since $\widetilde{V}_{p}=p$, this means that

$$
\widetilde{V}_{p} *_{B t} \widetilde{V}_{q}=\widetilde{V_{p} V_{q}}=\widetilde{V}_{p} *_{\rho_{h}} \widetilde{V}_{q} .
$$

Finally, for any $f \in C^{\infty}(\Omega), m=1,2, \ldots$, and $x \in \Omega$, there exists a polynomial $p(x, \bar{x})$ such that $\partial^{\alpha} \bar{\partial}^{\beta} f(x)=\partial^{\alpha} \bar{\partial}^{\beta} p(x, \bar{x}) \forall|\alpha|,|\beta| \leq m$. Consequently, the two products $*_{B t}$ and $*_{\rho_{h}}$ - which involve finitely many derivatives in each term - agree not only on polynomials, but everywhere. $\square$

Remark. It is also possible to derive the B-T quantization from the asymptotics ( $\boldsymbol{\oplus}$ ) of the Berezin transform; that is, to show that
(*)

$$
\left[T_{f}, T_{g}\right] \approx h T_{\{f, g\}}
$$

as the Planck constant $h \rightarrow 0$.
Indeed, assume first that $f, \bar{g}$ are holomorphic. Then for any $\phi \in L_{\text {hol }}^{2}$

$$
\left\langle T_{f} \phi, K_{x}\right\rangle=\left\langle f \phi, K_{x}\right\rangle=f(x) \phi(x)=f(x)\left\langle\phi, K_{x}\right\rangle .
$$

It follows that $T_{f}^{*} K_{x}=\overline{f(x)} K_{x}$. Similarly $T_{g} K_{x}=g(x) K_{x}$. Hence

$$
\begin{aligned}
\widetilde{T_{f} T_{g}}(x) & =\frac{\left\langle T_{f} T_{g} K_{x}, K_{x}\right\rangle}{\left\langle K_{x}, K_{x}\right\rangle}=\frac{\left\langle T_{g} K_{x}, T_{f}^{*} K_{x}\right\rangle}{\left\langle K_{x}, K_{x}\right\rangle} \\
& =\frac{\left\langle g(x) K_{x}, \overline{f(x)} K_{x}\right\rangle}{\left\langle K_{x}, K_{x}\right\rangle}=f(x) g(x) .
\end{aligned}
$$

Thus $\widetilde{T_{f} T_{g}}=f g$.

On the other hand, by definition and $(\boldsymbol{\oplus})$,

$$
\widetilde{T}_{f g}=B_{h}(f g)=f g+h Q_{1}(f g)+O\left(h^{2}\right) .
$$

Subtracting this from $\widetilde{T_{f} T_{g}}=f g$ gives

$$
\begin{aligned}
\left(T_{f} T_{g}-T_{f g}\right)^{\sim} & =-h Q_{1}(f g) \\
& =-h\left(h^{2}\right) \\
T_{Q_{1}(f g)} & +O\left(h^{2}\right) .
\end{aligned}
$$

"Removing the tilde" we get, for $f, \bar{g}$ holomorphic,
$(\ddagger) \quad T_{f} T_{g}-T_{f g}=-h T_{F}+O\left(h^{2}\right), \quad$ where $\quad F=-C_{1}(g, f)$,
with the $C_{1}$ from the Berezin quantization; note that this involves only $\partial f$ and $\bar{\partial} g$.
Since for $u, v$ holomorphic and $f, g$ arbitrary,

$$
T_{g} T_{u}=T_{g u}, \quad T_{\bar{v}} T_{f}=T_{\bar{v} f},
$$

while also $\bar{\partial}(g u)=u \bar{\partial} g$ and $\partial(\bar{v} f)=\bar{v} \partial f$, it follows that ( $\ddagger$ ) remains in force even for any $f, g$ of the form $u \bar{v}$ with $u, v$ holomorphic.
By routine approximation argument, one gets it for any smooth $f, g$. $\square$
(Shows that $C_{1}^{B T}(f, g)=-C_{1}^{B}(g, f)$. )

Connection between Berezin and Toeplitz quantizations We have $f \mapsto T_{f}$ (Toeplitz ops), $T \mapsto \widetilde{T}$ (Berezin symbol). Composition:

$$
f \longmapsto \widetilde{T}_{f}=: B_{h} f, \quad \text { the Berezin tsfm of } f
$$

Applying the definition of Berezin star-product

$$
\widetilde{T} *_{B} \widetilde{S}=\widetilde{T S}
$$

to $T=T_{f}, S=T_{g}$ gives

$$
\widetilde{T}_{f} *_{B} \widetilde{T}_{g}=\widetilde{T_{f} T_{g}}=\widetilde{T}_{f *_{B T} g},
$$

or

$$
B f *_{B} B g=B\left(f *_{B T} g\right) .
$$

Example 1. $\Omega=\mathbf{C}^{n}, \quad w(z)=e^{-\alpha|z|^{2}}\left(\frac{\alpha}{\pi}\right)^{n} d m(z) \quad(\alpha>0)$ reproducing kernel:

$$
K_{\alpha}(x, y)=e^{\alpha\langle x, y\rangle}
$$

Berezin transform:

$$
\begin{aligned}
B_{\alpha} f(x) & =\int_{\mathbf{C}^{n}} f(y) \frac{|K(x, y)|^{2}}{K(x, x)} w(y) d m(y) \\
& =\left(\frac{\alpha}{\pi}\right)^{n} \int_{\mathbf{C}^{n}} f(y) e^{-\alpha\|x-y\|^{2}} d m(y) .
\end{aligned}
$$

This is the heat solution operator at time $t=1 / 4 \alpha$ :

$$
B_{\alpha} f=e^{\Delta / 4 \alpha} f
$$

In particular, as $\alpha \rightarrow+\infty$, we get $B_{\alpha} f \rightarrow f$, more precisely there is even an asymptotic expansion

$$
B_{\alpha} f(x)=e^{\Delta / 4 \alpha} f(x)=f(x)+\frac{\Delta f(x)}{4 \alpha}+\frac{\Delta^{2} f(x)}{2!(4 \alpha)^{2}}+\ldots,
$$

or more briefly

$$
B_{\alpha}=e^{\Delta / 4 \alpha}=\sum_{j=0}^{\infty} \alpha^{-j} \frac{\Delta^{j}}{j!4^{j}} .
$$

B-T quantization: works, with

$$
C_{j}(f, g)=\frac{(-1)^{j}}{j!} \sum_{|\alpha|=j} \partial^{\alpha} f \bar{\partial}^{\alpha} g
$$

Berezin quantization: works, with

$$
C_{j}(f, g)=\frac{1}{j!} \sum_{|\alpha|=j} \bar{\partial}^{\alpha} f \partial^{\alpha} g .
$$

Both quantize the Euclidean Poisson bracket from the beginning of this talk.

Example 2. $\Omega=\mathbf{D}, w(z)=\frac{\alpha+1}{\pi}\left(1-|z|^{2}\right)^{\alpha} \quad(\alpha>-1)$
reproducing kernel:

$$
K_{\alpha}(x, y)=\frac{1}{(1-x \bar{y})^{\alpha+2}}
$$

Berezin transform:

$$
B_{\alpha} f(x)=\frac{\alpha+1}{\pi} \int_{\mathbf{D}} f(y) \frac{\left(1-|x|^{2}\right)^{\alpha+2}}{|1-x \bar{y}|^{2 \alpha+4}}\left(1-|y|^{2}\right)^{\alpha} d m(y) .
$$

Can again be shown that as $\alpha \rightarrow+\infty$

$$
B_{\alpha} f=f+\frac{\widetilde{\Delta} f}{4 \alpha}+\ldots
$$

where

$$
\widetilde{\Delta} f=\left(1-|z|^{2}\right)^{2} \Delta
$$

is the invariant Laplacian on $\mathbf{D}$.

Berezin quantization: works, with

$$
C_{0}(f, g)=f g, \quad C_{1}(f, g)=\left(1-|z|^{2}\right) \bar{\partial} f \partial g
$$

Explicit expressions for $C_{j}, j \geq 2-$ unknown.
Berezin-Toeplitz quantization: works, with

$$
C_{0}(f, g)=f g, \quad C_{1}(f, g)=-\left(1-|z|^{2}\right) \partial f \bar{\partial} g .
$$

Explicit expressions for $C_{j}, j \geq 2-$ unknown.
Both quantize the Poisson bracket

$$
\{f, g\}=\left(1-|z|^{2}\right)^{2}(\bar{\partial} f \partial g-\partial g \bar{\partial} f)
$$

associated to the invariant (=Poincare, Lobachevsky) metric on $\mathbf{D}$.

Example 3. $\Omega=\mathbf{B}^{n}$, the unit ball of $\mathbf{C}^{n} ; w(z)=c_{\alpha}\left(1-\|z\|^{2}\right)^{\alpha}$ ( $\alpha>-1, c_{\alpha}$ making total mass 1)
reproducing kernel:

$$
K_{\alpha}(x, y)=\frac{1}{(1-\langle x, y\rangle)^{\alpha+n+1}}
$$

Berezin transform:

$$
B_{\alpha} f(x)=c_{\alpha} \int_{\mathbf{B}^{n}} f(y) \frac{\left(1-\|x\|^{2}\right)^{\alpha+n+1}}{|1-\langle x, y\rangle|^{2 \alpha+2 n+2}}\left(1-\|y\|^{2}\right)^{\alpha} d m(y) .
$$

Again,

$$
B_{\alpha} f=f+\frac{\widetilde{\Delta} f}{4 \alpha}+\ldots
$$

as $\alpha \rightarrow+\infty$, with $\widetilde{\Delta}$ the invariant Laplacian on $\mathbf{B}^{n}$.
B/B-T quantizations: work, similar formulas as for the disc.

Summary of the Examples: the Fock space on $\mathbf{C}^{n}$

$$
w(x)=\left(\frac{\alpha}{\pi}\right)^{n} e^{-\alpha\|z\|^{2}}, \quad K_{w}(x, y)=e^{\alpha\langle x, y\rangle}
$$

the disc

$$
w(z)=\frac{\alpha+1}{\pi}\left(1-|z|^{2}\right)^{\alpha}, \quad K_{w}(x, y)=(1-x \bar{y})^{-\alpha-2}
$$

the ball

$$
w(z)=c_{\alpha}\left(1-\|z\|^{2}\right)^{\alpha}, \quad K_{w}(x, y)=(1-\langle x, y\rangle)^{-\alpha-n-1}
$$

That is:

- $K_{w}(x, x)$ is just the reciprocal of the weight $w(x)$, up to the normalization constants and possibly a shift in the power $\alpha$.
- $B_{\alpha}$ is an approximate identity as $\alpha \rightarrow+\infty$, more precisely

$$
B_{\alpha}=I+\frac{Q_{1}}{\alpha}+\frac{Q_{2}}{\alpha^{2}}+\ldots
$$

where $Q_{1}=\frac{1}{4}$ (invariant Laplacian) etc.

Assume we have our domain $\Omega \subset \mathbf{C}^{n}$, with a given Poisson bracket:
(\%)

$$
\{f, g\}=\sum_{j, k=1}^{n} g^{\bar{j} k}\left(\bar{\partial}_{j} f \partial_{k} g-\partial_{j} f \bar{\partial}_{k} g\right)
$$

where $\left\{g^{\bar{j} k}\right\}_{j, k=1}^{n}$ is a non-degenerate skew-Hermitian matrix.
The inverse matrix $\left\{g_{k \bar{j}}\right\}_{j, k=1}^{n}$ the defines the differential form

$$
\omega=\sum_{j, k=1}^{n} g^{\bar{j} k} d \bar{z}_{j} \wedge d z_{k}
$$

which in turn determines a nonvanishing volume element $\omega^{n}$ on $\Omega$.
Idea for finding the $\rho_{h}$ : take guidance from group invariance.

Assume there is a group $G$ acting on $\Omega$ by biholomorphic transformations preserving the form $\omega$. Naturally, we would then want our quantizations to be $G$-invariant, i.e. to satisfy

$$
(f \circ \phi) *(g \circ \phi)=(f * g) \circ \phi, \quad \forall \phi \in G .
$$

On the level of the Berezin quantization, this corresponds to the operators $Q_{j}$ in ( $\left.\boldsymbol{\oplus}\right)$, and, hence, to $B$ itself, to commute with the action of $G$. An examination of the formula defining the Berezin transform shows that this happens if and only if

$$
\frac{|K(x, y)|^{2}}{K(y, y)} \rho(x) d x=\frac{|K(\phi(x), \phi(y))|^{2}}{K(\phi(y), \phi(y))} \rho(\phi(x)) d \phi(x)
$$

In particular, the ratio

$$
\frac{\rho(\phi(x)) d \phi(x)}{\rho(x) d x}=\frac{|K(x, y)|^{2}}{K(y, y)} \frac{K(\phi(y), \phi(y))}{|K(\phi(x), \phi(y))|^{2}}
$$

has to be the squared modulus of a holomorphic function. Writing

$$
\rho(x) d x=w(x) \cdot \omega^{n}(x)
$$

with the ( $G$-invariant) volume element $\omega^{n}$, the last condition translates into

$$
w(\phi(x))=w(x)\left|f_{\phi}(x)\right|^{2}
$$

for some holomorphic functions $f_{\phi}$.
Hence, the form $\partial \bar{\partial} \log w$ is $G$-invariant.

But the simplest examples of $G$-invariant forms (and if $G$ is sufficiently "ample", the only ones) are clearly the constant multiples of $\omega$. Thus:

$$
\partial \bar{\partial} \log w=\underbrace{\text { const. }}_{=:-c} \cdot \omega
$$

Thus $\omega$ must lie in the range of $\partial \bar{\partial}$ :

$$
\omega=\partial \bar{\partial}\left(-\frac{1}{c} \log w\right)=: \partial \bar{\partial} \Phi
$$

for the real-valued function $\Phi$ (a Kähler potential). Then

$$
\omega^{n}(x)=\operatorname{det}[\partial \bar{\partial} \Phi(x)] d x
$$

and the sought weights $\rho_{h}$ should thus be of the form

$$
\rho_{h}(x)=e^{-c \Phi(x)} \operatorname{det}[\partial \bar{\partial} \Phi]
$$

with some $c=c(h)$ depending only on $h$.

Note that the potential $\Phi$ is then always strictly plurisubharmonic, i.e. the matrix

$$
g_{k \bar{j}}(z):=\frac{\partial^{2} \Phi(z)}{\partial z_{k} \partial \bar{z}_{j}}
$$

is positive definite, $\forall z \in \Omega$.
Furthermore, the condition $C_{1}(f, g)-C_{1}(g, f)=-\frac{i}{2 \pi}\{f, g\}$ in the Berezin quantization will be satisfied if the operator $Q_{1}$ in ( $\left.\boldsymbol{\uparrow}\right)$ equals

$$
Q_{1}=\sum_{j, k=1}^{n} g^{\bar{j} k} \partial_{k} \bar{\partial}_{j}=: \Delta,
$$

the Laplace-Beltrami operator associated to $\omega$. Indeed, then

$$
C_{1}(f, g)=\sum_{j, k=1}^{n} g^{\bar{j} k}\left(\partial_{k} f\right)\left(\bar{\partial}_{j} g\right),
$$

and the claim follows by ( $\boldsymbol{\rho}$ ).

We have thus arrived at the final RECIPE for the Berezin and BerezinToeplitz quantizations on a domain $\Omega \subset \mathbf{C}^{n}$ with a given Poisson bracket: namely, let
$\Phi$ be a potential for $\omega$, i.e. $\omega=\partial \bar{\partial} \Phi$;
$L_{\text {hol }}^{2}\left(\Omega, e^{-c \Phi} \operatorname{det}[\partial \bar{\partial} \Phi]\right)$ the Bergman space $\quad(c \in \mathbf{R}) ;$
$K_{c}(x, y)$ its reproducing kernel;
$B_{c} f(x)$ the associated Berezin transform;
$T_{f}^{(c)}$ the Toeplitz operator associated to $f$;
and see if $c=c(h)$ can be chosen so that

$$
B_{c}=I+h \Delta+h^{2} Q_{2}+h^{3} Q_{3}+\ldots \quad \text { as } h \rightarrow 0
$$

with some differential operators $Q_{j}, Q_{0}=I, Q_{1}=\Delta$; respectively, if

$$
T_{f}^{(c)} T_{g}^{(c)}=\sum_{j \geq 0} h^{j} T_{C_{j}(f, g)}^{(c)} \quad \text { as } h \searrow 0 \quad \text { (in norm) }
$$

with $C_{0}(f, g)=f g$ and $C_{1}(f, g)-C_{1}(g, f)=-\frac{i}{2 \pi}\{f, g\}$.

Answer: works!, with $c(h)=1 / h$.
How to get this:
Asymptotics of $B_{c}, T^{(c)}$ asymptotics of $K_{c}(x, y), c=c(h)$, as $h \rightarrow 0$.
Thus we need to study the asymptotics of

$$
K_{c}(x, y)=\text { the RK of } L_{\mathrm{hol}}^{2}\left(\Omega, e^{-c \Phi} \operatorname{det}[\partial \bar{\partial} \Phi]\right)
$$

as $c \rightarrow+\infty$.

To recapitulate: quantization has lead us to the following problem on weighted Bergman kernels:
$\Omega \subset \mathbf{C}^{n}$ a domain, $\Phi$ a strictly-PSH function on $\Omega$
$g_{k \bar{j}}=\partial_{k} \bar{\partial}_{j} \Phi$
measures $d \mu_{h}(z):=e^{-\Phi(z) / h} \operatorname{det}\left[g_{k \bar{j}}(z)\right] d z, h>0$
weighted Bergman spaces $L_{\text {hol }}^{2}\left(\Omega, d \mu_{h}\right)$
Bergman kernels $K_{h}(x, y)$, Berezin transforms $B_{h}$, Toeplitz operators $T_{f}$. Question: to find

- asymptotics of $K_{h}(x, y)$ as $h \searrow 0$
- asymptotics of $B_{h}$ as $h \searrow 0$

$$
\begin{gathered}
\left(B_{h}=\sum_{j} h^{j} Q_{j}\right) \\
\left(T_{f} T_{g}=\sum_{j} h^{j} T_{C_{j}(f, g)}\right) .
\end{gathered}
$$

- asymptotics of $T_{f} T_{g}$ as $h \searrow 0$

Notation: $\alpha=1 / h \rightarrow+\infty$.

On manifolds $\Omega$ instead of domains:

- similar, only pass from functions to sections of a holomorphic line bundle $\mathcal{L}$, with the Hermitian metric (in the fibers) given locally by $e^{-\Phi} ; \quad$ (i.e. curvature form $=-\omega$ )
- and instead of $L_{\text {hol }}^{2}\left(\Omega, d \mu_{h}\right) \leadsto$ space of holomorphic $L^{2}$ sections of $\otimes^{m} \mathcal{L}$, where $m=1 / h=1,2, \ldots$
- $\mathcal{L}$ exists $\Longleftrightarrow\left[g_{k \bar{j}}\right] \in H^{2}(\Omega, \mathbf{R})$ lies actually in $H^{2}(\Omega, \mathbf{Z})$.

TWO APPROACHES: independently 1997-1998

- compact manifolds:
- [Zelditch 1998] asymptotics of $K_{h}(x, x), h \rightarrow 0$; [Catlin 1999] ditto for $K_{h}(x, y)$.
- Did not consider $B_{h}, T_{f}$, but rather - inspired by [Tian 1990] ( $\rightsquigarrow$ [Ruan 1996]).
- Proofs - via Boutet de Monvel-Guillemin theory of Fourier integral operators of Hermitian type.
- Actually - appeared already in [Bordemann, Meinrenken, Schlichenmaier 1994], who used it get the result about $T_{f}$, but not $K_{h}, B_{h}$.

Will describe this one.
(Strongest.)

- domains in $\mathbf{C}^{n}$ :
- $K_{h}, B_{h}$ : bare hands and $\bar{\partial}$-techniques [M.E. 1996-2000] (notably: Fefferman/BdMonvel-Sjöst \& Kerzman/Boas,Bell); needs some hypothesis on the behaviour of $\Phi$ at the boundary;
- $T_{f}$ : only for bounded domains \& has to resort to BdM-G.
- for $n=1$ (Riemann surfaces) with Poincare metric - [KlimekLesniewski 1991] (uniformization)
- for $\Omega=\mathbf{C}^{n}$, Euclidean metric ( $\left.g^{k \bar{j}}=\delta_{j k}, \Phi(z)=\|z\|^{2}\right)$ : [Coburn 1993] [Borthwick 1994-?]
- [Berezin 1975] - Berezin quantization on $\mathbf{C}^{n}$, bded symm doms
- [Borthwick-Lesniewski-Upmeier 1994]: B-T on bded symm doms (extension [M.E. 2004])
[Karabegov ca 1995]: equivalence of $*_{B t} \& *_{B q}$
- [Ma-Marinescu]; [Berndtsson-Berman-Sjöstrand]; [Schlichenmaier].
$\Omega$ a domain in $\mathbf{C}^{n}$
$\Phi: \Omega \rightarrow \mathbf{R}$ is called strictly-plurisubharmonic (strictly-PSH) if for any $z \in \Omega$ and $v \in \mathbf{C}^{n}$, the function of one complex variable

$$
t \mapsto \Phi(z+t v), \quad t \in \mathbf{C}
$$

is strictly subharmonic where defined.
Equivalently, $\Phi$ is strictly-PSH if the matrix of mixed second derivatives

$$
\left[\frac{\partial^{2} \Phi}{\partial z_{j} \partial \bar{z}_{k}}\right]_{j, k=1}^{n}
$$

is positive definite.

A bounded domain $\Omega \subset \mathbf{C}^{n}$ with smooth boundary is called strictly pseudoconvex if there exists a function $r$ such that

$$
\begin{gathered}
r>0 \quad \text { on } \Omega, \quad r=0,\|\nabla r\|>0 \quad \text { on } \partial \Omega, \\
-r \quad \text { is strictly-PSH in a neighbourhood of } \bar{\Omega} .
\end{gathered}
$$

One calls $r$ a strictly-PSH defining function for $\Omega$.
Similarly: PSH functions, pseudoconvex domains.
Pseudoconvex domains are the natural domains in $\mathbf{C}^{n}$ on which holomorphic functions live. (in dim=1: all)

Strictly pseudoconvex are the manageable ones.

Theorem B. $\Omega \subset \mathbf{C}^{n}$ smoothly bounded strictly pseudoconvex, $\Phi$ a strictly-PSH function on $\Omega$,
such that $e^{-\Phi}=r$ is a defining function for $\Omega$.
Then for the weights $w=e^{-\alpha \Phi} \operatorname{det}[\partial \bar{\partial} \Phi]$, we have as $\alpha \rightarrow+\infty, \alpha \in \mathbf{Z}$,

$$
K_{\alpha}(x, x) \approx e^{\alpha \Phi(x)} \frac{\alpha^{n}}{\pi^{n}} \sum_{j=0}^{\infty} \frac{b_{j}(x)}{\alpha^{j}}
$$

where $b_{0}=\operatorname{det}\left[\frac{\partial^{2} \Phi}{\partial z_{j} \partial \bar{z}_{k}}\right]$;

$$
B_{\alpha} f=\sum_{j=0}^{\infty} \frac{Q_{j} f}{\alpha^{j}}
$$

where $Q_{j}$ are some differential operators, in particular $Q_{0}=I$ and

$$
Q_{1}=\sum_{j, k=1}^{n} g^{\bar{j} k} \frac{\partial^{2}}{\partial z_{k} \partial \bar{z}_{j}},
$$

$g^{\bar{j} k}$ being the inverse matrix to $g_{j \bar{k}}:=\frac{\partial^{2} \Phi}{\partial z_{j} \partial \bar{z}_{k}}$.

Previous examples: for $\Omega=\mathbf{B}^{n}$ (including $\Omega=\mathbf{D}$ for $n=1$ ), choosing

$$
\Phi(z)=\log \frac{1}{1-\|z\|^{2}},
$$

then $\Phi$ is strictly-PSH,

$$
e^{-\Phi(z)}=1-\|z\|^{2}
$$

is a defining function for $\mathbf{B}^{n}$, and

$$
b_{0}(z)=\operatorname{det}\left[\frac{\partial^{2} \Phi}{\partial z_{j} \partial \bar{z}_{k}}\right]=\frac{1}{\left(1-\|z\|^{2}\right)^{n+1}} .
$$

Thus we recover the formulas from the examples ( $b_{0}$ explains the "shift in the power $\alpha ")$. Also, we see that $c_{\alpha} \sim \alpha^{n}$.

Works also for the Fock space: $\Omega=\mathbf{C}^{n}, \quad \Phi(z)=\|z\|^{2}$. Then $b_{0}(z)=\operatorname{det}\left[\delta_{j k}\right]=1$, so there is no "shift" this time.
(Will gloss over some technical details.)

- Hartogs domains: for a domain $\Omega \subset \mathbf{C}^{n}$ and a real-valued smooth function $\phi$ on it, it is

$$
\widetilde{\Omega}:=\left\{(z, t) \in \Omega \times \mathbf{C}:|t|^{2}<e^{-\phi(z)}\right\}
$$

- Pseudoconvex $\Longleftrightarrow \phi$ PSH, $\Omega$ pscvx;
- strictly pseudoconvex and smoothly bounded if $\Omega$ strictly-pscvx, $\phi$ is strictly-PSH and $e^{-\phi}=r$ is a defining function for $\Omega$.
- Then

$$
\widetilde{r}(z, t):=r(z)-|t|^{2}=e^{-\phi(z)}-|t|^{2}
$$

is a defining function for $\widetilde{\Omega}$.

- Hardy space: Consider the compact manifold $X:=\partial \widetilde{\Omega}$ equipped with the measure

$$
d \sigma:=\frac{J[\widetilde{r}]}{\|\partial \widetilde{r}\|} d S
$$

where $d S$ stands for the surface measure on $X$ and $J[\tilde{r}]$ for the Monge-Ampére determinant

$$
J[\widetilde{r}]=-\operatorname{det}\left[\begin{array}{cc}
\widetilde{r} & \bar{\partial} \widetilde{r} \\
\partial \widetilde{r} & \partial \bar{\partial} \widetilde{r}
\end{array}\right]>0
$$

Let $H^{2}(X)=H^{2}$ be the subspace in $L^{2}(X, d \sigma)$ of functions whose Poisson extension into $\widetilde{\Omega}$ is holomorphic.

Measure - natural (contact form).

- Szegö kernel: For each $(z, t) \in \widetilde{\Omega}$, the evaluation functional $f \mapsto$ $f(z, t)$ on $H^{2}$ turns out to be continuous, hence is given by the scalar product with a certain element $k_{(z, t)} \in H^{2}$. The function

$$
K_{\text {Szegö }}((x, t),(y, s)):=\left\langle k_{(y, s)}, k_{(x, t)}\right\rangle_{H^{2}}
$$

on $\widetilde{\Omega} \times \widetilde{\Omega}$ is called the Szegö kernel.
Note: Introducing the coordinates

$$
(z, t)=\left(z, e^{i \theta} e^{-\phi(z) / 2}\right), \quad z \in \Omega, \theta \in[0,2 \pi]
$$

on $X$, we have (recall $\left.r(z)=e^{-\phi(z)}, \widetilde{r}(z, t)=r(z)-|t|^{2}\right)$

$$
\begin{gathered}
d S=\sqrt{r+\|\partial r\|^{2}} d z d \theta, \quad\|\partial \widetilde{r}\|=\sqrt{r+\|\partial r\|^{2}}, \\
J[\widetilde{r}]=J[r]=e^{-(n+1) \phi} \operatorname{det}[\partial \bar{\partial} \phi],
\end{gathered}
$$

so $d \sigma(z, t)=e^{-(n+1) \phi} \operatorname{det}[\partial \bar{\partial} \phi] d z d \theta$.

- Ligocka's formula: [Ligocka 1989] If $f$ is holomorphic on $\widetilde{\Omega}$, then

$$
f(z, t)=\sum_{j \geq 0} f_{j}(z) t^{j}
$$

with $f_{j}$ holomorphic on $\Omega$. Also

$$
f(z) t^{j} \perp g(z) t^{k} \quad \forall f, g \text { if } k \neq j
$$

(orthogonality in $H^{2}$ ). Thus by a simple computation,

$$
\begin{aligned}
& \int_{X}|f(z, t)|^{2} d \sigma(z, t) \\
& \quad=\sum_{j \geq 0} \int_{\Omega}\left|f_{j}(z)\right|^{2}\left(\int_{0}^{2 \pi}\left|e^{i \theta} e^{-\phi(z) / 2}\right|^{2 j} d \theta\right) e^{-(n+1) \phi(z)} \operatorname{det}[\partial \bar{\partial} \phi(z)] d z \\
& \quad=\sum_{j \geq 0} 2 \pi \int_{\Omega}\left|f_{j}\right|^{2} e^{-(j+n+1) \phi} \operatorname{det}[\partial \bar{\partial} \phi(z)] d z .
\end{aligned}
$$

It follows that $H^{2}(X)=\bigoplus_{j=1}^{\infty} L_{\text {hol }}^{2}\left(\Omega, 2 \pi e^{-(j+n+1) \phi} \operatorname{det}[\partial \bar{\partial} \phi(z)] d z\right)$, and

$$
K_{\text {Szegö }}((x, t),(y, s))=\frac{1}{2 \pi} \sum_{k=0}^{\infty} K_{e^{-(j+n+1) \phi} \operatorname{det}[\partial \bar{\partial} \phi(z)]}(x, y)(t \bar{s})^{j} .
$$

- Fefferman's theorem [1972]: Let $D \subset \mathbf{C}^{n}$ be a bounded strictly pseudoconvex with smooth boundary, and $r$ a $C^{\infty}$ defining function for $D$. Then there are functions $a, b \in C^{\infty}\left(\mathbf{C}^{n}\right)$ such that
(a) for $x \in \partial D, a(x)>0$ (an explicit formula is available);
(b) the Szegö kernel of $D$ is given by the formula

$$
K_{\text {SZegö }}(x, x)=\frac{a(x)}{r(x)^{n}}+b(x) \log r(x) .
$$

Extends also to $K_{\text {Szegö }}(x, y)$ with $x \neq y$ :

$$
K_{\text {Szegö }}(x, y)=\frac{a(x, y)}{r(x, y)^{n}}+b(x, y) \log r(x, y)
$$

where $a(x, y)$ etc. are almost-sesquiholomorphic extensions of $a(x)=a(x, x)$ etc.
(c) $K_{\text {Szegö }}(x, y)$ is smooth on $\overline{\Omega \times \Omega} \backslash \mathcal{U}$, for any neighbourhood $\mathcal{U}$ of the boundary diagonal $\{(x, x): x \in \partial \Omega\}$.

- Resolution of singularities:

$$
\begin{aligned}
& \sum_{k=0}^{\infty} k^{j} z^{k}= \begin{cases}j!(1-z)^{-j-1}+O\left((1-z)^{-j}\right) & \text { if } j \geq 0 \\
\frac{(-1)^{j}}{j!}(1-z)^{j} \log (1-z)+C^{j}(\overline{\mathbf{D}}) & \text { if } j<0\end{cases} \\
& f(z)=\sum_{k=0}^{\infty} f_{k} z^{k} \in C^{j}(\overline{\mathbf{D}}) \Longrightarrow f_{k}=O\left(k^{-j}\right) \quad \text { as } k \rightarrow+\infty
\end{aligned}
$$

Hence, if $f(z)=\sum_{k=0}^{\infty} f_{k} z^{k}$ is holomorphic in $\mathbf{D}$ and

$$
\begin{aligned}
f(z) & =\frac{a(z)}{(1-z)^{n+1}}+b(z) \log (1-z), \quad a, b \in C^{\infty}(\overline{\mathbf{D}}), \\
& =\sum_{j=1}^{n+1} \frac{\alpha_{j}}{(1-z)^{j}}+\sum_{j=0}^{M} \beta_{j}(1-z)^{j} \log (1-z)+C^{M}(\overline{\mathbf{D}})
\end{aligned}
$$

( $M=0,1,2, \ldots$ ), then

$$
f_{k} \approx a_{n} k^{n}+a_{n-1} k^{n-1}+\cdots+a_{0}+\frac{a_{-1}}{k}+\ldots
$$

for some constants $a_{n}, a_{n-1}, \ldots$, as $k \rightarrow \infty$.

Take the Hartogs domain

$$
\widetilde{\Omega}=\left\{(z, t) \in \Omega \times \mathbf{C}: \quad|t|^{2}<e^{-\Phi(z)}\right\}
$$

The hypotheses imply that $\widetilde{\Omega}$ is smoothly bounded, strictly pscvx, with

$$
\widetilde{r}(z, t):=e^{-\Phi(z)}-|t|^{2}
$$

a defining function.
Consider the Hardy space $H^{2}(X)$ on the boundary $X=\partial \widetilde{\Omega}$.

As mentioned above, by Ligocka's formula

$$
H^{2}(X)=\bigoplus_{k=n+1}^{\infty} L_{\mathrm{hol}}^{2}\left(\Omega, e^{-k \Phi} \operatorname{det}[\partial \bar{\partial} \Phi]\right)
$$

(where $n=\operatorname{dim} \Omega$, so $n+1=\operatorname{dim} \widetilde{\Omega}$ ), and

$$
K_{\text {Szegö }}((x, t),(y, s))=\frac{1}{2 \pi} \sum_{k=0}^{\infty} K_{k+n+1}(x, y)(s \bar{t})^{k},
$$

where

$$
K_{k}(x, y):=\text { the RK of } L_{\mathrm{hol}}^{2}\left(\Omega, e^{-k \Phi} \operatorname{det}[\partial \bar{\partial} \Phi]\right) .
$$

Fefferman's theorem for the Szegö kernel:

$$
K_{\text {Szegö }}=\frac{a}{\widetilde{r}^{n+1}}+b \log \widetilde{r}, \quad a, b \in C^{\infty}(\overline{\widetilde{\Omega} \times \widetilde{\Omega}}) .
$$

Hence

$$
\begin{aligned}
& \frac{1}{2 \pi} \sum_{k=0}^{\infty} K_{k+n+1}(x, x) s^{k}=\widetilde{K}_{\text {Szegö }}((x, s),(x, 1)) \\
& \quad=\frac{a(x, s)}{\left(e^{-\Phi(x)}-s\right)^{n+1}}+b(x, s) \log \left(e^{-\Phi(x)}-s\right) \\
& \quad=\frac{a(x, s) e^{(n+1) \Phi(x)}}{(1-\underbrace{s e^{\Phi(x)}}_{z})^{n+1}}+b(x, s) \log \left(1-s e^{\Phi(x)}\right)-b(x, s) \Phi(x) \\
& \quad=\frac{A(x, z)}{(1-z)^{n+1}}+b(x, z) \log (1-z)
\end{aligned}
$$

with $A(x, z)=a\left(x, z e^{-\Phi(x)}\right) e^{(n+1) \Phi(x)}-b\left(x, z e^{-\Phi(x)}\right) \Phi(x)(1-z)^{n+1}$.

So for each $x$,

$$
\sum_{k=0}^{\infty} e^{-k \Phi(x)} K_{k+n+1}(x, x) z^{k}=\frac{A(x, z)}{(1-z)^{n+1}}+b(x, z) \log (1-z)
$$

Employing the resolution of singularities implies

$$
K_{k}(x, x)=\frac{k^{n}}{\pi^{n}} e^{k \Phi(x)} \sum_{j=0}^{\infty} \frac{b_{j}(x)}{k^{j}}
$$

proving the first part of Theorem B.
Can be extended also to $x \neq y$ :

$$
K_{k}(x, y)=\frac{k^{n}}{\pi^{n}} e^{k \Phi(x, y)} \sum_{j=0}^{\infty} \frac{b_{j}(x, y)}{k^{j}}
$$

for $(x, y)$ near the diagonal, where $\Phi(x, y), b_{j}(x, y)$ are some almostsesquiholomorphic extensions of $\Phi(x)=\Phi(x, x)$ and $b_{j}(x)=b_{j}(x, x)$.

The second part of Theorem B is proved by first showing that in the integral defining $B_{h}$

$$
B_{h} f(x)=\int_{\Omega} f(y) \frac{\left|K_{\alpha}(x, y)\right|^{2}}{K_{\alpha}(x, x)} e^{-\alpha \Phi(y)} \operatorname{det}[\partial \bar{\partial} \Phi(y)] d y
$$

the main contribution comes from a small neighbourhood of $x$.
In that neighbourhood, one replaces $K_{\alpha}(x, y)$ by its asymptotic expansion just proved. This reduces the problem to estimating integrals of the form

$$
\int_{\text {neighbourhood of } x} F(y) e^{\alpha(\Phi(x, y)+\Phi(y, x)-\Phi(x)-\Phi(y))} d y
$$

Finally, this kind of integrals is handled by the standard stationary-phase (Laplace, WJKB) method, yielding the result.
The first two terms can be evaluated explicitly, giving the desired outcomes $Q_{0}=I$ and $Q_{1}=\Delta$.

For $f \in L^{\infty}(\Omega)$, let $T_{f}^{(m)}$ denote the Toeplitz operator with symbol $f$ on

$$
L_{\mathrm{hol}}^{2}\left(\Omega, e^{-m \Phi} \operatorname{det}[\partial \bar{\partial} \Phi]\right) .
$$

Theorem BT. Let

- $\Omega$ be a smoothly bounded strictly pseudoconvex domain in $\mathbf{C}^{n}$,
- $\Phi: \Omega \rightarrow \mathbf{R}$ a smooth strictly-PSH function, such that
- $e^{-\Phi}=r$, a defining function for $\Omega$.

Then:
(i) for any $f \in C^{\infty}(\bar{\Omega}),\left\|T_{f}^{(m)}\right\| \rightarrow\|f\|_{\infty}$ as $m \rightarrow \infty$;
(ii) there exist bilinear differential operators $C_{j}(j=0,1,2, \ldots)$ such that for any $f, g \in C^{\infty}(\bar{\Omega})$ and any integer $M$,

$$
\left\|T_{f}^{(m)} T_{g}^{(m)}-\sum_{j=0}^{M} m^{-j} T_{C_{j}(f, g)}^{(m)}\right\|=O\left(m^{-M-1}\right) \quad \text { as } m \rightarrow \infty
$$

Furthermore, $C_{0}(f, g)=f g, \quad C_{1}(f, g)-C_{1}(g, f)=\frac{i}{2 \pi}\{f, g\}$. Hence, $f * g:=\sum_{j=0}^{\infty} h^{j} C_{j}(f, g)$ defines a star-product on $\Omega$.

Sketch of proof. Consider again the Hartogs domain $\widetilde{\Omega}$

$$
\widetilde{\Omega}=\left\{(z, t) \in \Omega \times \mathbf{C}: \quad|t|^{2}<e^{-\Phi(z)}\right\}
$$

The hypothesis imply that $\widetilde{\Omega}$ is smoothly bounded, strictly pscvx, with a defining function $\quad \widetilde{r}(z, t):=e^{-\Phi(z)}-|t|^{2}$.
As before, consider the Szegö kernel on the compact manifold $X=\partial \widetilde{\Omega}$ with respect to the measure

$$
d \sigma:=\frac{J[\widetilde{r}]}{\|\partial \widetilde{r}\|} d S
$$

We have already seen that (Ligocka's formula)

$$
\begin{gather*}
K_{\text {Szegö }}(x, t ; y, s)=\frac{1}{2 \pi} \sum_{k=0}^{\infty} K_{k+n+1}(x, y)(s \bar{t})^{k}, \\
H^{2}(X)=\bigoplus_{k=n+1}^{\infty} L_{\text {hol }}^{2}\left(\Omega, e^{-k \Phi} \operatorname{det}[\partial \bar{\partial} \Phi]\right) .
\end{gather*}
$$

In addition, it is also the case that

$$
\bigoplus_{m=n+1}^{\infty} T_{f}^{(m)}=T_{F}, \quad \text { where } F(x, t):=f(x),
$$

$T_{F}$ being the Toeplitz operator on $H^{2}(X)$ with symbol $F \in C^{\infty}(X)$ :

$$
T_{F} \psi:=P_{\text {Szegö }}(F \psi),
$$

where $P_{\text {Szegö }}: L^{2}(X, d \sigma) \rightarrow H^{2}(X)$ is the orthogonal projection.
Now following the ideas of Boutet de Monvel \& Guillemin, we define Toeplitz operators $T_{Q}$ by the same recipe also for pseudodifferential operators $Q$ on $X$; i.e.

$$
T_{Q} \psi:=P_{\text {Szegö }} Q \psi .
$$

(For $Q$ the operator of multiplication by a function $F$ on $X$, one recovers the Toeplitz operators $T_{F}$ of the previous definition as a particular case.)

The order ord $\left(T_{Q}\right)$ and the symbol $\sigma\left(T_{Q}\right)$ of $T_{Q}$ are defined as the order of $Q$ and the restriction of the principal symbol $\sigma(Q)$ of $Q$ to the symplectic submanifold

$$
\Sigma:=\left\{(x, \xi): \xi=t(\bar{\partial} r-\partial r)_{x}, t>0\right\}
$$

of the cotangent bundle of $X$, respectively. It can be shown that these two definitions are unambiguous, and
(P1) the generalized Toeplitz operators form an algebra under composition (i.e. $\forall Q_{1}, Q_{2} \exists Q_{3}: T_{Q_{1}} T_{Q_{2}}=T_{Q_{3}}$ );
(P2) $\operatorname{ord}\left(T_{1} T_{2}\right)=\operatorname{ord}\left(T_{1}\right)+\operatorname{ord}\left(T_{2}\right) ; \sigma\left(T_{1} T_{2}\right)=\sigma\left(T_{1}\right) \sigma\left(T_{2}\right)$;
(P3) $\sigma\left(\left[T_{1}, T_{2}\right]\right)=\left\{\sigma\left(T_{1}\right), \sigma\left(T_{2}\right)\right\}_{\Sigma}$;
(P4) if ord $(T)=0$, then $T$ is a bounded operator on $H^{2}$; and
(P5) if ord $\left(T_{1}\right)=\operatorname{ord}\left(T_{2}\right)=k$ and $\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$, then ord $\left(T_{1}-T_{2}\right) \leq$ $k-1$.
(P6) for $F \in C^{\infty}(X)$ and $(x, \xi) \in \Sigma, \sigma\left(T_{F}\right)(x, \xi)=F(x)$.

Let $\mathcal{T}$ be the subalgebra of all generalized Toeplitz operators which commute with the circle action on $H^{2}$

$$
U_{\theta}: f(z, w) \mapsto f\left(z, e^{i \theta} w\right), \quad(z, w) \in X, \theta \in \mathbf{R} .
$$

Clearly, the operators $T_{F}$ with $F(x, t)=f(x)$, for some $f$ on $\Omega$ (i.e. $F$ constant along fibers), belong to $\mathcal{T}$.
Let $D: H^{2}(X) \rightarrow H^{2}(X)$ be the infinitesimal generator of the semigroup $U_{\theta}$. Then $D$ acts as multiplication by $i m$ on the $m$-th summand in ( $\ddagger$ ), for each $m$ :

$$
D=\bigoplus_{m} i m I
$$

and also

$$
D=T_{\partial / \partial \theta}
$$

is a generalized Toeplitz operator of order 1.

Using (P1)-(P6) it can be shown that if $T \in \mathcal{T}$ is of order 0 , then

$$
T=T_{F}+D^{-1} R
$$

for some (uniquely determined) $F \in C^{\infty}(X)$ which is constant along the fibers (hence, descends to a function on $\Omega$ ), and $R \in \mathcal{T}$ of order 0 . Repeated application of this formula reveals that, for each $k \geq 0$,

$$
T=\sum_{j=0}^{k} D^{-j} T_{F_{j}}+D^{-k-1} R_{k}
$$

with $F_{j}(x, t)=f_{j}(x)$ for some $f_{j} \in C^{\infty}(\bar{\Omega})$ and $R_{k} \in \mathcal{T}$ of order 0 . Invoking the fact that zeroth order operators are bounded, it follows that

$$
D^{k+1}\left(T-\sum_{j=0}^{k} D^{-j} T_{F_{j}}\right)=R_{k}
$$

is a bounded operator on $H^{2}$.

In view of the decomposition $T_{F}=\oplus_{m} T_{f}^{(m)}$, this means that

$$
\left\|\left.T\right|_{L^{2}\left(\Omega, e^{-m \Phi} \operatorname{det}[\partial \bar{\partial} \Phi]\right)}-\sum_{j=0}^{k} m^{-j} T_{f_{j}}^{(m)}\right\|=O\left(m^{-k-1}\right)
$$

Taking for $T$ the product $T_{F} T_{G}$, with $F(x, t)=f(x), G(x, t)=g(x)$ for some $f, g \in C^{\infty}(\bar{\Omega})$, \& setting $C_{j}(f, g):=f_{j}$, we obtain the desired asymptotic expansion for $T_{f}^{(m)} T_{g}^{(m)}$.
Finally, the assertions concerning $C_{0}$ and $C_{1}$ follow from the above properties (P2) and (P3) of the symbol.
[Coburn 1994] — 世DO's; [Klimek-Lesn] [Bwick-Lesn-Upm] — bare-hands.

## CONCLUDING REMARKS

- surveys: [Schlichenmaier - arXiv 2010], [Ali-E RMP 2005]
- $\alpha=1 / h \rightarrow+\infty$ noninteger
- generalizations of Fefferman:
- weakly pscvx - difficult!, unsolved (h-regular [Kamimoto])
- weighted - ok for $r^{\alpha}, r^{\alpha}+r^{\alpha+1} \log r$; [Blaschke]
- metric bad at the boundary $-e^{-\Phi} \neq r$ (Cheng-Yau): partly
- generalizations of BdM-G: ([Bravermann])
- balanced metrics: $K_{\alpha}(x, x)=\left(\frac{\alpha}{\pi}\right)^{n} \frac{e^{\alpha \Phi(x)}}{\operatorname{det}[\partial \bar{\partial} \Phi(x)]}-$ [Donaldson]
- range of the Berezin symbol: [Coburn] [Xia] [Bommier-Hato] (curvature conditions)
- asymptotic of harmonic Bergman kernels: $\mathbf{R}_{+}^{n}[J a h n], \mathbf{B}^{n}$ [Blaschke], radial/horizontal [Englis 2015]


# Berezin-Toeplitz quantization AND NONCOMMUTATIVE GEOMETRY 

(joint with B. Iochum \& K. Falk, CPT, Marseille)
$\Omega$ a domain in $\mathbf{C}^{n}$
$d z$ the Lebesgue measure
$L^{2}(\Omega) \supset L_{\text {hol }}^{2}(\Omega)$ the Bergman space
$K(x, y):=K_{y}(x)=\overline{K_{x}(y)}$ the reproducing kernel for $L_{\text {hol }}^{2}(\Omega)$

## Toeplitz operators

Toeplitz operator with symbol $\phi \in L^{\infty}(\Omega)$ :

$$
\mathbf{T}_{\phi}: L_{\mathrm{hol}}^{2} \rightarrow L_{\mathrm{hol}}^{2}, \quad \mathbf{T}_{\phi} f=P(\phi f)
$$

where $P: L^{2} \rightarrow L_{\text {hol }}^{2}$ is the orthogonal projection (Bergman projection). Explicitly:

$$
\mathbf{T}_{\phi} f(x)=\int_{\Omega} f(y) \phi(y) K(x, y) d y
$$

Properties:

- $f \mapsto \mathbf{T}_{f}$ linear
- $\mathbf{T}_{f}^{*}=\mathbf{T}_{\bar{f}}$
- $\mathbf{T}_{\mathbf{1}}=I$
- $\left\|\mathbf{T}_{f}\right\| \leq\|f\|_{\infty}$.

Weighted variants.
[Connes 1990-1995, Noncommutative geometry]
$X$ a topological space $\longleftrightarrow$ the algebra $C(X)$
Recovers $X$ as $\operatorname{Spec} C(X)$.
Recovering Riemmannian metric etc.: spectral triples.

Definition. Spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})=$ following data:

- a unital algebra $\mathcal{A}$ with involution,
- a faithful representation $\pi$ of $\mathcal{A}$ on a Hilbert space $\mathcal{H}$
- a selfadjoint operator $\mathcal{D}$ on $\mathcal{H}$ with compact resolvent such that the commutator $[\mathcal{D}, \pi(A)]$ is bounded for any $a \in \mathcal{A}$. (more precisely: extends to a bounded operator)

Example. $\quad M$ a $\operatorname{spin}^{c}$-manifold,

$$
\begin{aligned}
& \mathcal{A}=C^{\infty}(M), \\
& \mathcal{H}=L^{2}(M, S), \quad S=\text { spinor bundle }, \\
& \mathcal{D}=\not D, \quad \text { the Dirac operator. }
\end{aligned}
$$

Connes' Reconstruction Thm. All commutative spectral triples (with certain extra structure) arise (essentially) in this way.

$$
\begin{gathered}
M=\operatorname{Spec}\left(\overline{\mathcal{A}}^{\|\cdot\|}\right) \\
\operatorname{dist}_{M}(x, y)=\sup \{|a(x)-a(y)|:\|[D, a]\| \leq 1\} \\
\operatorname{dim} M=\sup \left\{d:|D|^{-1 / d} \text { is trace class }\right\} .
\end{gathered}
$$

Aim of this talk: see if can get interesting examples of spectral triples using Toeplitz operators and Berezin-Toeplitz quantization.
(Work in progress.)

Will review some stuff first.

## Scentrio

$\Omega$ a bounded domain in $\mathbf{C}^{n}$ with smooth $\left(C^{\infty}\right)$ boundary (manifolds - later)
$r$ a (positively-signed) defining function for $\Omega$ :

$$
\begin{gathered}
r \in C^{\infty}(\bar{\Omega}), \quad r>0 \text { on } \Omega \\
r=0,\|\nabla r\|>0 \text { on } \partial \Omega .
\end{gathered}
$$

Domain strictly pseudoconvex if $r$ can be chosen so that

$$
\left[\frac{\partial^{2} r}{\partial z_{j} \partial \bar{z}_{k}}\right]_{j, k=1}^{n}<0 \quad \text { on } \bar{\Omega} .
$$

Guarantees that the one-form

$$
\eta:=\left.\operatorname{Im} \partial r\right|_{\partial \Omega}=\left.\frac{\bar{\partial} r-\partial r}{2 i}\right|_{\partial \Omega}
$$

is a contact form, i.e.

$$
\eta \wedge(d \eta)^{n-1}
$$

is a nonvanishing volume element on the boundary $\partial \Omega$.
$\mathbf{K}$ the Poisson extension operator:
$\left.{ }^{*}\right) \quad \mathbf{K}: L^{2}(\partial \Omega) \rightarrow L^{2}(\Omega), \quad \Delta \mathbf{K} u=0$ on $\Omega,\left.\quad \mathbf{K} u\right|_{\partial \Omega}=u$.
Bounded $L^{2} \rightarrow L^{2}$; in fact

$$
\mathbf{K}: W^{s}(\partial \Omega) \underset{\approx}{\underset{\sim}{\text { harm }}}{ }^{s+\frac{1}{2}}(\Omega), \quad \forall s \in \mathbf{R} .
$$

Adjoint $\mathbf{K}^{*}: L^{2}(\Omega) \rightarrow L^{2}(\partial \Omega)$. The composition

$$
\begin{equation*}
\Lambda:=\mathbf{K}^{*} \mathbf{K} \tag{**}
\end{equation*}
$$

is a (classical) $\Psi \mathrm{DO}$ on $\partial \Omega$ of order -1 , with $\sigma(\Lambda)(x, \xi)=1 /(2|\xi|)$.
Comparing $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$, we see that

$$
\Lambda^{-1} \mathbf{K}^{*}=: \gamma
$$

is the operator of taking the boundary values of harmonic functions. Bijection $W_{\text {harm }}^{s+\frac{1}{2}}(\Omega) \rightarrow W^{s}(\partial \Omega), \forall s \in \mathbf{R}$.

Boutet de Monvel calculus: operators of the form

$$
\Lambda_{w}:=\mathbf{K}^{*} w \mathbf{K}, \quad w \text { a function on } \Omega .
$$

If $w$ is of the form

$$
w=r^{\alpha} g, \quad \alpha>-1, g \in C^{\infty}(\bar{\Omega})
$$

then $\Lambda_{w}$ is a $\Psi D O$ on $\partial \Omega$ of order $-\alpha-1$, with

$$
\sigma\left(\Lambda_{w}\right)(x, \xi)=\frac{\Gamma(\alpha+1) g(x)}{2|\xi|^{\alpha+1}}\left\|\eta_{x}\right\|^{\alpha} .
$$

(All this holds in fact for domains in $\mathbf{R}^{n}$ not only $\mathbf{C}^{n}$.)

Hardy space:

$$
H^{2}(\partial \Omega):=\left\{u \in L^{2}(\partial \Omega): \mathbf{K} u \text { is holomorphic on } \Omega\right\} .
$$

(Here $L^{2}(\partial \Omega)$ is taken with respect to $\eta \wedge(d \eta)^{n-1}$, but we could in principle choose any other surface element mutually absolutely continuous with respect to it.)

Szegö projection:

$$
S: L^{2}(\partial \Omega) \rightarrow H^{2} \quad \text { orthogonal. }
$$

Toeplitz operator: for $f \in C^{\infty}(\partial \Omega)$, the operator on $H^{2}$ defined by

$$
T_{f} u=S(f u) .
$$

Clearly, $f \mapsto T_{f}$ is linear, $T_{f}^{*}=T_{\bar{f}}, T_{\mathbf{1}}=I$ (the identity operator) and $\left\|T_{f}\right\| \leq\|f\|_{\infty}$.

For $P$ a $\Psi D O$ on $\partial \Omega$, the operator $T_{P}$ on $H^{2}$ defined by

$$
T_{P}=\left.S P\right|_{H^{2}}
$$

Alternatively, can be viewed as

$$
T_{P}=S P S
$$

on all of $L^{2}(\partial \Omega)$ (by prolonging by zero).
For $P$ the operator of multiplication by a function $f \in C^{\infty}(\partial \Omega)$, recovers $T_{P}=T_{f}$ we had before.
 tion of $\sigma(P)$ to the half-line bundle

$$
\Sigma:=\left\{\left(x, t \eta_{x}\right) \in T^{*} \partial \Omega: t>0\right\}
$$

is determined uniquely. $\Longrightarrow$ One can define unambiguously the order and the principal symbol of a GTO by

$$
\begin{aligned}
\operatorname{ord}\left(T_{P}\right) & :=\inf \left\{\operatorname{ord}(Q): T_{Q}=T_{P}\right\} \\
\sigma\left(T_{P}\right) & :=\left.\sigma(Q)\right|_{\Sigma} \quad \text { for any } Q \text { with } T_{Q}=T_{P} \text { and } \operatorname{ord}(Q)=\operatorname{ord}\left(T_{P}\right) .
\end{aligned}
$$

(The order can be $-\infty$; in that case the symbol is not defined.)

$$
\begin{aligned}
\operatorname{ord}\left(T_{P} T_{Q}\right) & =\operatorname{ord}\left(T_{P}\right)+\operatorname{ord}\left(T_{Q}\right), \\
\sigma\left(T_{P} T_{Q}\right) & =\sigma\left(T_{P}\right) \sigma\left(T_{Q}\right), \\
\sigma\left(\left[T_{P}, T_{Q}\right]\right) & =\left\{\sigma\left(T_{P}\right), \sigma\left(T_{Q}\right)\right\}_{\Sigma} .
\end{aligned}
$$

Perhaps the most important property of GTOs is that for any $T_{P}$, there exists a $Q$ such that

$$
T_{P}=T_{Q} \quad \text { and } \quad Q S=S Q
$$

An immediate consequence is that GTOs form an algebra: for any $P, Q$, $T_{P} T_{Q}=T_{R}$ for some $R$.

The operators $T_{P}$ have the standard mapping properties on the scale of holomorphic Sobolev spaces

$$
W_{\text {hol }}^{s}(\partial \Omega):=\left\{u \in W^{s}(\partial \Omega): \mathbf{K} u \text { is holomorphic on } \Omega\right\},
$$

namely,

$$
T_{P}: W_{\mathrm{hol}}^{s}(\partial \Omega) \rightarrow W_{\mathrm{hol}}^{s-m}(\partial \Omega), \quad m=\operatorname{ord}\left(T_{P}\right) .
$$

In particular, $T_{P}$ is bounded on any $W_{\text {hol }}^{s}(\partial \Omega)$ if $m \leq 0$, and compact if $m<0$.

A GTO is elliptic if $\sigma\left(T_{P}\right)$ does not vanish.
In that case, $T_{P}$ has a parametrix, i.e. there exists a GTO $T_{Q}$ of order $-m$ such that $T_{P} T_{Q}-I$ and $T_{Q} T_{P}-I$ are smoothing operators (i.e. of order $-\infty$ ).

In particular, if $T_{P}$ is elliptic of order $m \neq 0$ with $\sigma\left(T_{P}\right)>0$ and is positive and selfadjoint as an operator on $H^{2}$, then the inverse $T_{P}^{-1}$ is also a GTO.

Relationship between Bergman and Hardy space Toeplitz ops For $f=\mathbf{K} u \in L_{\text {hol }}^{2}(\Omega, w)$ :

$$
\begin{align*}
\|\mathbf{K} u\|_{w}^{2} & =\langle w \mathbf{K} u, \mathbf{K} u\rangle_{L^{2}(\Omega)}=\left\langle\mathbf{K}^{*} w \mathbf{K} u, u\right\rangle_{L^{2}(\partial \Omega)} \\
& =\left\langle\Lambda_{w} u, u\right\rangle_{L^{2}(\partial \Omega)}  \tag{*}\\
& =\left\langle T_{\Lambda_{w}} u, u\right\rangle_{H^{2}}
\end{align*}
$$

because $u=S u$ for $\mathbf{K} u$ holomorphic.
For $f \in C^{\infty}(\bar{\Omega})$ and $u, v \in H^{2}$, similarly as above

$$
\begin{aligned}
\left\langle\mathbf{T}_{f} \mathbf{K} u, \mathbf{K} v\right\rangle_{w} & =\langle f \mathbf{K} u, \mathbf{K} v\rangle_{w}=\langle w f \mathbf{K} u, \mathbf{K} v\rangle_{L^{2}(\Omega)} \\
& =\left\langle\Lambda_{w f} u, v\right\rangle_{L^{2}(\partial \Omega)}=\left\langle T_{\Lambda_{w f}} u, v\right\rangle_{H^{2}} \\
& =\left\langle\mathbf{K} T_{\Lambda_{w}}^{-1} T_{\Lambda_{w f}} u, \mathbf{K} v\right\rangle_{w}
\end{aligned}
$$

by (*). Thus

$$
\gamma \mathbf{T}_{f} \mathbf{K}=T_{\Lambda_{w}}^{-1} T_{\Lambda_{w f}} .
$$

For $w=r^{\alpha} g, g \in C^{\infty}(\bar{\Omega})$, and $f$ vanishing on $\partial \Omega$ to order $k$, the rhs is a GTO of order $-k$.

## EXAMPLES OF SPECTRAL TRIPLES: BERGMAN SPACES

Let $w$ be a positive weight on $\Omega$ of the form

$$
w=r^{\alpha} g, \quad g \in C^{\infty}(\bar{\Omega}), \alpha>-1, g>0 \text { on } \partial \Omega
$$

Claim. Let

- $\mathcal{H}$ be the Hilbert space $L_{\text {hol }}^{2}(\Omega, w)$;
- $\mathcal{A}$ be the algebra (no closures taken) generated by the Toeplitz operators $\mathbf{T}_{f}, f \in C^{\infty}(\bar{\Omega})$, on $L_{\text {hol }}^{2}(\Omega, w)$;
- $\mathcal{D}$ the operator $\mathcal{D}=\mathbf{T}_{r}^{-1}$ on $L_{\mathrm{hol}}^{2}(\Omega, w)$.

Then $(\mathcal{A}, \mathcal{H}, \mathcal{D})$, with $\pi$ the identity representation, is a spectral triple.
Here we note that

$$
\left\langle\mathbf{T}_{r} f, f\right\rangle_{w}=\int_{\Omega} r|f|^{2} w>0
$$

for any $f \neq 0$, so $\mathbf{T}_{r}$ is a (bounded) positive selfadjoint operator on $L_{\text {hol }}^{2}(\Omega, w)$; hence it has a densely defined positive selfadjoint inverse $\mathbf{T}_{r}^{-1}$.

- a unital algebra $\mathcal{A}$ with involution:

Clear. $\quad\left(\mathbf{T}_{\mathbf{1}}=I, \mathbf{T}_{f}^{*}=\mathbf{T}_{\bar{f}}\right)$

- a faithful representation $\pi$ of $\mathcal{A}$ on a Hilbert space $\mathcal{H}$ :

Clear.

- a selfadjoint operator $\mathcal{D}$ on $\mathcal{H}$ with compact resolvent such that the commutator $[\mathcal{D}, \pi(A)]$ is bounded for any $a \in \mathcal{A}$. $\mathcal{D}^{-1}=\mathbf{T}_{r}$ is compact, since $\gamma \mathbf{T}_{r} \mathbf{K}=T_{\Lambda_{w}}^{-1} T_{\Lambda_{r w}}$ is a GTO of order $\alpha+1-(\alpha+2)=-1$, hence compact.
Boundedness of $\left[\mathbf{T}_{r}^{-1}, A\right]$ for $A \in \mathcal{A}$ : enough to check for $A=T_{f}$; but using $\gamma \mathbf{T}_{f} \mathbf{K}=T_{\Lambda_{w}}^{-1} T_{\Lambda_{w f}}$,

$$
\left[\mathbf{T}_{r}^{-1}, \mathbf{T}_{f}\right]=\mathbf{K}\left[T_{\Lambda_{r w}}^{-1} T_{\Lambda_{w}}, T_{\Lambda_{w}}^{-1} T_{\Lambda_{w f}}\right] \gamma=\mathbf{K}\left[G T O_{1}, G T O_{0}\right] \gamma .
$$

The commutator on the rhs is a GTO of order 0 , hence bounded.

Principal symbol - can be expressed using Reeb vector field.

## Claim. Let

- $\mathcal{H}$ be the Hardy space $H^{2}$ on $\partial \Omega$;
- $\mathcal{A}$ be the algebra (no closures taken) generated by $T_{f}, f \in C^{\infty}(\partial \Omega)$, on $H^{2}$;
- $\mathcal{D}$ be the operator $\mathcal{D}=T_{P}^{-1}$ on $H^{2}$, where $P$ is a positive selfadjoint $\Psi D O$ on $\partial \Omega$ of order -1 .
Then $(\mathcal{A}, \mathcal{H}, \mathcal{D})$, with $\pi$ the identity representation, is a spectral triple.
An example of $P$ in the last item is e.g. $P=\Lambda=\mathbf{K}^{*} \mathbf{K}$ : indeed, $\langle\Lambda u, u\rangle=$ $\|\mathbf{K} u\|^{2}>0$ for $u \neq 0$ since $\mathbf{K}$ is injective.

Proof. Analogous.

In fact, could take $\mathcal{A}=$ GTOs of order 0 .
Generalization: to arbitrary contact manifolds admitting a "Toeplitz structure".

From now on, we fix a sequence of real numbers $\alpha>-1$ tending to $+\infty$, e.g. $\alpha=0,1,2, \ldots$.

Assume that $\log \frac{1}{r}$ is strictly plurisubharmonic on $\Omega$ (defining functions $r$ with this property exist in abundance due to the strict pseudoconvexity of $\Omega$ ). So that

$$
g_{j \bar{k}}(z):=\frac{\partial^{2}}{\partial z_{j} \partial \bar{z}_{k}} \log \frac{1}{r(z)}
$$

defines a Kähler metric on $\Omega$; and let

$$
g=r^{n+1} \operatorname{det}\left[g_{j \bar{k}}\right]=-\operatorname{det}\left[\begin{array}{cc}
\frac{r}{\bar{\partial}} r & \partial \bar{\partial} r
\end{array}\right] .
$$

Consider the weighted Bergman spaces $L_{\text {hol }}^{2}\left(\Omega, r^{\alpha} g\right)$. Let

$$
\mathbf{H}=\bigoplus_{\alpha} L_{\mathrm{hol}}^{2}\left(\Omega, r^{\alpha} g\right)
$$

and let $\pi_{m}$ stand for the orthogonal onto the summand $\alpha=m$.
For $f \in C^{\infty}(\bar{\Omega})$, we then have the orthogonal sums

$$
\mathbf{T}_{f}^{\oplus}:=\bigoplus_{\alpha}\left(\mathbf{T}_{f} \text { on } L_{\mathrm{hol}}^{2}\left(\Omega, r^{\alpha} g\right)\right)
$$

of the Toeplitz operators $\mathbf{T}_{f}$, acting on $\mathbf{H}$. Clearly each $\mathbf{T}_{f}^{\oplus}$ is again bounded with $\left\|\mathbf{T}_{f}^{\oplus}\right\| \leq\|f\|_{\infty}$, and $\left[\mathbf{T}_{f}^{\oplus}, \pi_{m}\right]=0$ for all $m$.

Let $\mathcal{B}=\left\{M\right.$ bounded linear on $\mathbf{H}:\left[M, \pi_{m}\right]=0$ for all $m$ and

$$
\begin{equation*}
M \approx \sum_{m=0}^{\infty} \alpha^{-m} \mathbf{T}_{f_{m}}^{\oplus} \quad \text { as } m \rightarrow+\infty \tag{*}
\end{equation*}
$$

with some $f_{m} \in C^{\infty}(\bar{\Omega})$ (depending on $\left.M\right)$. Here " $\approx$ " means that

$$
\left\|\pi_{j}\left(M-\sum_{m=0}^{k-1} \alpha^{-m} \mathbf{T}_{f_{m}}^{\oplus}\right) \pi_{j}\right\|=O\left(j^{-k}\right) \quad \text { as } j \rightarrow+\infty
$$

for any $k=0,1,2, \ldots$.

Berezin-Toeplitz quantization $\Longrightarrow$ finite products of $\mathbf{T}_{f}^{\oplus}$ belong to $\mathcal{B}$. More specifically,

$$
\mathbf{T}_{f}^{\oplus} \mathbf{T}_{g}^{\oplus} \approx \sum_{m=0}^{\infty} \alpha^{-m} \mathbf{T}_{C_{m}(f, g)}^{\oplus}
$$

where

$$
\sum_{j=0}^{\infty} h^{j} C_{j}(f, g)=: f \star g
$$

defines a star product on $\left(\Omega, g_{j \bar{k}}\right)$. Symbolically, we can write

$$
\mathbf{T}_{f}^{\oplus} \mathbf{T}_{g}^{\oplus}=\mathbf{T}_{f \star g}^{\oplus} .
$$

Another result is, incidentally, that

$$
\left\|\pi_{m} \mathbf{T}_{f}^{\oplus} \pi_{m}\right\| \rightarrow\|f\|_{\infty} \quad \text { as } m \rightarrow+\infty
$$

implying, in particular, that for a given $M \in \mathcal{B}$ the sequence $\left\{f_{m}\right\}$ in $\left(^{*}\right)$ is determined uniquely.

Another depiction: consider the "unit disc bundle"

$$
\widetilde{\Omega}:=\left\{(z, t) \in \Omega \times \mathbf{C}:|t|^{2}<r(z)\right\} .
$$

$r$ defining function $\Longrightarrow \widetilde{\Omega}$ smoothly bounded;
$\Omega$ is strictly pseudoconvex, $\log \frac{1}{r}$ is strictly plurisubharmonic
$\Longrightarrow \widetilde{\Omega}$ is strictly pseudoconvex.
Thus we have the Hardy space $H^{2}(\widetilde{\Omega})=: \widetilde{H}$ of $\widetilde{\Omega}$ and the GTOs $\widetilde{T}_{P}$ there, whose symbols $P$ are now $\Psi$ DOs on $\partial \widetilde{\Omega}$.

A function in $\widetilde{H}$ has the Taylor expansion in the fiber variable

$$
f(z, t)=\sum_{m=0}^{\infty} f_{m}(z) t^{m}
$$

Denote by $\widetilde{H}_{m}(m=0,1,2, \ldots)$ the subspace in $\widetilde{H}$ of functions with $f_{j}=0 \forall j \neq m$.

Then the correspondence

$$
f_{m}(z) t^{m} \longleftrightarrow f_{m}(z)
$$

is an isometry (up to a constant factor) of $\widetilde{H}_{m}$ onto $L_{\mathrm{hol}}^{2}\left(\Omega, r^{m-n-1} g\right)$. Thus

$$
\widetilde{H}=\bigoplus_{m=0}^{\infty} \widetilde{H}_{m+n+1} \cong \bigoplus_{m=0}^{\infty} L_{\mathrm{hol}}^{2}\left(\Omega, r^{m} g\right)=\mathbf{H}
$$

Furthermore, viewing a function $f \in C^{\infty}(\Omega)$ also as the function $f(z, t):=$ $f(z)$ on $\partial \widetilde{\Omega}$ (i.e. identifying $f$ with its pullback via the projection map), one has, under the above isomorphism,

$$
\widetilde{T}_{f} \cong \bigoplus_{m}\left(\mathbf{T}_{f} \text { on } L_{\mathrm{hol}}^{2}\left(\Omega, r^{m} g\right)\right)=\mathbf{T}_{f}^{\oplus}
$$

Finally, let $\widetilde{\mathbf{K}}$ be the Poisson operator for $\widetilde{\Omega}$, and as before set

$$
\widetilde{\Lambda}:=\widetilde{\mathbf{K}}^{*} \tilde{\mathbf{K}}
$$

Thus $\widetilde{\Lambda}$ is a $\Psi D O$ on $\partial \widetilde{\Omega}$ of order -1 , and a positive selfadjoint compact operator on $\widetilde{H}$.

Since the fiber rotations $(z, t) \mapsto\left(z, e^{i \theta} t\right), \theta \in \mathbf{R}$, preserve holomorphy and harmonicity of functions, both $\widetilde{\mathbf{K}}, \widetilde{\Lambda}$ and the Szegö projection $\widetilde{S}$ : $L^{2}(\partial \widetilde{\Omega}) \rightarrow \widetilde{H}$ must commute with them.

The GTOs $\widetilde{T}_{\widetilde{\Lambda}}$ on $\widetilde{H}$ therefore likewise commutes with these rotations, and hence commutes also with the projections in $\widetilde{H}$ onto $\widetilde{H}_{m}$, i.e. is diagonalized by the decomposition $\widetilde{H}=\bigoplus_{m} \widetilde{H}_{m}$.

Denote by $L=\bigoplus_{m} L_{m}$ the operator corresponding to $\widetilde{T}_{\widetilde{\Lambda}}$ under the isomorphism $\widetilde{H} \cong \mathbf{H}=\bigoplus_{m} L_{\text {hol }}^{2}\left(\Omega, r^{m} g\right)$.

Claim. Let

- $\mathcal{H}$ be the Hilbert space $\mathbf{H}$;
$-\mathcal{A}$ be the algebra (no closures taken) generated by $\mathbf{T}_{f}^{\oplus}, f \in C^{\infty}(\bar{\Omega})$, on $\mathbf{H}$;
- $\mathcal{D}$ be the operator $\mathcal{D}=L^{-1}$.

Then $(\mathcal{A}, \mathcal{H}, \mathcal{D})$, with $\pi$ the identity representation, is a spectral triple.

Proof. "Direct sum" of the previous, using the above formalism. $\square$

## Examples of spectral triples: Star products

Can alternatively define $\mathcal{A}$ in the last example as an algebra of formal power series.

More specifically, let $\kappa$ be the linear map from $\mathcal{B}$ into the ring of formal power series

$$
\mathcal{N}=C^{\infty}(\bar{\Omega})[[h]]
$$

given by

$$
\begin{equation*}
\kappa: M \longmapsto \sum_{m=0}^{\infty} h^{m} f_{m}(z) \tag{*}
\end{equation*}
$$

if

$$
M \approx \sum_{m=0}^{\infty} \alpha^{-m} \mathbf{T}_{f_{m}}^{\oplus} \quad \text { as } m \rightarrow+\infty
$$

Note: $\kappa$ is well defined and, owing to the B-T quantization, extending as usual $\star$ from functions to all of $\mathcal{N}$ by $\mathbf{C}[[h]]$-linearity,

$$
\kappa(M N)=\kappa(M) \star \kappa(N),
$$

i.e. $\kappa:(\mathcal{B}, \circ) \rightarrow(\mathcal{N}, \star)$ is an algebra homomorphism.

Claim. Let
$-\mathcal{H}$ be the space $\mathbf{H}$;
$-\mathcal{A}$ be the subalgebra (no closures) of $(\mathcal{N}, \star)$ generated by $\kappa\left(\mathbf{T}_{f}^{\oplus}\right)$, $f \in C^{\infty}(\bar{\Omega})$, and $h ;$
$-\pi$ be the representation

$$
\pi\left(\sum_{m=0}^{\infty} h^{m} f_{m}\right)=\sum_{m} \alpha^{-m} \mathbf{T}_{f_{m}}^{\oplus}
$$

which is well-defined from $\mathcal{A}$ into $\mathcal{B}$;

- $\mathcal{D}$ be the operator $\mathcal{D}=\bigoplus_{m} L_{m}^{-1}$ on $\mathbf{H}$.

Then $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is a spectral triple.

Proof. In view of the preceding result, the only thing we need to check is that $\pi$ is well-defined (i.e. the right-hand side in $\left(^{*}\right)$ converges and defines a bounded operator in $\mathcal{B}$ ) and faithful. The former is immediate from the fact that $\mathcal{A}$ consists of finite sums of finite products of $\kappa\left(\mathbf{T}_{f}^{\oplus}\right)$, while $\kappa:(\mathcal{B}, \circ) \rightarrow(\mathcal{N}, \star)$ is an algebra homomorphism and $\pi\left(\kappa\left(\mathbf{T}_{f}^{\oplus}\right)\right)=\mathbf{T}_{f}^{\oplus}$ by the definitions. For the faithfulness, note that $\kappa \circ \pi=\operatorname{id}$ on $\mathcal{A}$; thus $\pi(A)=0$ implies $A=\kappa(\pi(A))=0$.
(1) non-positive (natural/canonical) $\mathcal{D}$ ?
(For $\Omega=$ ball - Howe correspondence \& Bargmann transform.
Not quite right.)
("Phase" - conformal structure.)
(2) (In fact: $\mathcal{D}^{-1} \notin \mathcal{A}$ desirable.)
(3) spectral dimension: $n$ for Bergman/Hardy, $n+1$ for star product Geodesic distance? $\quad($ Was $\sup \{|a(x)-a(y)|,\|[\mathcal{D}, A]\| \leq 1\}$.) ???
(4) manifolds not domains?

Bergman - boundary needed
Hardy - any with "contact structure"
star products - unit disc bundle, ok for polarized compact
(5) Utilization in physics?

References:

- M. Engliš, B. Iochum, K. Falk: Spectral triples and Toeplitz operators, J. Noncomm. Geom. 9 (2015), 1041-1076.

Thanks for your attention!

