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QUANTIZATION IN PHYSICS

Assignment

J— Qg

functions on M — operators on H.
M — classical phase space (symplectic manifold);
H — (fixed) Hilbert space.
f — classical observables; (f — quantum observables.

Physical interpretation.

Dirac, von Neumann, Weyl.



Example. M = R?>" > (p, q),
H = L*(R"™) functions of g,

Qq, : f(a) — qjf(a),

h 0O
ij : f(Q) ’ 9 gé;])

(Schrodinger representation)

Satisfies canonical commutation relations (CCR)

[QQj7QQk] — [ij7ka,] — 07 Vj,k,
[QQj’ka] =0 forj #k,

vh
[qu'?ij] - %I’
where [A, B] := AB — BA denotes the commutator of two operators.

What about ()¢ for more general functions f7



AXIOMS FOR QUANTIZATION

(1) f Qy is linear;
(2) for any polynomial ¢ : R — R,

Q(bOf — ¢(Qf)a

(in particular: Q1 = 1I) (von Neumann rule)

h
(3) [Qr,Qg| = —;—WQ{f,g}, where

(.0} = Z(af )

Op; 0g, 8qj Op;

is the Poisson bracket of f and g.

(Extends to general symplectic manifolds instead of R2".)
Solutions?

Bad news.



Unfortunately, the above axioms are inconsistent (even on R2™).
Denote for brevity P = Qp,, Q = Q¢ , P = D1, ¢ = q1; then

(p+q?-p*—¢* (P+QP-P-Q> PQ+QP

pq =

9 9 9
2

2o P+ -pt—q¢* P2Q*+ Q*P? PQ+QP
ra = ) S S G

So

e linearity + von Neumann — contradiction;

|Groenewold 1946, van Hove 1951]:

e linearity + brackets — contradiction.
[Englis 2001]:

e von Neumann + brackets — contradiction.



From a purely mathematical viewpoint, it can, in fact, be shown that
already the von Neumann rule and the canonical commutation relations
by themselves lead to a contradiction.

Namely, recall that there exists a continuous function f (Pedno curve)
which maps R continuously and surjectively onto R?". Let g be a right
inverse for f, so that ¢ : R>® — R and f o g = id; such ¢ exists owing
to the surjectivity of f, and can be chosen to be measurable and locally
bounded.

Set T' = @), and consider the functions ¢ = p; o f, ¥» = ¢1 o f. Then
by (von Neumann),

o(T) = QplOng = Qp; 5 Y(T) = quOng = Qi
and |
0= ¢(T)Y(T) = P(T)H(T) = [Qp,, Qqy) = — 521,
a contradiction.

In the physical realm one usually deals only with smooth observables, which rules

out such pathologies.



WHAT TO DO?

In any case, discard the von Neumann rule, except for ¢ =1, i.e.

Q1 =1.
First avenue: Insist on all other axioms, but restrict the space of quan-
tizable observables (the domain of the map f — Q).

For instance, for quantization on R"™ — allow only functions at most
linear in the p;. Then the recipe

. ih of oy of
Qf ¢ — _%<;8—p]8—q]> -+ (f—;pjapj)wa

where 1 = (q) € L?*(R"), works.

In general, restrict to “functions depending on only half of the variables”.
Requires the use of polarizations of ({2,w), and leads to GEOMETRIC
QUANTIZATION.  [Kostant 1970], [Souriau 1969]

Second avenue: Relax (Poisson brackets) to hold only asymptotically as
h — O:

h
(%) Q1 Qql = —5-Qr.0 + O(1?).




Simplest example on R?":  An “arbitrary” function f(p,q) can be ex-
panded into exponentials via the Fourier transform,

f(pa) = / / F(.m) it ge ap,

Let us now postulate that

Qf = / / F(&.m) 2TERHIRD) g dy = W (1),

This is the celebrated Weyl calculus of pseudodifferential operators.



It can be shown that for nice f and g,
W(NW(g) =Wy +hWe, (1,9 + O(17)

as h \, 0, where

izn:(ﬁf dg B of 8g)

4 g 8qj 8pj apj 8qj

satisfies

Cl(fag) - Cl(gaf) — _%{fvg}

Hence

th
(W, W, = ——W{f gy T O(h )

and so ("X) holds for the Q¢ = Wy.



The product formula
W ()W (g) = Wiy +hWey(s,9) + O(R?),
can even be improved to higher order: there exist Cs, (s, ... such that
WiWy = Wig +hWe,(1,9) + B Wey(s,9) + O(R7),
WiWy = Wyg + hWey(1,9) + B Wey(1,9) + B Wey(p,9) + O(RY),
and so on. Symbolically,
WiWg = Wi
where

fxg=fg+hCi(f, g)+h?Co(f,g)+h3Cs(f,g)+....

In fact, in quantization it is often not really necessary to have the oper-
ators (), but suffices to have the noncommutative product like *.

This is the DEFORMATION QUANTIZATION.



DEFORMATION QUANTIZATION

C>(£2)[[h]] = the ring of all formal power series in h over C*°({2).

A star product is an associative Cl[[h]]-bilinear mapping * such that

frg=>_WC;f9), Vf,g € CP(Q),
j=0

where the bilinear operators C; satisfy

Colf9) = fg.  Cr(f.9) ~ Cilg, f) = —5-{F.a}

Ci(f1)=C1,f)=0 ¥j=1.



Weyl calculus — example of deformation quantization on R?".

Unfortunately, does not readily extend to more general phase spaces
than R?™. Fourier transform.

Deformation quantization on general symplectic manifolds:
— introduced: [Bayen,Flato,Fronsdal,Lichnerowicz,Sternheimer 1977]

— existence: [DeWilde & Lecomte 1983], [Fedosov 1985], [Omori, Maeda&
Yoshioka 1991] ([Kontsevich 1997] even on any Poisson)

— classification up to equivalence: by H?($, R)[[A]].

Drawback:

In general, only formal power series — no convergence guaranteed for a
given value of h. Difficult for calculations.



This talk: special deformation quantizations on phase spaces which are
domains in C" (more generally — Kahler manifolds):
Berezin and Berezin-Toeplitz quantizations.

First — an example.



F'OCK SPACE ON C
On C: F(C)=F:= L2 (C,x te 7 dz).
Let us compute the norm of f(z) = Z;io fiz:

> dz > R > dz
fpe ;2 fodke A 2
/z<R ™ |z| <R Z ’ ™

J,k=0

> —_ . . > rdrdf
— f,fkrj+kze(j—k)z€e—r
/z<R Z ’ T

jk—O

/ Zlfgl%% ™ o dr
7’<R
:/ Z|fj|2tje—tdt.

Letting R — 400 yields

1712 =S 1512 / Petdt =3 |f[20
=0 0 =0



Thus f € F iff its Taylor coefficients satisfy > _; | fil?5! < oo,

Similar computation (using Cauchy-Schwarz and Fubini) gives a formula
for the inner product in F:

(fr9) =) fig5 i
j=0

In particular, the monomials z™, n = 0,1,2,..., form an orthogonal
basis of F, and

Zn

, n=0,1,2,...,

5

is an orthonormal basis.



Reproducing kernels for F: For any z € C we have
. . |z
f(2)| = }Zfﬂ]’ < Al =15V o=
j j j Vil
N\ 1/2 2|29\ 1/2 2
<(Sie) (B = e
; ;

|
J J:

Thus, first, f — f(z) is a bounded linear functional on F; and second,
it is in fact uniformly bounded for z in a bounded set in C.

The latter implies (since locally uniform limits of holomorphic functions

are holomorphic) that F is a closed subspace in L?(C, eIz’ dz), hence
a Hilbert space on its own right.

The former implies that there exist K, € F such that

f(z)=({fK.) VfelF

In fact, it is not difficult to compute what K, is explicitly.



Indeed, for any f € F and z € C

where

Thus K, (w) = e*¥

The function of two variables
K(w,z2) := K, (w) = e

is called the reproducing kernel of F.
Will play important role throughout.




Toeplitz operators on F: for f € L°°(C), defined by
Tru = P(fu)

where P : L2(C,nte~ 2" dz) — F is the orthogonal projection.

In other words
Ty = PMy|7

where My : u — fu is the operator of “multiplication by f”.
f is called the symbol of TY.

Properties:
o T o=Tr+ 1Ty, Ty =T for c € C;
o | 1] < ||[Mys|| = ||fl|lco; in particular, bounded;
o 11 =1;



Sometimes 7' makes sense even for unbounded f: for instance,
T,u= P(zu) = zu

(if zu € L?), so T, is just “multiplication by z” on F. Similarly, T,m for

any m=0,1,2,...,is just “multiplication by z™”.

Densely defined operators.

More generally, for any f € L,
T.ru= P(zfu) = P(fP(2u)) =TT u
(if zu € L*?). Thus T,; = T;T,. Similarly
Tomy = TpTym = Tp2™

for any m=0,1,2,....

Taking adjoints gives:
Tomyp = TemTY.

In general, however, T Ty, # T',.



What is TF = T%?

(Tr2")(w) = (152" Ky) = (2™ T, Ky) = (2", 2Ky)

1
Q

Similarly 77, = 0™.



Commutation relation:
[T.,Tz]u = [z,0lu = z0u — 0(zu) = —(0zu) = —u,

or [TzaTE] = —1.
Setting z = p + iq for the real and imaginary parts, this gives

1
T, T,|=—I
[ p> Q] 22 )

which agrees with the CCR for the Schrodinger representation, except
for the constant factor. This is easily remedied.



SCALED FOCK SPACES

Lo—lz

Replace m~"e : by the scaled Gaussian:

fa<C> = fa = L}2101(Ca %G_a‘zﬁ dZ), a > 0.

Reproducing kernel:

Toeplitz operators:

Reduces to F for a« = 1.

Commutation relations for T,,T,, z = p+ ig € C =2 R*:

1
T, T, = —1I.
[ q» p] 2057/

Taking o = 7/h thus exactly recovers the Schrodinger representation!

What about more complicated functions than z,Z (or ¢q,p) ?



Recall Tz = 19. By Leibniz

mzm—l

1
Tromu =TT, mu = —0(2"u) =

1
u+ 2" —0u,
Q o Q

or 15,m =T, m1T5 + %Tmzm—l. Thus
TonTs = Tlz2" — L(z™)] = T((z - 20)="].

It follows by linearity that

for any polynomial p in z.
Since Tgry = T Ty for any f, and d commutes with z, we even have

T,T5 = T[(z — ~0)p]

for any polynomial p in 2, Z.



Iterating this gives
T, 15 =T[(Z — —8) ]

which by the binomial theorem equals
k

zgj (kki]) (_Ojj)]fk_jajp: Z (]'Olé) (@) (5 p).

Finally, since T¢,m = T¢T,m for any f, and 0 commutes with z, we even
have the same with z¥ replaced by Z¥z™. By linearity, we thus get

_ (_1) J :
Tqu o T[Z ]!a] 8 q 8 :| ZO( 1)j(EJQ)8jp/j!

J

for any polynomials p,q in z,Z. (The sum is finite.)

The beginning of this expansion reads

1 _

For a = w/h, taking antisymmetrization produces the Poisson bracket.

Conclusion: f +— T on F,, a = 7, produces a deformation quantiza-

tion on C! For f a polynomial in 2z, Z.

=13



FOCK SPACES ON C"

Fo(C™) = L2 (C™ e I=I (o /m)™ d2)

Reproducing kernel:
Ko (z,w) = =),

Toeplitz operators:
. 1
sz = Zj, T = —aj.

Product of Toeplitz operators:

(_1)Ij| S
= 2 e T N@ )

at least for f, g polynomials in 2;,%z;, j =1,...,n.

So, again deformation quantization on C".



Remark. There is actually an isomorphism, the Bargmann transform,
mapping L?(R™) unitarily onto F,(C™).

Transferring Wy to F, via this isomorphism, Wy actually becomes pre-
cisely T for f a first-degree polynomial in z;,%;; but this is no longer
true for more general f. [J



Some caveats: the above is nice, but
e T, 1% are unbounded operators — not so nice

e how to make sense of

B (_1)Ijl S
s _jmu%;ndex il L@ N@ )]

when f, g are not polynomials (the sum is infinite — convergence?!)

e We also want other domains than C™.

Answer = rest of this talk.



BERGMAN SPACE

(2 a bounded domain in C"

dm(z) or dz the normalized Lebesgue measure on )
L?(Q) D L% () the Bergman space
K(z,y) = K,(z) reproducing kernel: K, € L?_ (),

) = (. K,) = /Q J@)K(y,x)de V€ L2,

Note:
K(xay) — Ky(x) - <Ky:Kﬂc>

is holomorphic in x, 7.
Note also: since Q is assumed bounded, 1 € L_,(Q2), and
1 =1(z) = (1, K;) < ||[1{[| K= |-

Thus ||K;| > 0 for all x € Q.



BEREZIN SYMBOLS

Berezin symbol (or transform) of operators on L2 _,(Q)

- <TK$7K:1:> Km
T(x) = — (Thy k), ky = |
@) = R Ry LRkl %]

(Note: denominator# 0.) A function on {2.

PROPERTIES:
Z — T linear IAE T
I=1 1T|oe < |17




Also, T is real-analytic: it is the restriction to z = y of the function

T e <TK?J7KZU> . <TKyaKx>
T(x,y) = o A <

holomorphic in z, 7.

Important property:

T — T is 1-to-1.

Indeed, suppose T(z) = T(z,z) = 0 V. Setting z = u + iv, y =
u — iv, it follows that T(u + v, u + iv) = 0 for all u,v real, while being
holomorphic in u,v. By uniqueness principle for holomorphic functions,
T(z,y) = 0 Vz,y, hence (TK,, K,) =TK;(y) =0 Vz,y. However,

T* f(2) = (T*f, K.) = (f, TK.,) / fy y=0

for all f and . Hence T" =0 and T' = 0.



TOEPLITZ OPERATORS

Toeplitz operator with symbol ¢ € L*>*(Q):

Ty : Ligt = Liot,  Tof = P(of)

where P : L? — L?_, is the Bergman projection (orthogonal)

PROPERTIES:
f T} linear T = T7
Ty=1 [Tl < Nl flloc

Furthermore, for ¢ holomorphic and f arbitrary,

Ty =TTy, T3, =T5Ty,

and Ty is just the operator of “multiplication by ¢”.

Same situation we saw for the Fock space — except now the operators are bounded.



BEREZIN TRANSFORM

Berezin transform B f or fof functions on §2:

Again a function on (2; integral operator:

~ 2
Fla) = (f[Ky, Ky) /f Iszy! dm(y).

(K, Kz)
PROPERTIES: o
f +— By linear Bf =Bf
Bl1=1 1Bflloo < I1fllo

Also, Bf is always a real-analytic function on (2.



WEIGHTED VARIANTS

w > 0 a positive continuous weight on 2

L?(Q,w) D LE (2, w) the weighted Bergman space
Ky(x,y) = Ky y(z) reproducing kernel
Berezin symbol of operators on LZ_(Q, w)

= <TKw,:c7Kw,x>
@) = K

— <Tk'w,ac7 kw,x>7 kw,x = 7 .
[ K, |

Toeplitz operator with symbol ¢ € L*>(Q):

Ty : Lhot = Lot Tof = Pu(0f)
where P, : L?(Q,w) — L _(Q,w) is the weighted Bergman projection.

Weighted Berezin transform of functions on €2: f:: T},

Y <wam7wa |K )|2
T = s Ko /f )

w(y) dm(y).

NOTATION: instead of f, will also use B, f.



IDEAS FOR QUANTIZATION

e Berezin-Toeplitz quantization: Find family of weights py, h > 0,
such that

TyT, = > WT[C;(f,9)),

J=0

where C; are some bidifferential operators such that Cy(f,g) = fg
and

Cl(fag) - Cl(gaf) — %{fag}

for some given Poisson bracket {-,-} on .

We saw this for Q = C, with C,(f,g) = %(8-7]")(5‘79).
(And similarly for C™.)



e Berezin quantization: For any given p, since T" — T is 1-to-1, we
can introduce a noncommutative product *, by

Defined on {7 : T a bded linear operator on L2 (£, p)}.
(Depends on p.)

Find family of weights pp, h > 0, such that as h — 0

oo

frpng=>_ WC;(f9)

3=0

where C; are some bidifferential operators such that Cy(f,g) = fg
and

Ci(f,9) ~ Calg, ) = 5= (.}

for a given Poisson bracket {-,-} on .



e Alternative description of the last via the Berezin transform: Find
family of weights py, h > 0, such that as h — 0, the corresponding
Berezin transforms B,, = Bj have an asymptotic expansion

(W) By = Qo + hQ1 + h?Qs + . ..
with some differential operators ), with Qo = I. Let
Q,f = > capd®df,

o,3 multiindices

be the coefficients of ), and set f *p; g := Z;io hC;(f, g), with

Ci(f.9) =) cjap (0°[)(0%g).
a,B

If it happens that

Cr(f,9) ~ Calg, ) = 5- (o5}

then we obtain a star-product from the preceding slide.

We first prove the last claim, and then proceed to construct the py,.



Sketch of proof of the equivalence:

Let Z; = T., be the operators on L7 (2, pp) : f(2) — 2z f(2);
Z 5 their adjoints;
for p(z,2) =), Bpagzaiﬁ a polynomial in z,Z, define

Vo= papZ®Z*0.
o3

Recall the notation K, = K,, (-,y) for the reproducing kernel,
and the notation, for any operator T on L (9, pr),

= <TKy7K:1:> - TKy(m> . T*Kx(y>

T(z,y) = (K, K,)  K(z,y) K(z,y)

(a function on € x Q).



Then

" VoKy(@)  YapPas(Z°Z7K,y)(x)

Vi(z,y) = K(z,y) = K(z.9)
_ Za,gpaﬁxa(Z*ﬁKy)<x) _ Za’ﬁpagxo‘<2*5Ky,Kw>
K(z,y) K(z,y)
~ YapPapr® Ky, Z2°Ks) 3, 5Papr®y  Ku(y)
K(z,y) K(z,y)

= Zpaﬁxa 7’ = plx,7) for any h.

~

In particular, ‘N/p(az,x) = V,(x) = p(x,T).



Now, for any two operators 17, T5

o~ (DK, TiK,) /TQKy(Z) T7 Kz (2)p(z) dz
(T1T2)(xay) — <Ky;Kgc> - <Ky’Km>
In particular,
(ThT5)( /T1 x, 2 Tg Z,x) Z>)|2p(x) dx



Thus if (#) holds, i.e.
Bpy=) WQ; ash—0, with Q;f =) ¢jap0°9°f,

7>0 o,
and C; are defined by C;(f,9) = chag (gﬁf)(aag)a
o,
then as h — 0

(1) (2, ) = Y h? Q] Ty (2, )Ta( -, 2)](x)

3>0
= Z hj Ciap Eﬁfl(xa ) ) aaTQ( ) 733) ‘33

j’a’ﬂ

~

Hence for T'(z) = T'(z,z), we get
T1T2 Z h‘j Ciap 85T1 0 T2

J,o, B

~

= Zhj Cj(fhfz) = T *p; T,
J
by the definition of *pg;.



Applying this to V,, gives
D*Bt q = Y//;Vq for any polynomials p,q in z,Z.

Since ‘N/p = p, this means that

~

‘719 *pt Vg = VpVg = Vp %

Finally, for any f € C*°(Q), m = 1,2,..., and = € (), there exists
a polynomial p(z,T) such that 090° f(x) = 0%0°p(x,T) V|al, |8 < m.
Consequently, the two products *p; and *,, — which involve finitely
many derivatives in each term — agree not only on polynomials, but
everywhere. [



Remark. It is also possible to derive the B-T quantization from the
asymptotics (#) of the Berezin transform; that is, to show that

(*) Ty, Ty) = h (5.0

as the Planck constant h — 0.

Indeed, assume first that f,g are holomorphic. Then for any ¢ € LZ

<Tf¢a K:c> — <f¢7 K:c> — f(:l?)gb(x) — f($)<¢a Kﬂc>

It follows that T} K, = f(z)K,. Similarly Ty K, = g(z)K,. Hence

—— (TYT,K., K.y (TyKa, TiKy)
Tng(x) = jEnyKa» = <Kx,[é;>
_ {9(@) Ky, f(2)Ka)

K, K fz)g(x).

Thus ff\fg = fg.



On the other hand, by definition and (&),
Tty = Bu(fg) = 9+ Qi (fg) + O(h?).

Subtracting this from Jﬁ = fg gives
(TsTy — Trg)™ = —hQ1(fg) + O(h?)

o~

= —hTq, (9 + O(h%).
“Removing the tilde” we get, for f, g holomorphic,
(1) TyT, — Tty = —hTr + O(h?), where F = —Ci(g,f),

with the (' from the Berezin quantization; note that this involves only
df and 0Og.

Since for u, v holomorphic and f, g arbitrary,
TyTy =Tgu,  TTy = Tyy,

while also d(gu) = udg and O(vf) = v, it follows that (i) remains in
force even for any f, g of the form uv with u,v holomorphic.

By routine approximation argument, one gets it for any smooth f,g. [
(Shows that CT'T(f,9) = —CT(g, f).)



CONNECTION BETWEEN BEREZIN AND TOEPLITZ QUANTIZATIONS

We have f +— T (Toeplitz ops), T +— T (Berezin symbol).
Composition:

fr— ff =: By f, the Berezin tsfm of f.
Applying the definition of Berezin star-product
TxpS=TS
toT =1T%, S =T, gives
Tf *B Tg = ff\fg = Tf*BTQ’

or

Bf g Bg = B(f *Br 9)-




SOME EXAMPLES OF BEREZIN/B-T QUANTIZATIONS

Example 1. Q= C", w(z)=e @2 (g)n dm(z) (a>0)

v

reproducing kernel:
Ko(a,y) = e

Berezin transform:

Buf(0)= [ 1) e wl) dm(y

= (%) T el dingy),

v

This is the heat solution operator at time ¢ = 1/4a:

Bof = e/t f.



In particular, as a — 400, we get B, f — f, more precisely there is even
an asymptotic expansion

M) | A% (@)

Bo f(x) :eA/4af(x) = f(z) + Ao 21(4cx)? +

or more briefly

A/4a Za Ty

B-T quantization: works, with

Ci(f,

f8"g.

la|=3

Berezin quantization: works, with

Fo)= b Y 7o

la|=3

Both quantize the Euclidean Poisson bracket from the beginning of this
talk.



Example 2. Q =D, w(z) = (1 - |2]2)*  (a> —1)

T

reproducing kernel:

1
(1 —zg)o+?

Ko(z,y) =
Berezin transform:

Baf(@) = 2 [ i G S = ) dm(y).

T 11— xy|?at4

Can again be shown that as a — 400

~

A
pup=s A

where

Af =(1-2*)*A

is the invariant Laplacian on D.



Berezin quantization: works, with

Co(f,9) = fg,  Ci(f,9) = (1—|z|?) 0f 0g.

Explicit expressions for Cj, j > 2 — unknown.

Berezin-Toeplitz quantization: works, with

Co(fag):fg7 Cl(f,Q)Z—(l—‘ZF) (9fgg

Explicit expressions for Cj, j > 2 — unknown.

Both quantize the Poisson bracket

{f,9} = (1 —[2*)*(0f0g — DgOf)

associated to the invariant (=Poincare, Lobachevsky) metric on D.



Example 3. Q = B", the unit ball of C"; w(z) = co(1 — ||2|]*)
(a > —1, ¢, making total mass 1)

reproducing kernel:

Berezin transform:

(L — flf?)omtt

Buaf(@) =co | f(y) s (1= I9l1%)" dm()

Bn ‘1—<$,y

Again,

~

A
SN

as a — +o0o, with A the invariant Laplacian on B".

B/B-T quantizations: work, similar formulas as for the disc.



Summary of the Examples: the Fock space on C”

2
I

w(z) = (&)" e~z Ky(z,y) = eoz(x,y);

the disc
w(z) = <1 =2 Kule,y) = (1-2) "%
the ball
w(z) = ca(l =211, Kulz,y) = (1~ (x,y) 7"

That is:
o K, (z,z) is just the reciprocal of the weight w(x), up to the nor-
malization constants and possibly a shift in the power .
e B, is an approximate identity as a — +o0o, more precisely

BQ:I+@+Q—§+...,
« «

where Q1 = % (invariant Laplacian) etc.



How TO CHOOSE THE WEIGHTS pp

Assume we have our domain €2 C C", with a given Poisson bracket:

(o) {f9}=>_ 9 (9, fOrg — 0; fOrg),

J,k=1

where {g’ k}?kzl is a non-degenerate skew-Hermitian matrix.

The inverse matrix {g;7}7;_; the defines the differential form
n —
w = Z gjkdzj A dzp,
J,k=1

which in turn determines a nonvanishing volume element w™ on ().

Idea for finding the pj: take guidance from group invariance.



Assume there is a group GG acting on 2 by biholomorphic transformations
preserving the form w. Naturally, we would then want our quantizations
to be G-invariant, i.e. to satisfy

(fog)x(god)=(f*g)op, Voed.

On the level of the Berezin quantization, this corresponds to the oper-
ators (); in (#), and, hence, to B itself, to commute with the action
of G. An examination of the formula defining the Berezin transform
shows that this happens if and only if

K (z,y)|?
K(y,y)

K (¢(x), o(y))I?
p(x)dr = RCORD) p(o(x)) de(z).



In particular, the ratio

plo(x)) do(z) _ |K(z,y)° K(d(y), d(y))
p(x)dz K(y,y) [K(o(z), d(y))]?

has to be the squared modulus of a holomorphic function. Writing

p(x) dr = w(z) - w"(z)
with the (G-invariant) volume element w"™, the last condition translates
into

w(p(x)) = w(z)|fo ()]

for some holomorphic functions f.

Hence, the form 00 logw is G-invariant.



But the simplest examples of G-invariant forms (and if G is sufficiently
“ample”, the only ones) are clearly the constant multiples of w. Thus:

00 log w = const. -w.
N——

=.—C

Thus w must lie in the range of 90:

W= 85( — 1logw) =: 00®

C

for the real-valued function ¢ (a Kéhler potential). Then

w™(z) = det[00®(x)] dx,

and the sought weights pj should thus be of the form

pn(z) = e~ @) det[00D] |,

with some ¢ = ¢(h) depending only on h.



Note that the potential ® is then always strictly plurisubharmonic, i.e. the
matrix

0?®(2)
9;:3(2”) = W
is positive definite, Vz € Q.

Furthermore, the condition C1(f, g)—Ci(g, f) = —5={/f, g} in the Berezin
quantization will be satisfied if the operator ()1 in (#) equals

Qi= ) ¢F R, =: A,
Jh=1

the Laplace-Beltrami operator associated to w.
Indeed, then

Ci(f.9)= > 9" (0xf)D;9),

J.k=1

and the claim follows by (é).



We have thus arrived at the FINAL RECIPE for the Berezin and Berezin-
Toeplitz quantizations on a domain 2 C C™ with a given Poisson bracket:
namely, let

® be a potential for w, i.e. w = H0P;
L2 (Q,e°® det[00®]) the Bergman space (¢ € R);
K.(z,y) its reproducing kernel;

B.f(x) the associated Berezin transform;

TJEC) the Toeplitz operator associated to f;

and see if ¢ = ¢(h) can be chosen so that
B, =I+4+hA+h*Qy+h’Q5+ ... as h — 0

with some differential operators ), Qo = I, 1 = A; respectively, if

T}C)Téc) = Zj>0 R Té?(f,g) as h \ 0 (in norm),

with Co(f,9) = fg and C1(f,9) — Ci(g, ) = —={[. 9}.



Answer: works!, with ¢(h) = 1/h.

How to get this:
Asymptotics of B, T(¢) e asymptotics of K.(z,y), ¢ = c(h), as h — 0.

Thus we need to study the asymptotics of
K.(xz,y) = the RK of L (2, e~ * det[00®])

as ¢ — +oQ.



To recapitulate: quantization has lead us to the following problem on
weighted Bergman kernels:

2 C C™ a domain, ® a strictly-PSH function on 2

95 = O, 0;

measures dyyp,(z) 1= e~ 2()/h det|g;5(2)] dz, h >0

weighted Bergman spaces LZ (9, dup)

Bergman kernels Kj,(z,y), Berezin transforms By, Toeplitz operators T’.

QUESTION: to find
e asymptotics of Kp(x,y) as h \, 0
e asymptotics of By as h \,0 (Bh = Zj thj)
e asymptotics of T¢T, as h \, 0 (TyT, = > T, (f.9))-

NOTATION: o = 1/h — 400,



On manifolds §? instead of domains:
e similar, only pass from functions to sections of a holomorphic line
bundle £, with the Hermitian metric (in the fibers) given locally
by e~ ?; (i.e. curvature form = —w)

e and instead of L?_ (€2, duyp) «~ space of holomorphic L? sections
of L, where m =1/h=1,2,....

o L exists <= [g;,5] € H*(Q,R) lies actually in H*(Q,Z).



TWO APPROACHES: independently 1997-1998

e compact manifolds:
— [Zelditch 1998] asymptotics of K, (x,x), h — 0;
[Catlin 1999] ditto for Kp(x,y).

— Did not consider By, T, but rather — inspired by [Tian 1990]
(~~[Ruan 1996]).

— Proofs — via Boutet de Monvel-Guillemin theory of Fourier
integral operators of Hermitian type.

— Actually — appeared already in [Bordemann, Meinrenken, Schli-
chenmaier 1994], who used it get the result about Ty, but
not K hs Bh.

Will describe this one. (Strongest.)



e domains in C":

— Ky, By,: bare hands and O-techniques [M.E. 1996-2000]
(notably: Fefferman/BdMonvel-Sjost & Kerzman/Boas,Bell);
needs some hypothesis on the behaviour of ® at the boundary;

— T: only for bounded domains & has to resort to BAM-G.

— for n = 1 (Riemann surfaces) with Poincare metric — [Klimek-
Lesniewski 1991] (uniformization)
— for Q = C", Euclidean metric (g5 = Si, ®(2) = |z]|?):

[Coburn 1993] [Borthwick 1994 — 7]
— [Berezin 1975] — Berezin quantization on C™, bded symm doms

— [Borthwick-Lesniewski-Upmeier 1994]: B-T on bded symm doms
(extension [M.E. 2004])

Karabegov ca 1995]: equivalence of xp; & *p,

[
— [Ma-Marinescu]; [Berndtsson-Berman-Sjostrand]; [Schlichenmaier].



BASICS NOTIONS OF SEVERAL COMPLEX VARIABLES

2 a domain in C"

$ : ) — R is called strictly-plurisubharmonic (strictly-PSH) if for any
z € ) and v € C™, the function of one complex variable

t— ®(z+ tv), teC

is strictly subharmonic where defined.

Equivalently, ® is strictly-PSH if the matrix of mixed second derivatives

02 n
[azj(;};k}

J,k=1

is positive definite.



A bounded domain 2 C C™ with smooth boundary is called strictly
pseudoconvex if there exists a function r such that

r>0 on r=0, [[Vr|| >0 on 0,
—r s strictly-PSH in a neighbourhood of €.

One calls r a strictly-PSH defining function for 2.

Similarly: PSH functions, pseudoconvex domains.

Pseudoconvex domains are the natural domains in C”™ on which holo-
morphic functions live. (in dim=1: all)

Strictly pseudoconvex are the manageable ones.



Theorem B. 2 C C™ smoothly bounded strictly pseudoconver,
® a strictly-PSH function on (2,
such that e=® = r is a defining function for Q.
Then for the weights w = e~*® det[00®], we have as a — +o0, a € Z,

Ko(z,x) =~ (@) o Z bj(:.v),

" 0%
J=0

where by = det] 85?5;}{} )5
J




PREVIOUS EXAMPLES: for 2 = B” (including Q2 = D for n = 1), choos-
ing

1

®(z) = log T e

then & is strictly-PSH,
e = 1 |

is a defining function for B™, and

0% 1

ole) = detly o) = e

Thus we recover the formulas from the examples (by explains the “shift
in the power «”). Also, we see that ¢, ~ a™.

Works also for the Fock space: 2 =C", ®(z) = ||z
Then by(z) = det[d;r] = 1, so there is no “shift” this time.



PREREQUISITES FOR THE PROOF OF THM B

(Will gloss over some technical details.)

e Hartogs domains: for a domain 2 C C" and a real-valued smooth
function ¢ on it, it is

~

Q:={(z,t) e xC: [t|? <e P,

— Pseudoconvex <= ¢ PSH, Q2 pscvx;
— strictly pseudoconvex and smoothly bounded if €2 strictly-pscvx,
¢ is strictly-PSH and e~? = r is a defining function for €.

— Then
T(z,t) ==r(2) — [t]? = e ) — |t

is a defining function for Q.



e Hardy space: Consider the compact manifold | X := 0€) | equipped

with the measure

J[7]
do .= ——dS,
|or]|

where dS stands for the surface measure on X and J[r] for the
Monge-Ampére determinant

ror

Let H?(X) = H? be the subspace in L?(X, do) of functions whose
Poisson extension into 2 is holomorphic.

Measure — natural (contact form).



o Szegd kernel: For each (z,t) € ©, the evaluation functional f
f(z,t) on H? turns out to be continuous, hence is given by the
scalar product with a certain element k(, ;) € H 2. The function

KSZGgé((x’ t)? (y’ S)) = <k(y,8)7 k(:n,t)>H2

on Q x  is called the Szego kernel.

Note: Introducing the coordinates
(z,t) = (2,e0e?()/2), z€,0€0,2r]

on X, we have (recall r(2) = e~?), 7(2,t) = r(2) — |t|?)

= /r+ |0r|2dzds, ||o7|| = /1 + |[or]2,

J[F] = J[r] = e~ "TD? det[00¢),

so do(z,t) = e~ ("D det[00¢] dz db.



e Ligocka’s formula: [Ligocka 1989] If f is holomorphic on €2, then

_ , J
[ =Y fie)e
with f; holomorphic on 2. Also

f()P Lg(z)t"  Vf.gifk#j
(orthogonality in H?). Thus by a simple computation,

. [f(z,t)* do(z,t)

27
-y / 5GP / 660223 ) =) det[B(2)]d
Q 0

= Z 27‘(’/ ;12 e Ut det[00¢(2)] dz.
Jj=0 QO

It follows that H*(X) = @,2, Li, (2, 2me~ T+ det[00¢(2)] dz),
and

1 & L
Kszegs((w,1), (y,5)) = o Z Ko Gintne det[00¢(2)] (z,y) (ts)’.
k=0



o Fefferman’s theorem [1972]: Let D C C™ be a bounded strictly
pseudoconvex with smooth boundary, and r a C'*° defining func-
tion for D. Then there are functions a,b € C*°(C") such that

(a) for x € 9D, a(x) > 0 (an explicit formula is available);
(b) the Szegd kernel of D is given by the formula

KSzegé(xax> — —f—b(ﬂf) logr(x)

Extends also to Kggegs(z,y) with = # y:

a(z,y)
r(z,y)"

KSzegé(xagD — + b<x7y) logfr(az,y),

where a(x,y) etc. are almost-sesquiholomorphic extensions of
a(x) = a(x,x) etc.

(¢) Ksgegs(x,y) is smooth on € x Q\U, for any neighbourhood U of
the boundary diagonal {(z,z) : © € 0Q}.



e Resolution of singularities:

. [3a-)TT o - 2)7) ity 20,
k = j . o
;;) % (1 —2)log(1l — 2) + C7(D) if j < 0;

f(z) = kazk c V(D) = fr=0(k9) as k — +o0.
k=0
Hence, if f(2) = >, fx2" is holomorphic in D and

fe) =g f(j;nﬂ () log(1 — 2), a,be C®(D),

n+1

=30 T+ B (2 g1 - 2) + (D)

(M =0,1,2,...), then
fk%ankn+an—1kn_1‘|—"'+a0+%"‘...,

for some constants a,,,a,_1,..., as k — oc.



SKETCH OF PROOF OF THEOREM B

Take the Hartogs domain

Q={(z,t) e QAxC: [t]<e ®@}
The hypotheses imply that Q is smoothly bounded, strictly pscvx, with
r(z,t) :== e~ 20 _ |t\2

a defining function.

Consider the Hardy space H2(X) on the boundary X = 9S).



As mentioned above, by Ligocka’s formula

(1) H*(X) = é Lo (. €7 det[002])
k=n+41

(where n = dimQ, so n+ 1 = dim Q), and

Ko (2,0), (5:5)) = 5= 3 Ky () (50

where B
K (z,y) := the RK of L2 (Q, e *® det[00®]).

Fefferman’s theorem for the Szego kernel:

KSZQ@:%—Fblogﬁ a,bECOO(Qx(NZ).



Hence

1 o0
Q—Z bt (2, 1) 85 = KSzego((x s), (x,1))

k=0
_ a(z,s)
o (e—q)(ac) _ S)n+1

+ b(z, s) log(e @) — )

a(aj, S)e(n-i—l)cb(x)

B (1-— :seq)(m))”Jr1

N——
z

_ Az, z)
(1 —z)ntl

+ bz, s) log(1 — se®@)) — bz, s)D(z)

+ b(x, z) log(1 — 2),

with A(x,2) = a(z, ze~®@)e(rHD2@) _ p(z 2e~P@E)D(2)(1 — 2)" .



So for each z,

= . Az, z
Ze ke )Kk—i-n—l—l(x?m) 2F = (1 _( Z)n)—|—1 + b(xaz) log(l - Z)
k=0

Employing the resolution of singularities implies
R (e = by (@)
Kk(w,x)—ﬂ__ne ZOT,
j:

proving the first part of Theorem B.

Can be extended also to x # y:
k" o = bi(z,y
Kulang) = et en S BEED
§=0

for (x,y) near the diagonal, where ®(x,y), b;j(x,y) are some almost-
sesquiholomorphic extensions of ®(x) = ®(x,z) and b;(x) = b, (z, x).



The second part of Theorem B is proved by first showing that in the
integral defining By,

By f(x / Fy) Ee ”)) e W) det[00D(y)] dy

the main contribution comes from a small neighbourhood of .

In that neighbourhood, one replaces K, (z,y) by its asymptotic expan-
sion just proved. This reduces the problem to estimating integrals of the
form
Fy) e (P@+ema-2@-2w) 4
neighbourhood of =

Finally, this kind of integrals is handled by the standard stationary-phase
(Laplace, WJKB) method, yielding the result.

The first two terms can be evaluated explicitly, giving the desired out-
comes Qg =1 and Q1 =A. O



BEREZIN-TOEPLITZ QUANTIZATION

For f € L>(Q), let T(m) denote the Toeplitz operator with symbol f on

hOI(Q e~ det[00D]).

Theorem BT. Let
e () be a smoothly bounded strictly pseudoconvex domain in C",
e &: 0 — R asmooth strictly-PSH function, such that

o ¢~ ® =1, a defining function for .

Then:
(i) for any f € C®@Q), [T — ||l asm — oo;

(ii) there exist bilinear dlﬁ"erenma] operators C; (j =0,1,2,...) such
that for any f,g € C>(Q) and any integer M,

(m~M~h as m — 00.

HT(m)T(m) Z m—j T(

§=0

(fg)H_ m

Furthermore, CO<f7 g) : f97 Cl(fa .g) - Cl(g7f) — #{f?g}
Hence, [ x g := Z?io h?C;(f,g) defines a star-product on 2.



Sketch of proof. Consider again the Hartogs domain Q

~

Q={(z1)eQxC: |[t]? <e @,
The hypothesis imply that Q is smoothly bounded, strictly pscvx, with
a defining function 7(z,t) = e — |¢|2.

As before, consider the Szego kernel on the compact manifold X = By
with respect to the measure

J|r]
do = —— dS.
T

We have already seen that (Ligocka’s formula)

KSzego<x t;y,s) = ZKk—Fn-l-l(x y) <3t>
k 0

(1) @ L2 (9, e *® det[00D)).
k=n-+1



In addition, it is also the case that

@ Tng) =TF, where F'(z,t) := f(x),
m=n-+1

Tr being the Toeplitz operator on H?(X) with symbol F € C*(X):
TF'Qb = PSzegé(F¢)7
where Psyegs @ L?(X,do) — H?(X) is the orthogonal projection.

Now following the ideas of Boutet de Monvel & Guillemin, we define
Toeplitz operators T by the same recipe also for pseudodifferential

operators () on X; i.e.

TQw ‘= PSzegéQw'

(For @ the operator of multiplication by a function F’ on X, one recovers
the Toeplitz operators T of the previous definition as a particular case.)



The order ord(7g) and the symbol o (1) of T¢ are defined as the order of
() and the restriction of the principal symbol o(Q) of @ to the symplectic
submanifold

Y= {(x,8) : £ =t(Or — Or),,t > 0}

of the cotangent bundle of X, respectively. It can be shown that these
two definitions are unambiguous, and

(P1) the generalized Toeplitz operators form an algebra under com-
position (ie. VQ1,Q2 3Q3 : T, Th, =T0,);

(P2) ord(T1T3) = ord(Ty) 4 ord(T3); o(T1T%) = o(1T1)o(T5);

(P3) o([T1,T3]) = {o(T1),0(T2) }s;

(P4) if ord(T) = 0, then T is a bounded operator on H?; and

(P5) if ord(1y) = ord(12) = k and o(T1) = o(13), then ord(T7 —T5) <

k—1.
(P6) for FF € C*°(X) and (x,€) € X, o(TF)(z,&) = F(x).



Let 7 be the subalgebra of all generalized Toeplitz operators which com-
mute with the circle action on H?

Up : f(z,w) — f(z,e%w), (z,w) € X, 6 € R.

Clearly, the operators Tr with F(z,t) = f(x), for some f on Q (i.e. F
constant along fibers), belong to 7.

Let D : H*(X) — H?(X) be the infinitesimal generator of the semi-
group Uy. Then D acts as multiplication by ¢m on the m-th summand

in (1), for each m:
D = @ iml;

and also
D =Ty/00

is a generalized Toeplitz operator of order 1.



Using (P1)—(P6) it can be shown that if T' € 7T is of order 0, then
T=Tr+D 'R

for some (uniquely determined) F' € C°°(X) which is constant along
the fibers (hence, descends to a function on 2), and R € T of order 0.
Repeated application of this formula reveals that, for each k£ > 0,

k
T=) DTs +D 'Ry,
j=0

with Fj(z,t) = f;j(x) for some f; € C*() and Ry € T of order 0.
Invoking the fact that zeroth order operators are bounded, it follows
that

k
DY (T =3 DTy, ) = Ry

J=0

is a bounded operator on H?.



In view of the decomposition Ty = &, T (m), this means that
f

k
—j(m) m=k-1)
HT}LQ(Q,e—m@ det[00®]) Zm jT H o ‘
j=0

Taking for T' the product TpTg, with F(z,t) = f(z), G(z,t) = g(z)
for some f,g € C>*(Q), & setting C;(f,g) := f;, we obtain the desired

asymptotic expansion for T}m)Tg(m).

Finally, the assertions concerning Cy and C follow from the above prop-
erties (P2) and (P3) of the symbol. [

[Coburn 1994] — WDO'’s; [Klimek-Lesn] [Bwick-Lesn-Upm] — bare-hands.



CONCLUDING REMARKS

surveys: |[Schlichenmaier — arXiv 2010], [Ali-E RMP 2005]

a = 1/h — +00 noninteger

generalizations of Fefferman:

— weakly pscvx — difficult!, unsolved  (h-regular [Kamimoto))
— weighted — ok for 7, r® 4+ r®*1logr; [Blaschke]

— metric bad at the boundary — e~% # r (Cheng-Yau): partly

generalizations of BAM-G: ([Bravermann])

ea@(w)

m — [D onaldson}

balanced metrics: Kq(z,z) = (2)"

range of the Berezin symbol: [Coburn] [Xia] [Bommier-Hato] (cur-
vature conditions)

asymptotic of harmonic Bergman kernels: R} [Jahn|, B™ [Blaschke],
radial /horizontal [Englis 2015]



BEREZIN-TOEPLITZ QUANTIZATION
AND NONCOMMUTATIVE GEOMETRY

(joint with B. Iochum & K. Falk, CPT, Marseille)



BERGMAN SPACE

) a domain in C"
dz the Lebesgue measure

L?(Q) D L% () the Bergman space

K(z,y) := K,(z) = K,(y) the reproducing kernel for L?_(Q)




TOEPLITZ OPERATORS

Toeplitz operator with symbol ¢ € L*>*(Q):

Ty: Lio — Lo, Tof = P(6f)

where P : L? — L2 | is the orthogonal projection (Bergman projection).
Explicitly:

T, f(x) = /Q F)oW)K (z,y) dy.

PROPERTIES:

f +— Ty linear
T: =T5

T, =1

T4l < M1 f oo

Weighted variants.



SPECTRAL TRIPLES
[Connes 1990-1995, Noncommutative geometry]

X a topological space «—— the algebra C(X)
Recovers X as Spec C(X).

Recovering Riemmannian metric etc.: spectral triples.



Definition. Spectral triple (A, H, D) =following data:

— a unital algebra A with involution,

— a faithful representation 7 of A on a Hilbert space 'H

— a selfadjoint operator D on H with compact resolvent such that
the commutator [D, w(A)] is bounded for any a € A.
(more precisely: extends to a bounded operator)

Example. M a spin®manifold,
A= C>(M),
H=L*(M,S), S =spinor bundle,
D = 1), the Dirac operator.

Connes’ Reconstruction Thm. All commutative spectral triples (with
certain extra structure) arise (essentially) in this way.

M = Spec(?l“'u)
distas (z,y) = sup{|a(z) — a(y)| = |[D,a]]| <1}
dim M = sup{d : |D|~Y/? is trace class}.



Aim of this talk: see if can get interesting examples of spectral triples
using Toeplitz operators and Berezin-Toeplitz quantization.

(Work in progress.)

Will review some stuff first.



SCENARIO

(2 a bounded domain in C™ with smooth (C°°) boundary

(manifolds — later)

r a (positively-signed) defining function for €2

re C™(Q), r > 0 on ,
r =0, ||[Vr] > 0 on 0f.

Domain strictly pseudoconvex if r can be chosen so that

O%r n _
{ — } <0 on .
8zj82k 7,k=1
Guarantees that the one-form
or — Or
=Imor|gn = ————
g |89 21 o0
is a contact form, i.e.
n A (dn)"!

is a nonvanishing volume element on the boundary o).



BoUTET DE MONVEL’S CALCULUS

K the Poisson extension operator:
(*)  K:L*0Q) — L*(Q), AKu =0 on (2, Ku|on = u.

Bounded L? — L?; in fact

K:W°(0Q) — W.i2(Q), VseR.

harm
Adjoint K* : L?(2) — L?(99). The composition
(%) A =K'K
is a (classical) DO on 0f2 of order —1, with o(A)(x,&) = 1/(2[¢]).
Comparing (*) and (**), we see that
AT = o
is the operator of taking the boundary values of harmonic functions.

Bijection WSJF% (Q) — W*3(0Q), Vs € R.

arm



Boutet de Monvel calculus: operators of the form

A, = K*wK, w a function on (2.
If w is of the form
w = 1%, a>—1, ge C™ (),
then A,, is a YDO on 02 of order —a — 1, with

_ ['(a+1)g(x)

st Il

o(Aw)(, )

(Al this holds in fact for domains in R™ not only C™.)



HARDY SPACE TOEPLITZ OPERATORS

Hardy space:

H?(09) := {u € L*(09) : Ku is holomorphic on Q}.

(Here L2(09) is taken with respect to n A (dn)"~1, but we could in prin-
ciple choose any other surface element mutually absolutely continuous
with respect to it.)

Szegd projection:

S: L?(0Q)) — H? orthogonal.

Toeplitz operator: for f € C(95), the operator on H? defined by

Tru = S(fu).

Clearly, f — T is linear, T} = T%, Ty = 1 (the identity operator) and
T[] < [1flloo-



GENERALIZED TOEPLITZ OPERATORS

For P a DO on 02, the operator Tp on H? defined by

TP — SP|H2
Alternatively, can be viewed as
Tp =SPS

on all of L2(99Q) (by prolonging by zero).

For P the operator of multiplication by a function f € C*°(02), recovers
Tp =Tt we had before.



Symbol calculus of GTO’s: it can happen that Tp = Ty, but the restric-
tion of o(P) to the half-line bundle

Y= {(z,tn,) € T*0N : t > 0}

is determined uniquely. = One can define unambiguously the order
and the principal symbol of a GTO by

ord(Tp) := inf{ord(Q) : Tnp = Tp},
o(Tp) :=0(Q)|x for any Q with Tg =Tp and ord(Q) = ord(Ip).

(The order can be —oo; in that case the symbol is not defined.)

ord(TpTg) = ord(Tp) + ord(Ty),
o(TrTg) = o(Tp)o(Tq),
o([Tp, Tq]) = {o(Tr),0(Tq)}s.



Perhaps the most important property of GTOs is that for any T'p, there
exists a () such that

Tp =Tg and QS =S5Q.

An immediate consequence is that GTOs form an algebra: for any P, (),
TpTq = Tr for some R.

The operators Tp have the standard mapping properties on the scale of
holomorphic Sobolev spaces

W, (09) = {u € W?(9Q) : Ku is holomorphic on Q},
namely,
Tp : Wi, (02) — WeE ™ (09), m = ord(Tp).

In particular, Tp is bounded on any Wy (09) if m <0, and compact if
m < 0.



A GTO is elliptic if 0(Tp) does not vanish.

In that case, Tp has a parametrix, i.e. there exists a GTO Tg of or-
der —m such that TpTg — I and TQTp — I are smoothing operators
(i.e. of order —o0).

In particular, if Tp is elliptic of order m # 0 with o(Tp) > 0 and is

positive and selfadjoint as an operator on H?, then the inverse T Lis
also a GTO.



RELATIONSHIP BETWEEN BERGMAN AND HARDY SPACE TOEPLITZ OPS
— 2 .
For f = Ku € L; (2, w):

HK’LLH?H = <U)KU, KU)LQ(Q) = <K*’lUK’U,, U>L2(3Q)
(*) = <Awu7u>L2(8Q)
- <TAwU,U>H2,
because u = Su for Ku holomorphic.
For f € C*°(Q) and u,v € H?, similarly as above
(TrKu, Kv),, = (fKu, Kv),, = (wfKu,Kv)2(q)
= <Awfu,v>Lz(3Q) = <TAwfu,v>H2

= (KT 'Ta, ,u, Kv)y
by (*). Thus

YT ;K = TA—U}TAW

For w = r%g, g € C*°(1), and f vanishing on 9 to order k, the rhs is
a GTO of order —k.



EXAMPLES OF SPECTRAL TRIPLES: BERGMAN SPACES

Let w be a positive weight on €2 of the form

w=r%, g€ C™®(Q), a>—1, g>0on 0.

Claim. Let

— 'H be the Hilbert space L (Q,w);

— A be the algebra (no closures taken) generated by the Toeplitz
operators Ty, f € C®(Q), on L (Q,w);

— D the operator D = T, ' on L (Q,w).

Then (A, H, D), with 7 the identity representation, is a spectral triple.

Here we note that

(To f, fw = / rlfIPw > 0

Q

for any f # 0, so T, is a (bounded) positive selfadjoint operator on L?_ (2, w);
hence it has a densely defined positive selfadjoint inverse T L.



Proof.

— a unital algebra A with involution:

Clear. (Tl = I, T% = TT)

— a faithful representation 7 of A on a Hilbert space H:

Clear.
— a selfadjoint operator D on H with compact resolvent such that

the commutator [D, w(A)] is bounded for any a € A.

D! =T, is compact, since YT, K = T, ' Ty, is a GTO of order
a+1—(a+2)=—1, hence compact.

Boundedness of [T, !, A] for A € A:
enough to check for A = T; but using 7T /K = T/;jTAwf,

[T, Ty =K[Ty ' Th, Ty ' Ta,, ]y = K[GTO1,GTOply.

The commutator on the rhs is a GTO of order 0, hence bounded. [J

Principal symbol — can be expressed using Reeb vector field.



EXAMPLES OF SPECTRAL TRIPLES: HARDY SPACES

Claim. Let

— 'H be the Hardy space H? on 0);

— A be the algebra (no closures taken) generated by Ty, f € C'*°(02),
on H?;

— D be the operator D = T;l on H?, where P is a positive selfad-
joint WDO on 02 of order —1.

Then (A, H, D), with w the identity representation, is a spectral triple.

An example of P in the last item ise.g. P = A = K*K: indeed, (Au,u) =
|Kwul||? > 0 for u # 0 since K is injective.

Proof. Analogous. [

In fact, could take A =GTOs of order 0.

Generalization: to arbitrary contact manifolds admitting a “Toeplitz structure”.



EXAMPLES OF SPECTRAL TRIPLES: BEREZIN-TOEPLITZ QUANTIZATION

From now on, we fix a sequence of real numbers o > —1 tending to +o0,
eg.a=0,1,2,....

Assume that log % is strictly plurisubharmonic on €2 (defining functions r
with this property exist in abundance due to the strict pseudoconvexity
of ). So that
0? 1
—(2) 1= log ——
gjk( ) 0207y, & r(z)

defines a Kahler metric on (2; and let

__ nn+l 1 = r 8_7“
g=r"""detlg;z] = —det [8r 88r] :



Consider the weighted Bergman spaces L _(Q,7%g). Let
H = @ L}2101(97 Tag)

and let 7, stand for the orthogonal onto the summand o = m.

For f € C*°(Q), we then have the orthogonal sums

TT := (Ts on Liy(2,79))

(6

of the Toeplitz operators Ty, acting on H. Clearly each T? is again
bounded with HT?H <||flloo, and [Tj‘?,ﬂ'm] = 0 for all m.



Let B = {M bounded linear on H : [M,m,,| = 0 for all m and
() M =~ Z oz_mT?m as m — 00
with some f,,, € C*°(Q) (depending on M)}. Here “~” means that

H < Z oz_mT69 ) H = O(j_k) as j — +00o

forany £k =0,1,2,....



Berezin-Toeplitz quantization = finite products of Tj‘? belong to B.
More specifically,

OmPD o —mmO®
TTy ~ ) o "T¢ (.
where -

> hCi(f,9) = fxg
j=0

defines a star product on (€2, g jE)- Symbolically, we can write

oo _ o
T, T, =T,

Another result is, incidentally, that
H7TmT§?7TmH — || flloo as m — +00,

implying, in particular, that for a given M € B the sequence { f,,} in (*)
is determined uniquely.



Another depiction: consider the “unit disc bundle”

~

Q:={(z,t) e QA x C:|t|* <r(2)}.

r defining function —- 0 smoothly bounded;
) is strictly pseudoconvex, log% is strictly plurisubharmonic

— Qis strictly pseudoconvex. N N N
Thus we have the Hardy space H*(Q2) =: H of Q and the GTOs Tp
there, whose symbols P are now WDOs on 0f2.

A function in H has the Taylor expansion in the fiber variable
f(z:t) = D fm(2)t™
m=0

Denote by H,, (m = 0,1,2,...) the subspace in H of functions with
fj =0 Vj 75 m.



Then the correspondence
[ ()" —— fin(2)

is an isometry (up to a constant factor) of H,, onto L2 (2, rm—nlg),

Thus -
@ m+n+1 = @ Lhol (©2,r™g) = H.

m=0

Furthermore, viewing a function f € C*°(£2) also as the function f(z,t) :=
f(z) on 0L (i.e. identifying f with its pullback via the projection map),
one has, under the above isomorphism,

Ty = P(Ts on L, (2,r™g)) = TF.

m



Finally, let K be the Poisson operator for SNZ, and as before set

Thus A is a wDO on 09 of order —1, and a positive selfadjoint compact
operator on H.

Since the fiber rotations (z,t) — (z, Z915) 0 € R, preserve holomorphy
and harmonicity of functions, both K A and the Szegd projection S :
L2(09Q) — H must commute with them.

The GTOs T % on H therefore likewise commutes with these rotations,

and hence commutes also with the projections in H onto ﬁlm, i.e. is
diagonalized by the decomposition H = €D, H,,.

Denote by L = &, L., the operator corresponding to TK under the
isomorphism H =~ H = @D, L, (Q2,r™g).



Claim. Let

— H be the Hilbert space H;

— A be the algebra (no closures taken) generated by T?, feC=(Q),
on H;

— D be the operator D = L~ 1.

Then (A, H, D), with w the identity representation, is a spectral triple.

Proof. “Direct sum” of the previous, using the above formalism. []



EXAMPLES OF SPECTRAL TRIPLES: STAR PRODUCTS

Can alternatively define A in the last example as an algebra of formal
power series.

More specifically, let £ be the linear map from B into the ring of formal
power series

N = C=(Q)|[[n]
given by
(*) i M > R fo(2)
if

o
M ~ Z a_mT?m as m — +oo.
m=0

Note: k is well defined and, owing to the B-T quantization, extending
as usual x from functions to all of ' by C[[h]]-linearity,
K(MN) =r(M)*r(N),

i.e. k: (B,o) — (N, *) is an algebra homomorphism.



Claim. Let

— 'H be the space H;

— A be the subalgebra (no closures) of (N,*) generated by K(Tj‘?),

feC>(), and h;

— 7 be the representation

W(n;i:o hmfm) = ; oz_mT??m

which is well-defined from A into B;
— D be the operator D =, L.} on H.

Then (A, H,D) is a spectral triple.



Proof. In view of the preceding result, the only thing we need to check is
that 7 is well-defined (i.e. the right-hand side in (*) converges and defines
a bounded operator in B) and faithful. The former is immediate from
the fact that A consists of finite sums of finite products of K(T?), while
k: (B,0) — (N,x) is an algebra homomorphism and W(H(Tj‘?)) = Tj‘?
by the definitions. For the faithfulness, note that x o m = id on A; thus
m(A) = 0 implies A = k(7m(A4)) =0. O



. WHAT TO DO YET

(1) non-positive (natural/canonical) D?

(For ©Q =ball — Howe correspondence & Bargmann transform.
Not quite right.)

(“Phase” — conformal structure.)

(2) (In fact: D~ ¢ A desirable.)



(3) spectral dimension: n for Bergman/Hardy, n+ 1 for star product
Geodesic distance? (Was sup{|a(z) — a(y)|, [|[D, 4]|| < 1}.)

777

(4) manifolds not domains?

Bergman — boundary needed
Hardy — any with “contact structure”
star products — unit disc bundle, ok for polarized compact

(5) Utilization in physics?
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