Deformation quantization and applications to noncommutative geometry

MIROSLAV ENGLIŠ (Prague & Opava)

EQuaLS8, Jan 18 – 22, 2016

QUANTIZATION IN PHYSICS

Assignment

 $f \longmapsto Q_f$

functions on $M \rightarrow$ operators on H.

M — classical phase space (symplectic manifold); H — (fixed) Hilbert space. f — classical observables; Q_f — quantum observables.

Physical interpretation.

Dirac, von Neumann, Weyl.

Example. $M = \mathbf{R}^{2n} \ni (p,q),$ $H = L^2(\mathbf{R}^n)$ functions of q, $Q_{q_j} : f(q) \longmapsto q_j f(q),$ $Q_{p_j} : f(q) \longmapsto \frac{h}{2\pi i} \frac{\partial f(q)}{\partial q_j}.$

(Schrödinger representation)

Satisfies <u>canonical commutation relations</u> (CCR)

$$\begin{split} [Q_{q_j}, Q_{q_k}] &= [Q_{p_j}, Q_{p_k}] = 0, \quad \forall j, k, \\ [Q_{q_j}, Q_{p_k}] &= 0 \quad \text{for } j \neq k, \\ [Q_{q_j}, Q_{p_j}] &= \frac{ih}{2\pi} I, \end{split}$$

where [A, B] := AB - BA denotes the commutator of two operators.

What about Q_f for more general functions f?

AXIOMS FOR QUANTIZATION

(1) $f \mapsto Q_f$ is linear; (2) for any polynomial $\phi : \mathbf{R} \to \mathbf{R}$,

$$Q_{\phi \circ f} = \phi(Q_f);$$

(in particular: $Q_1 = I$) (von Neumann rule) (3) $[Q_f, Q_g] = -\frac{ih}{2\pi}Q_{\{f,g\}}$, where

$$\{f,g\} = \sum_{j=1}^{n} \left(\frac{\partial f}{\partial p_j}\frac{\partial g}{\partial q_j} - \frac{\partial f}{\partial q_j}\frac{\partial g}{\partial p_j}\right)$$

is the <u>Poisson bracket</u> of f and g. (Extends to general symplectic manifolds instead of \mathbb{R}^{2n} .)

Solutions?

Bad news.

Unfortunately, the above axioms are inconsistent (even on \mathbb{R}^{2n}). Denote for brevity $P = Q_{p_1}, Q = Q_{q_1}, p = p_1, q = q_1$; then

$$pq = \frac{(p+q)^2 - p^2 - q^2}{2} \mapsto \frac{(P+Q)^2 - P^2 - Q^2}{2} = \frac{PQ + QP}{2};$$
$$p^2q^2 = \frac{(p^2 + q^2)^2 - p^4 - q^4}{2} \mapsto \frac{P^2Q^2 + Q^2P^2}{2} \neq \left(\frac{PQ + QP}{2}\right)^2.$$

So

• linearity + von Neumann \implies contradiction;

[Groenewold 1946, van Hove 1951]:

• linearity + brackets \implies contradiction.

[Engliš 2001]:

• von Neumann + brackets \implies contradiction.

From a purely mathematical viewpoint, it can, in fact, be shown that already the von Neumann rule and the canonical commutation relations by themselves lead to a contradiction.

Namely, recall that there exists a continuous function f (Peáno curve) which maps \mathbf{R} continuously and surjectively onto \mathbf{R}^{2n} . Let g be a right inverse for f, so that $g: \mathbf{R}^{2n} \to \mathbf{R}$ and $f \circ g = \mathrm{id}$; such g exists owing to the surjectivity of f, and can be chosen to be measurable and locally bounded.

Set $T = Q_g$ and consider the functions $\phi = p_1 \circ f$, $\psi = q_1 \circ f$. Then by (von Neumann),

$$\phi(T) = Q_{p_1 \circ f \circ g} = Q_{p_1}, \qquad \psi(T) = Q_{q_1 \circ f \circ g} = Q_{q_1},$$

and

$$0 = \phi(T)\psi(T) - \psi(T)\phi(T) = [Q_{p_1}, Q_{q_1}] = -\frac{ih}{2\pi}I,$$

a contradiction.

In the physical realm one usually deals only with smooth observables, which rules out such pathologies.

What to do?

In any case, discard the von Neumann rule, except for $\phi = \mathbf{1}$, i.e.

$$Q_1 = I.$$

<u>First avenue</u>: Insist on all other axioms, but restrict the space of quantizable observables (the domain of the map $f \mapsto Q_f$).

For instance, for quantization on \mathbf{R}^n — allow only functions at most linear in the p_j . Then the recipe

$$Q_f: \psi \longmapsto -\frac{ih}{2\pi} \left(\sum_j \frac{\partial f}{\partial p_j} \frac{\partial \psi}{\partial q_j} \right) + \left(f - \sum_j p_j \frac{\partial f}{\partial p_j} \right) \psi,$$

where $\psi = \psi(q) \in L^2(\mathbf{R}^n)$, works.

In general, restrict to "functions depending on only half of the variables". Requires the use of <u>polarizations</u> of (Ω, ω) , and leads to GEOMETRIC QUANTIZATION. [Kostant 1970], [Souriau 1969]

<u>Second avenue</u>: Relax (Poisson brackets) to hold only asymptotically as $h \to 0$:

$$(\mathbf{H}) \qquad \qquad [Q_f, Q_g] = -\frac{ih}{2\pi} Q_{\{f,g\}} + O(h^2).$$

Simplest example on \mathbb{R}^{2n} : An "arbitrary" function f(p,q) can be expanded into exponentials via the Fourier transform,

$$f(p,q) = \iint \hat{f}(\xi,\eta) e^{2\pi i(\xi p + \eta q)} d\xi d\eta.$$

Let us now postulate that

$$Q_f = \iint \hat{f}(\xi, \eta) \, e^{2\pi i (\xi Q_p + \eta Q_q)} \, d\xi \, d\eta =: W(f).$$

This is the celebrated <u>Weyl calculus</u> of pseudodifferential operators.

It can be shown that for nice f and g,

$$W(f)W(g) = W_{fg} + hW_{C_1(f,g)} + O(h^2)$$

as $h \searrow 0$, where

$$C_1(f,g) = \frac{i}{4\pi} \sum_{j=1}^n \left(\frac{\partial f}{\partial q_j} \frac{\partial g}{\partial p_j} - \frac{\partial f}{\partial p_j} \frac{\partial g}{\partial q_j} \right)$$

satisfies

$$C_1(f,g) - C_1(g,f) = -\frac{i}{2\pi} \{f,g\}.$$

Hence

$$[W_f, W_g] = -\frac{ih}{2\pi} W_{\{f,g\}} + O(h^2)$$

and so (\mathbf{A}) holds for the $Q_f = W_f$.

The product formula

$$W(f)W(g) = W_{fg} + hW_{C_1(f,g)} + O(h^2),$$

can even be improved to higher order: there exist C_2, C_3, \ldots such that

$$W_f W_g = W_{fg} + h W_{C_1(f,g)} + h^2 W_{C_2(f,g)} + O(h^3),$$

$$W_f W_g = W_{fg} + h W_{C_1(f,g)} + h^2 W_{C_2(f,g)} + h^3 W_{C_3(f,g)} + O(h^4),$$

and so on. Symbolically,

$$W_f W_g = W_{f*g}$$

where

$$f * g = fg + hC_1(f,g) + h^2C_2(f,g) + h^3C_3(f,g) + \dots$$

In fact, in quantization it is often not really necessary to have the operators Q_f , but suffices to have the noncommutative product like *. This is the DEFORMATION QUANTIZATION.

DEFORMATION QUANTIZATION

 $C^{\infty}(\Omega)[[h]] =$ the ring of all formal power series in h over $C^{\infty}(\Omega)$. A <u>star product</u> is an associative $\mathbf{C}[[h]]$ -bilinear mapping * such that

$$f * g = \sum_{j=0}^{\infty} h^j C_j(f,g), \qquad \forall f, g \in C^{\infty}(\Omega),$$

where the bilinear operators C_j satisfy

$$C_0(f,g) = fg, \qquad C_1(f,g) - C_1(g,f) = -\frac{i}{2\pi} \{f,g\},$$
$$C_j(f,\mathbf{1}) = C_j(\mathbf{1},f) = 0 \qquad \forall j \ge 1.$$

Weyl calculus — example of deformation quantization on \mathbb{R}^{2n} .

Unfortunately, does not readily extend to more general phase spaces than \mathbf{R}^{2n} . Fourier transform.

Deformation quantization on general symplectic manifolds:

- introduced: [Bayen,Flato,Fronsdal,Lichnerowicz,Sternheimer 1977]
- existence: [DeWilde & Lecomte 1983], [Fedosov 1985], [Omori, Maeda& Yoshioka 1991] ([Kontsevich 1997] even on any Poisson)
- classification up to equivalence: by $H^2(\Omega, \mathbf{R})[[h]]$.

Drawback:

In general, only formal power series — no convergence guaranteed for a given value of h. Difficult for calculations.

This talk: special deformation quantizations on phase spaces which are domains in \mathbb{C}^n (more generally — Kähler manifolds): Berezin and Berezin-Toeplitz quantizations.

First — an example.

FOCK SPACE ON C

On C: $\mathcal{F}(\mathbf{C}) = \mathcal{F} := L^2_{\text{hol}}(\mathbf{C}, \pi^{-1}e^{-|z|^2} dz).$ Let us compute the norm of $f(z) = \sum_{j=0}^{\infty} f_j z^j$:

$$\begin{split} \int_{|z|$$

Letting $R \to +\infty$ yields

$$||f||^{2} = \sum_{j=0}^{\infty} |f_{j}|^{2} \int_{0}^{\infty} t^{j} e^{-t} dt = \sum_{j=0}^{\infty} |f_{j}|^{2} j!.$$

Thus $f \in \mathcal{F}$ iff its Taylor coefficients satisfy $\sum_{j} |f_j|^2 j! < \infty$.

Similar computation (using Cauchy-Schwarz and Fubini) gives a formula for the inner product in \mathcal{F} :

$$\langle f,g\rangle = \sum_{j=0}^{\infty} f_j \overline{g_j} j!.$$

In particular, the monomials z^n , n = 0, 1, 2, ..., form an orthogonal basis of \mathcal{F} , and

$$\frac{z^n}{\sqrt{n!}}, \quad n = 0, 1, 2, \dots,$$

is an orthonormal basis.

<u>Reproducing kernels for \mathcal{F} </u>: For any $z \in \mathbf{C}$ we have

$$|f(z)| = \left|\sum_{j} f_{j} z^{j}\right| \leq \sum_{j} |f_{j}||z|^{j} = \sum_{j} |f_{j}|\sqrt{j!} \frac{|z|^{j}}{\sqrt{j!}}$$
$$\leq \left(\sum_{j} |f_{j}|^{2} j!\right)^{1/2} \left(\sum_{j} \frac{|z|^{2j}}{j!}\right)^{1/2} = \|f\| e^{|z|^{2}/2}$$

Thus, first, $f \mapsto f(z)$ is a bounded linear functional on \mathcal{F} ; and second, it is in fact uniformly bounded for z in a bounded set in \mathbb{C} .

The latter implies (since locally uniform limits of holomorphic functions are holomorphic) that \mathcal{F} is a closed subspace in $L^2(\mathbf{C}, e^{-|z|^2} dz)$, hence a Hilbert space on its own right.

The former implies that there exist $K_z \in \mathcal{F}$ such that

$$f(z) = \langle f, K_z \rangle \qquad \forall f \in \mathcal{F}.$$

In fact, it is not difficult to compute what K_z is explicitly.

Indeed, for any $f \in \mathcal{F}$ and $z \in \mathbf{C}$

$$f(z) = \sum_{j} f_{j} z^{j} = \sum_{j} f_{j} \frac{z^{j}}{j!} j! = \langle f, K_{z} \rangle,$$

where

$$K_z(w) = \sum_j \overline{\frac{z^j}{j!}} w^j = e^{\overline{z}w}.$$

Thus $K_z(w) = e^{\overline{z}w}$.

The function of two variables

$$K(w,z) := K_z(w) = e^{\overline{z}w}$$

is called the <u>reproducing kernel</u> of \mathcal{F} . Will play important role throughout. <u>Toeplitz operators on \mathcal{F} </u>: for $f \in L^{\infty}(\mathbf{C})$, defined by

$$T_f u = P(fu)$$

where $P: L^2(\mathbf{C}, \pi^{-1}e^{-|z|^2} dz) \to \mathcal{F}$ is the orthogonal projection. In other words

$$T_f = PM_f|_{\mathcal{F}}$$

where $M_f: u \mapsto fu$ is the operator of "multiplication by f". f is called the symbol of T_f .

Properties:

•
$$T_{f+g} = T_f + T_g, T_{cf} = cT_f \text{ for } c \in \mathbf{C};$$

- $||T_f|| \le ||M_f|| = ||f||_{\infty}$; in particular, bounded;
- $T_1 = I;$
- $T_f^* = T_{\overline{f}}$.

Sometimes T_f makes sense even for unbounded f: for instance,

$$T_z u = P(zu) = zu$$

(if $zu \in L^2$), so T_z is just "multiplication by z" on \mathcal{F} . Similarly, T_{z^m} for any $m = 0, 1, 2, \ldots$, is just "multiplication by z^m ". Densely defined operators.

More generally, for any $f \in L^{\infty}$,

$$T_{zf}u = P(zfu) = P(fP(zu)) = T_f T_z u$$

(if $zu \in L^2$). Thus $T_{zf} = T_f T_z$. Similarly

$$T_{z^m f} = T_f T_{z^m} = T_f z^m$$

for any m = 0, 1, 2, ...

Taking adjoints gives:

$$T_{\overline{z}^m f} = T_{\overline{z}^m} T_f.$$

In general, however, $T_f T_g \neq T_{fg}$.

What is $T_z^* = T_{\overline{z}}$?

$$(T_z^* z^m)(w) = \langle T_z^* z^m, K_w \rangle = \langle z^m, T_z K_w \rangle = \langle z^m, z K_w \rangle$$
$$= \langle z^m, z \sum_j z^j \frac{\overline{w}^j}{j!} \rangle$$
$$= \langle z^m, \sum_j z^{j+1} \frac{\overline{w}^j}{j!} \rangle$$
$$= \frac{w^{m-1}}{(m-1)!} \langle z^m, z^m \rangle = \frac{m!}{(m-1)!} w^{m-1}$$
$$= mw^{m-1}.$$

Thus $T_z^* z^m = m z^{m-1}$, or

$$T_z^* = \frac{\partial}{\partial z} \equiv \partial.$$

Similarly $T_{z^m}^* = \partial^m$.

Commutation relation:

$$[T_z, T_{\overline{z}}]u = [z, \partial]u = z\partial u - \partial(zu) = -(\partial zu) = -u,$$

or $[T_z, T_{\overline{z}}] = -I$.

Setting z = p + iq for the real and imaginary parts, this gives

$$[T_p, T_q] = \frac{1}{2i}I,$$

which agrees with the CCR for the Schrödinger representation, except for the constant factor. This is easily remedied.

Scaled Fock spaces

Replace $\pi^{-1}e^{-|z|^2}$ by the scaled Gaussian:

$$\mathcal{F}_{\alpha}(\mathbf{C}) = \mathcal{F}_{\alpha} := L^2_{\text{hol}}(\mathbf{C}, \frac{\alpha}{\pi} e^{-\alpha |z|^2} dz), \qquad \alpha > 0.$$

Reproducing kernel:

$$K_{\alpha}(z,w) = e^{\alpha \overline{w}z}.$$

Toeplitz operators:

$$T_z = z, \qquad T_z^* = \frac{1}{\alpha}\partial.$$

Reduces to \mathcal{F} for $\alpha = 1$.

Commutation relations for $T_p, T_q, z = p + iq \in \mathbb{C} \cong \mathbb{R}^2$:

$$[T_q, T_p] = \frac{1}{2\alpha i}I.$$

Taking $\alpha = \pi/h$ thus exactly recovers the Schrödinger representation! What about more complicated functions than z, \overline{z} (or q, p)? Recall $T_{\overline{z}} = \frac{1}{\alpha} \partial$. By Leibniz

$$T_{\overline{z}z^m}u = T_{\overline{z}}T_{z^m}u = \frac{1}{\alpha}\partial(z^m u) = \frac{mz^{m-1}}{\alpha}u + z^m\frac{1}{\alpha}\partial u,$$

or $T_{\overline{z}z^m} = T_{z^m}T_{\overline{z}} + \frac{1}{\alpha}T_{mz^{m-1}}$. Thus

$$T_{z^m}T_{\overline{z}} = T[\overline{z}z^m - \frac{1}{\alpha}(z^m)'] = T[(\overline{z} - \frac{1}{\alpha}\partial)z^m].$$

It follows by linearity that

$$T_p T_{\overline{z}} = T[(\overline{z} - \frac{1}{\alpha}\partial)p]$$

for any polynomial p in z. Since $T_{-k} c = T_{-k} T_{\ell}$ for any f and ∂ commutes with

Since $T_{\overline{z}^k f} = T_{\overline{z}^k} T_f$ for any f, and ∂ commutes with \overline{z} , we even have

$$T_p T_{\overline{z}} = T[(\overline{z} - \frac{1}{\alpha}\partial)p]$$

for any polynomial p in z, \overline{z} .

Iterating this gives

$$T_p T_{\overline{z}^k} = T[(\overline{z} - \frac{1}{\alpha}\partial)^k p]$$

which by the binomial theorem equals

$$\sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \frac{(-1)^j}{\alpha^j} \overline{z}^{k-j} \partial^j p = \sum_j \frac{(-1)^j}{j!\alpha^j} (\overline{\partial}^j \overline{z}^k) (\partial^j p).$$

Finally, since $T_{fz^m} = T_f T_{z^m}$ for any f, and $\overline{\partial}$ commutes with z, we even have the same with \overline{z}^k replaced by $\overline{z}^k z^m$. By linearity, we thus get

$$T_p T_q = T \left[\sum_{j} \frac{(-1)^j}{j! \alpha^j} (\overline{\partial}^j q) \partial^j p \right] = \sum_{j} \alpha^{-j} T_{(-1)^j (\overline{\partial}^j q) \partial^j p/j!}$$

for any polynomials p, q in z, \overline{z} . (The sum is finite.) The beginning of this expansion reads

$$T_f T_g = T_{fg} - \frac{1}{\alpha} T_{(\partial f)(\overline{\partial}g)} + O(\alpha^{-2}).$$

For $\alpha = \pi/h$, taking antisymmetrization produces the Poisson bracket. **Conclusion**: $f \mapsto T_f$ on \mathcal{F}_{α} , $\alpha = \frac{\pi}{h}$, produces a deformation quantization on **C**! For f a polynomial in z, \overline{z} .

Fock spaces on \mathbf{C}^n

$$\mathcal{F}_{\alpha}(\mathbf{C}^n) := L^2_{\text{hol}}(\mathbf{C}^n, e^{-\alpha \|z\|^2} (\alpha/\pi)^n \, dz)$$

Reproducing kernel:

$$K_{\alpha}(z,w) = e^{\alpha \langle z,w \rangle}.$$

Toeplitz operators:

$$T_{z_j} = z_j, \qquad T^*_{z_j} = \frac{1}{\alpha} \partial_j.$$

Product of Toeplitz operators:

$$T_f T_g = \sum_{j \text{ multiindex}} \frac{(-1)^{|j|}}{j! \alpha^{|j|}} T[(\partial^j f)(\overline{\partial}^j g)],$$

at least for f, g polynomials in $z_j, \overline{z}_j, j = 1, ..., n$. So, again deformation quantization on \mathbf{C}^n . **Remark.** There is actually an isomorphism, the <u>Bargmann transform</u>, mapping $L^2(\mathbf{R}^n)$ unitarily onto $\mathcal{F}_{\alpha}(\mathbf{C}^n)$.

Transferring W_f to \mathcal{F}_{α} via this isomorphism, W_f actually becomes precisely T_f for f a first-degree polynomial in z_j, \overline{z}_j ; but this is no longer true for more general f. \Box

Some caveats: the above is nice, but

- $T_z, T_{\overline{z}}$ are unbounded operators not so nice
- how to make sense of

$$T_f T_g = \sum_{j \text{ multiindex}} \frac{(-1)^{|j|}}{j! \alpha^{|j|}} T[(\partial^j f)(\overline{\partial}^j g)],$$

when f, g are not polynomials (the sum is infinite — convergence?!)

• We also want other domains than \mathbf{C}^n .

Answer = rest of this talk.

BERGMAN SPACE

 Ω a bounded domain in ${\bf C}^n$

dm(z) or dz the normalized Lebesgue measure on Ω $L^2(\Omega) \supset L^2_{\text{hol}}(\Omega)$ the <u>Bergman space</u> $K(x,y) \equiv K_y(x)$ reproducing kernel: $K_y \in L^2_{\text{hol}}(\Omega)$,

$$f(y) = \langle f, K_y \rangle = \int_{\Omega} f(x) K(y, x) \, dx \qquad \forall f \in L^2_{\text{hol}}.$$

Note:

$$K(x,y) = K_y(x) = \langle K_y, K_x \rangle$$

is holomorphic in x, \overline{y} .

Note also: since Ω is assumed bounded, $\mathbf{1} \in L^2_{\text{hol}}(\Omega)$, and

$$1 = \mathbf{1}(x) = \langle \mathbf{1}, K_x \rangle \le \|\mathbf{1}\| \|K_x\|.$$

Thus $||K_x|| > 0$ for all $x \in \Omega$.

BEREZIN SYMBOLS

<u>Berezin symbol</u> (or <u>transform</u>) of operators on $L^2_{hol}(\Omega)$

$$\widetilde{T}(x) = \frac{\langle TK_x, K_x \rangle}{\langle K_x, K_x \rangle} = \langle Tk_x, k_x \rangle, \qquad k_x := \frac{K_x}{\|K_x\|}.$$

(Note: denominator $\neq 0$.) A function on Ω .

PROPERTIES:

$$\begin{array}{ll} T \mapsto \widetilde{T} \text{ linear} & \widetilde{T^*} = \overline{\widetilde{T}} \\ \widetilde{I} = \mathbf{1} & \|\widetilde{T}\|_{\infty} \leq \|T\| \end{array}$$

Also, \widetilde{T} is <u>real-analytic</u>: it is the restriction to x = y of the function

$$\widetilde{T}(x,y) := \frac{\langle TK_y, K_x \rangle}{\langle K_y, K_x \rangle} = \frac{\langle TK_y, K_x \rangle}{K(x,y)}$$

holomorphic in x, \overline{y} .

<u>Important property</u>:

$$T \mapsto \widetilde{T}$$
 is 1-to-1.

Indeed, suppose $\widetilde{T}(x) = \widetilde{T}(x,x) = 0 \ \forall x$. Setting x = u + iv, y = u - iv, it follows that $\widetilde{T}(u + iv, \overline{u + iv}) = 0$ for all u, v real, while being holomorphic in u, v. By uniqueness principle for holomorphic functions, $\widetilde{T}(x,y) = 0 \ \forall x, y$, hence $\langle TK_x, K_y \rangle = TK_x(y) = 0 \ \forall x, y$. However,

$$\widetilde{T}^*f(x) = \langle T^*f, K_x \rangle = \langle f, TK_x \rangle = \int_{\Omega} f(y) \overline{TK_x(y)} \, dy = 0$$

for all f and x. Hence $T^* = 0$ and T = 0.

TOEPLITZ OPERATORS

<u>Toeplitz operator</u> with symbol $\phi \in L^{\infty}(\Omega)$:

$$T_{\phi}: L^2_{\text{hol}} \to L^2_{\text{hol}}, \qquad T_{\phi}f = P(\phi f)$$

where $P: L^2 \to L^2_{hol}$ is the <u>Bergman projection</u> (orthogonal) <u>PROPERTIES:</u> $f \mapsto T_f$ linear $T^* - T_{-}$

$$\begin{array}{ll} f \mapsto T_f \text{ linear} & T_f^* = T_{\overline{f}} \\ T_1 = I & \|T_f\| \le \|f\|_{\infty} \end{array}$$

Furthermore, for ϕ holomorphic and f arbitrary,

$$T_{f\phi} = T_f T_{\phi}, \quad T_{\overline{\phi}f} = T_{\overline{\phi}} T_f,$$

and T_{ϕ} is just the operator of "multiplication by ϕ ". Same situation we saw for the Fock space — except now the operators are bounded.

BEREZIN TRANSFORM

<u>Berezin transform</u> Bf or \tilde{f} of functions on Ω :

$$\widetilde{f} := \widetilde{T_f}.$$

Again a function on Ω ; integral operator:

$$\widetilde{f}(x) = \frac{\langle fK_x, K_x \rangle}{\langle K_x, K_x \rangle} = \int_{\Omega} f(y) \frac{|K(x, y)|^2}{K(x, x)} \, dm(y).$$

PROPERTIES:

$$f \mapsto B_f \text{ linear} \qquad B\overline{f} = \overline{Bf} \\ B\mathbf{1} = \mathbf{1} \qquad \|Bf\|_{\infty} \le \|f\|_{\infty}$$

Also, Bf is always a real-analytic function on Ω .

WEIGHTED VARIANTS

w > 0 a positive continuous weight on Ω

 $L^2(\Omega, w) \supset L^2_{hol}(\Omega, w)$ the weighted Bergman space $K_w(x, y) \equiv K_{w,y}(x)$ reproducing kernel

<u>Berezin symbol</u> of operators on $L^2_{hol}(\Omega, w)$

$$\widetilde{T}(x) = \frac{\langle TK_{w,x}, K_{w,x} \rangle}{\langle K_{w,x}, K_{w,x} \rangle} = \langle Tk_{w,x}, k_{w,x} \rangle, \qquad k_{w,x} := \frac{K_{w,x}}{\|K_{w,x}\|}.$$

<u>Toeplitz operator</u> with symbol $\phi \in L^{\infty}(\Omega)$:

$$T_{\phi}: L^2_{\text{hol}} \to L^2_{\text{hol}}, \qquad T_{\phi}f = P_w(\phi f)$$

where $P_w : L^2(\Omega, w) \to L^2_{hol}(\Omega, w)$ is the weighted Bergman projection. Weighted Berezin transform of functions on Ω : $\widetilde{f} := \widetilde{T_f}$,

$$\widetilde{f}(x) = \frac{\langle fK_{w,x}, K_{w,x} \rangle}{\langle K_{w,x}, K_{w,x} \rangle} = \int_{\Omega} f(y) \frac{|K_w(x,y)|^2}{K_w(x,x)} w(y) \, dm(y).$$

NOTATION: instead of \tilde{f} , will also use $B_w f$.

IDEAS FOR QUANTIZATION

• <u>Berezin-Toeplitz quantization</u>: Find family of weights ρ_h , h > 0, such that

$$T_f T_g = \sum_{j=0}^{\infty} h^j T[C_j(f,g)],$$

where C_j are some bidifferential operators such that $C_0(f,g) = fg$ and

$$C_1(f,g) - C_1(g,f) = \frac{i}{2\pi} \{f,g\}$$

for some given Poisson bracket $\{\cdot, \cdot\}$ on Ω .

We saw this for
$$\Omega = \mathbf{C}$$
, with $C_j(f,g) = \frac{1}{j!} (\partial^j f) (\overline{\partial}^j g)$.
(And similarly for \mathbf{C}^n .)

• <u>Berezin quantization</u>: For any given ρ , since $T \to \widetilde{T}$ is 1-to-1, we can introduce a noncommutative product $*_{\rho}$ by

$$\widetilde{S} *_{\rho} \widetilde{T} := \widetilde{ST}.$$

Defined on $\{\widetilde{T}: T \text{ a bded linear operator on } L^2_{\text{hol}}(\Omega, \rho)\}.$ (Depends on ρ .)

Find family of weights ρ_h , h > 0, such that as $h \to 0$

$$f *_{\rho_h} g = \sum_{j=0}^{\infty} h^j C_j(f,g),$$

where C_j are some bidifferential operators such that $C_0(f,g) = fg$ and

$$C_1(f,g) - C_1(g,f) = \frac{i}{2\pi} \{f,g\}$$

for a given Poisson bracket $\{\cdot, \cdot\}$ on Ω .

• <u>Alternative description of the last via the Berezin transform</u>: Find family of weights ρ_h , h > 0, such that as $h \to 0$, the corresponding Berezin transforms $B_{\rho_h} \equiv B_h$ have an asymptotic expansion

$$(\clubsuit) B_h = Q_0 + hQ_1 + h^2Q_2 + \dots$$

with some differential operators Q_j , with $Q_0 = I$. Let

$$Q_j f =: \sum_{\alpha,\beta \text{ multiindices}} c_{j\alpha\beta} \,\partial^\alpha \overline{\partial}^\beta f,$$

be the coefficients of Q_j , and set $f *_{Bt} g := \sum_{j=0}^{\infty} h^j C_j(f,g)$, with

$$C_j(f,g) := \sum_{\alpha,\beta} c_{j\alpha\beta} \, (\overline{\partial}^{\beta} f) (\partial^{\alpha} g).$$

If it happens that

$$C_1(f,g) - C_1(g,f) = \frac{i}{2\pi} \{f,g\},\$$

then we obtain a star-product from the preceding slide.

We first prove the last claim, and then proceed to construct the ρ_h .
<u>Sketch of proof of the equivalence</u>:

Let $Z_j = T_{z_j}$ be the operators on $L^2_{hol}(\Omega, \rho_h)$: $f(z) \mapsto z_j f(z)$; Z_j^* their adjoints;

for $p(z,\overline{z}) = \sum_{\alpha,\beta} p_{\alpha\beta} z^{\alpha} \overline{z}^{\beta}$ a polynomial in z,\overline{z} , define

$$V_p := \sum_{\alpha,\beta} p_{\alpha\beta} Z^{\alpha} Z^{*\beta}.$$

Recall the notation $K_y = K_{\rho_h}(\cdot, y)$ for the reproducing kernel, and the notation, for any operator T on $L^2_{\text{hol}}(\Omega, \rho_h)$,

$$\widetilde{T}(x,y) := \frac{\langle TK_y, K_x \rangle}{\langle K_y, K_x \rangle} = \frac{TK_y(x)}{K(x,y)} = \frac{\overline{T^*K_x(y)}}{K(x,y)}$$

(a function on $\Omega \times \Omega$).

Then

$$\begin{split} \widetilde{V}_{p}(x,y) &= \frac{V_{p}K_{y}(x)}{K(x,y)} = \frac{\sum_{\alpha,\beta} p_{\alpha\beta}(Z^{\alpha}Z^{*\beta}K_{y})(x)}{K(x,y)} \\ &= \frac{\sum_{\alpha,\beta} p_{\alpha\beta}x^{\alpha}(Z^{*\beta}K_{y})(x)}{K(x,y)} = \frac{\sum_{\alpha,\beta} p_{\alpha\beta}x^{\alpha}\langle Z^{*\beta}K_{y}, K_{x}\rangle}{K(x,y)} \\ &= \frac{\sum_{\alpha,\beta} p_{\alpha\beta}x^{\alpha}\langle K_{y}, Z^{\beta}K_{x}\rangle}{K(x,y)} = \frac{\sum_{\alpha,\beta} p_{\alpha\beta}x^{\alpha}\overline{y^{\beta}K_{x}(y)}}{K(x,y)} \\ &= \sum_{\alpha,\beta} p_{\alpha\beta}x^{\alpha}\overline{y}^{\beta} = p(x,\overline{y}) \quad \text{ for any } h. \end{split}$$

In particular, $\widetilde{V}_p(x, x) = \widetilde{V}_p(x) = p(x, \overline{x}).$

Now, for any two operators T_1, T_2

$$\widetilde{(T_1T_2)}(x,y) = \frac{\langle T_2K_y, T_1^*K_x \rangle}{\langle K_y, K_x \rangle} = \frac{\int T_2K_y(z) \overline{T_1^*K_x(z)}\rho(z) dz}{\langle K_y, K_x \rangle}$$
$$= \int \frac{\widetilde{T}_2(z,y)K(z,y) \cdot \widetilde{T}_1(x,z)K(x,z)}{\langle K_y, K_x \rangle}\rho(z) dz.$$

In particular,

$$\widetilde{(T_1T_2)}(x,x) = \int \widetilde{T_1}(x,z)\widetilde{T_2}(z,x)\frac{|K(x,z)|^2}{K(x,x)}\rho(x)\,dx$$
$$= \left(B_h[\widetilde{T_1}(x,\cdot)\widetilde{T_2}(\cdot,x)]\right)(x).$$

Thus if (\spadesuit) holds, i.e.

$$B_h = \sum_{j \ge 0} h^j Q_j$$
 as $h \to 0$, with $Q_j f = \sum_{\alpha,\beta} c_{j\alpha\beta} \partial^\alpha \overline{\partial}^\beta f$,

and C_j are defined by $C_j(f,g) := \sum_{\alpha,\beta} c_{j\alpha\beta} \, (\overline{\partial}^{\beta} f) (\partial^{\alpha} g),$

when as
$$h \to 0$$

 $\widetilde{(T_1 T_2)}(x, x) = \sum_{j \ge 0} h^j Q_j [\widetilde{T}_1(x, \cdot) \widetilde{T}_2(\cdot, x)](x)$
 $= \sum_{j,\alpha,\beta} h^j c_{j\alpha\beta} \overline{\partial}^{\beta} \widetilde{T}_1(x, \cdot) \partial^{\alpha} \widetilde{T}_2(\cdot, x) \big|_x.$

Hence for $\widetilde{T}(x) = \widetilde{T}(x, x)$, we get

$$\widetilde{T_1 T_2} = \sum_{j,\alpha,\beta} h^j c_{j\alpha\beta} \,\overline{\partial}^{\beta} \widetilde{T_1} \,\partial^{\alpha} \widetilde{T_2}$$
$$= \sum_j h^j C_j(\widetilde{T_1}, \widetilde{T_2}) = \widetilde{T_1} *_{Bt} \widetilde{T_2},$$

by the definition of $*_{Bt}$.

Applying this to V_p gives

$$p *_{Bt} q = \widetilde{V_p V_q}$$
 for any polynomials p, q in z, \overline{z} .

Since $\widetilde{V}_p = p$, this means that

$$\widetilde{V}_p *_{Bt} \widetilde{V}_q = \widetilde{V_p V_q} = \widetilde{V}_p *_{\rho_h} \widetilde{V}_q.$$

Finally, for any $f \in C^{\infty}(\Omega)$, m = 1, 2, ..., and $x \in \Omega$, there exists a polynomial $p(x, \overline{x})$ such that $\partial^{\alpha} \overline{\partial}^{\beta} f(x) = \partial^{\alpha} \overline{\partial}^{\beta} p(x, \overline{x}) \forall |\alpha|, |\beta| \leq m$. Consequently, the two products $*_{Bt}$ and $*_{\rho_h}$ — which involve finitely many derivatives in each term — agree not only on polynomials, but everywhere. \Box **Remark.** It is also possible to derive the B-T quantization from the asymptotics (\spadesuit) of the Berezin transform; that is, to show that

$$(*) \qquad [T_f, T_g] \approx h T_{\{f,g\}}$$

as the Planck constant $h \to 0$.

Indeed, assume first that f, \overline{g} are holomorphic. Then for any $\phi \in L^2_{\text{hol}}$

$$\langle T_f \phi, K_x \rangle = \langle f \phi, K_x \rangle = f(x)\phi(x) = f(x)\langle \phi, K_x \rangle.$$

It follows that $T_f^* K_x = \overline{f(x)} K_x$. Similarly $T_g K_x = g(x) K_x$. Hence

$$\widetilde{T_f T_g}(x) = \frac{\langle T_f T_g K_x, K_x \rangle}{\langle K_x, K_x \rangle} = \frac{\langle T_g K_x, T_f^* K_x \rangle}{\langle K_x, K_x \rangle}$$
$$= \frac{\langle g(x) K_x, \overline{f(x)} K_x \rangle}{\langle K_x, K_x \rangle} = f(x)g(x).$$

Thus $\widetilde{T_f T_g} = fg$.

On the other hand, by definition and (\spadesuit) ,

$$\widetilde{T}_{fg} = B_h(fg) = fg + hQ_1(fg) + O(h^2).$$

Subtracting this from $\widetilde{T_f T_g} = fg$ gives

$$(T_f T_g - T_{fg})^{\sim} = -hQ_1(fg) + O(h^2)$$

= $-h\widetilde{T_{Q_1(fg)}} + O(h^2).$

"Removing the tilde" we get, for f, \overline{g} holomorphic,

(‡)
$$T_f T_g - T_{fg} = -hT_F + O(h^2)$$
, where $F = -C_1(g, f)$,

with the C_1 from the Berezin quantization; note that this involves only ∂f and $\overline{\partial} g$.

Since for u, v holomorphic and f, g arbitrary,

$$T_g T_u = T_{gu}, \qquad T_{\overline{v}} T_f = T_{\overline{v}f},$$

while also $\overline{\partial}(gu) = u\overline{\partial}g$ and $\partial(\overline{v}f) = \overline{v}\partial f$, it follows that (‡) remains in force even for any f, g of the form $u\overline{v}$ with u, v holomorphic.

By routine approximation argument, one gets it for any smooth f, g. \Box (Shows that $C_1^{BT}(f,g) = -C_1^B(g,f)$.) CONNECTION BETWEEN BEREZIN AND TOEPLITZ QUANTIZATIONS

We have $f \mapsto T_f$ (Toeplitz ops), $T \mapsto \widetilde{T}$ (Berezin symbol). Composition:

$$f \mapsto \widetilde{T}_f =: B_h f,$$
 the Berezin tsfm of f .

Applying the definition of Berezin star-product

$$\widetilde{T} *_B \widetilde{S} = \widetilde{TS}$$

to $T = T_f, S = T_g$ gives

$$\widetilde{T}_f *_B \widetilde{T}_g = \widetilde{T_f T_g} = \widetilde{T}_{f *_{BT} g},$$

or

$$Bf *_B Bg = B(f *_{BT} g).$$

Some examples of Berezin/B-T quantizations

Example 1.
$$\Omega = \mathbf{C}^n$$
, $w(z) = e^{-\alpha |z|^2} \left(\frac{\alpha}{\pi}\right)^n dm(z)$ $(\alpha > 0)$

reproducing kernel:

$$K_{\alpha}(x,y) = e^{\alpha \langle x,y \rangle}$$

Berezin transform:

$$B_{\alpha}f(x) = \int_{\mathbf{C}^n} f(y) \ \frac{|K(x,y)|^2}{K(x,x)} \ w(y) \ dm(y)$$
$$= \left(\frac{\alpha}{\pi}\right)^n \int_{\mathbf{C}^n} f(y) \ e^{-\alpha ||x-y||^2} \ dm(y).$$

This is the heat solution operator at time $t = 1/4\alpha$:

$$B_{\alpha}f = e^{\Delta/4\alpha}f.$$

In particular, as $\alpha \to +\infty$, we get $B_{\alpha}f \to f$, more precisely there is even an asymptotic expansion

$$B_{\alpha}f(x) = e^{\Delta/4\alpha}f(x) = f(x) + \frac{\Delta f(x)}{4\alpha} + \frac{\Delta^2 f(x)}{2!(4\alpha)^2} + \dots,$$

or more briefly

$$B_{\alpha} = e^{\Delta/4\alpha} = \sum_{j=0}^{\infty} \alpha^{-j} \frac{\Delta^j}{j! 4^j}.$$

B-T quantization: works, with

$$C_j(f,g) = \frac{(-1)^j}{j!} \sum_{|\alpha|=j} \partial^{\alpha} f \overline{\partial}^{\alpha} g.$$

Berezin quantization: works, with

$$C_j(f,g) = \frac{1}{j!} \sum_{|\alpha|=j} \overline{\partial}^{\alpha} f \partial^{\alpha} g.$$

Both quantize the Euclidean Poisson bracket from the beginning of this talk.

Example 2. $\Omega = \mathbf{D}, w(z) = \frac{\alpha+1}{\pi}(1-|z|^2)^{\alpha}$ $(\alpha > -1)$ reproducing kernel:

$$K_{\alpha}(x,y) = \frac{1}{(1-x\overline{y})^{\alpha+2}}$$

Berezin transform:

$$B_{\alpha}f(x) = \frac{\alpha+1}{\pi} \int_{\mathbf{D}} f(y) \; \frac{(1-|x|^2)^{\alpha+2}}{|1-x\overline{y}|^{2\alpha+4}} \; (1-|y|^2)^{\alpha} \, dm(y).$$

Can again be shown that as $\alpha \to +\infty$

$$B_{\alpha}f = f + \frac{\widetilde{\Delta}f}{4\alpha} + \dots$$

where

$$\widetilde{\Delta}f = (1 - |z|^2)^2 \Delta$$

is the invariant Laplacian on **D**.

Berezin quantization: works, with

$$C_0(f,g) = fg,$$
 $C_1(f,g) = (1-|z|^2) \overline{\partial} f \partial g.$

Explicit expressions for C_j , $j \ge 2$ — unknown.

Berezin-Toeplitz quantization: works, with

$$C_0(f,g) = fg,$$
 $C_1(f,g) = -(1-|z|^2) \partial f \overline{\partial} g.$

Explicit expressions for C_j , $j \ge 2$ — unknown.

Both quantize the Poisson bracket

$$\{f,g\} = (1 - |z|^2)^2 (\overline{\partial} f \partial g - \partial g \overline{\partial} f)$$

associated to the invariant (=Poincare, Lobachevsky) metric on **D**.

Example 3. $\Omega = \mathbf{B}^n$, the unit ball of \mathbf{C}^n ; $w(z) = c_\alpha (1 - ||z||^2)^\alpha$ $(\alpha > -1, c_\alpha \text{ making total mass } 1)$

reproducing kernel:

$$K_{\alpha}(x,y) = \frac{1}{(1 - \langle x, y \rangle)^{\alpha + n + 1}}$$

Berezin transform:

$$B_{\alpha}f(x) = c_{\alpha} \int_{\mathbf{B}^n} f(y) \ \frac{(1 - \|x\|^2)^{\alpha + n + 1}}{|1 - \langle x, y \rangle|^{2\alpha + 2n + 2}} \ (1 - \|y\|^2)^{\alpha} \ dm(y).$$

Again,

$$B_{\alpha}f = f + \frac{\widetilde{\Delta}f}{4\alpha} + \dots$$

as $\alpha \to +\infty$, with $\widetilde{\Delta}$ the invariant Laplacian on \mathbf{B}^n .

B/B-T quantizations: work, similar formulas as for the disc.

Summary of the Examples: the Fock space on \mathbb{C}^n

$$w(x) = \left(\frac{\alpha}{\pi}\right)^n e^{-\alpha ||z||^2}, \qquad K_w(x,y) = e^{\alpha \langle x,y \rangle};$$

the disc

$$w(z) = \frac{\alpha+1}{\pi} (1-|z|^2)^{\alpha}, \qquad K_w(x,y) = (1-x\overline{y})^{-\alpha-2};$$

the ball

$$w(z) = c_{\alpha}(1 - ||z||^2)^{\alpha}, \qquad K_w(x, y) = (1 - \langle x, y \rangle)^{-\alpha - n - 1}.$$

That is:

- $K_w(x,x)$ is just the reciprocal of the weight w(x), up to the normalization constants and possibly a shift in the power α .
- B_{α} is an approximate identity as $\alpha \to +\infty$, more precisely

$$B_{\alpha} = I + \frac{Q_1}{\alpha} + \frac{Q_2}{\alpha^2} + \dots,$$

where $Q_1 = \frac{1}{4}$ (invariant Laplacian) etc.

How to choose the weights ρ_h

Assume we have our domain $\Omega \subset \mathbf{C}^n$, with a given Poisson bracket:

$$(\clubsuit) \qquad \{f,g\} = \sum_{j,k=1}^{n} g^{\overline{j}k} (\overline{\partial}_j f \partial_k g - \partial_j f \overline{\partial}_k g),$$

where $\{g^{\overline{j}k}\}_{j,k=1}^{n}$ is a non-degenerate skew-Hermitian matrix. The inverse matrix $\{g_{k\overline{j}}\}_{j,k=1}^{n}$ the defines the differential form

$$\omega = \sum_{j,k=1}^{n} g^{\overline{j}k} d\overline{z}_j \wedge dz_k,$$

which in turn determines a nonvanishing volume element ω^n on Ω . Idea for finding the ρ_h : take guidance from group invariance. Assume there is a group G acting on Ω by biholomorphic transformations preserving the form ω . Naturally, we would then want our quantizations to be G-invariant, i.e. to satisfy

$$(f \circ \phi) * (g \circ \phi) = (f * g) \circ \phi, \qquad \forall \phi \in G.$$

On the level of the Berezin quantization, this corresponds to the operators Q_j in (\spadesuit) , and, hence, to *B* itself, to commute with the action of *G*. An examination of the formula defining the Berezin transform shows that this happens if and only if

$$\frac{|K(x,y)|^2}{K(y,y)}\,\rho(x)\,dx = \frac{|K(\phi(x),\phi(y))|^2}{K(\phi(y),\phi(y))}\,\rho(\phi(x))\,d\phi(x).$$

In particular, the ratio

$$\frac{\rho(\phi(x)) \, d\phi(x)}{\rho(x) \, dx} = \frac{|K(x,y)|^2}{K(y,y)} \, \frac{K(\phi(y),\phi(y))}{|K(\phi(x),\phi(y))|^2}$$

has to be the squared modulus of a holomorphic function. Writing

$$\rho(x) \, dx = w(x) \cdot \omega^n(x)$$

with the (G-invariant) volume element ω^n , the last condition translates into

$$w(\phi(x)) = w(x)|f_{\phi}(x)|^2$$

for some holomorphic functions f_{ϕ} .

Hence, the form $\partial \overline{\partial} \log w$ is *G*-invariant.

But the simplest examples of G-invariant forms (and if G is sufficiently "ample", the only ones) are clearly the constant multiples of ω . Thus:

$$\partial \overline{\partial} \log w = \operatorname{const.} \cdot \omega.$$

Thus ω must lie in the range of $\partial \overline{\partial}$:

$$\omega = \partial \overline{\partial} \left(-\frac{1}{c} \log w \right) =: \partial \overline{\partial} \Phi$$

for the real-valued function Φ (a <u>Kähler potential</u>). Then

$$\omega^n(x) = \det[\partial \overline{\partial} \Phi(x)] \, dx,$$

and the sought weights ρ_h should thus be of the form

$$\rho_h(x) = e^{-c\Phi(x)} \det[\partial\overline{\partial}\Phi]$$

with some c = c(h) depending only on h.

<u>Note</u> that the potential Φ is then always <u>strictly plurisubharmonic</u>, i.e. the matrix

$$g_{k\overline{j}}(z) := \frac{\partial^2 \Phi(z)}{\partial z_k \partial \overline{z}_j}$$

is positive definite, $\forall z \in \Omega$.

Furthermore, the condition $C_1(f,g) - C_1(g,f) = -\frac{i}{2\pi} \{f,g\}$ in the Berezin quantization will be satisfied if the operator Q_1 in (\clubsuit) equals

$$Q_1 = \sum_{j,k=1}^n g^{\overline{j}k} \partial_k \overline{\partial}_j =: \Delta,$$

the <u>Laplace-Beltrami</u> operator associated to ω . Indeed, then

$$C_1(f,g) = \sum_{j,k=1}^n g^{\overline{j}k} (\partial_k f)(\overline{\partial}_j g),$$

and the claim follows by (\clubsuit) .

We have thus arrived at the <u>FINAL RECIPE</u> for the Berezin and Berezin-Toeplitz quantizations on a domain $\Omega \subset \mathbb{C}^n$ with a given Poisson bracket: namely, let

$$\begin{split} \Phi & \text{be a potential for } \omega, \text{ i.e. } \omega = \partial \overline{\partial} \Phi; \\ L^2_{\text{hol}}(\Omega, e^{-c\Phi} \det[\partial \overline{\partial} \Phi]) & \text{the Bergman space} \quad (c \in \mathbf{R}); \\ K_c(x, y) & \text{its reproducing kernel}; \\ B_c f(x) & \text{the associated Berezin transform}; \\ T^{(c)}_f & \text{the Toeplitz operator associated to } f; \end{split}$$

and see if c = c(h) can be chosen so that

$$B_c = I + h\Delta + h^2 Q_2 + h^3 Q_3 + \dots \qquad \text{as } h \to 0$$

with some differential operators Q_j , $Q_0 = I$, $Q_1 = \Delta$; respectively, if

$$T_f^{(c)} T_g^{(c)} = \sum_{j \ge 0} h^j T_{C_j(f,g)}^{(c)}$$
 as $h \searrow 0$ (in norm),

with $C_0(f,g) = fg$ and $C_1(f,g) - C_1(g,f) = -\frac{i}{2\pi} \{f,g\}.$

<u>Answer:</u> works!, with c(h) = 1/h.

How to get this:

Asymptotics of $B_c, T^{(c)} \iff$ asymptotics of $K_c(x, y), c = c(h)$, as $h \to 0$. Thus we need to study the asymptotics of

$$K_c(x,y) = \text{ the RK of } L^2_{\text{hol}}(\Omega, e^{-c\Phi} \det[\partial \overline{\partial} \Phi])$$

as $c \to +\infty$.

<u>To recapitulate</u>: quantization has lead us to the following problem on weighted Bergman kernels:

 $\Omega\subset {\bf C}^n$ a domain, Φ a strictly-PSH function on Ω
 $g_{k\overline{j}}=\partial_k\overline{\partial}_j\Phi$

measures $d\mu_h(z) := e^{-\Phi(z)/h} \det[g_{k\overline{j}}(z)] dz, h > 0$

weighted Bergman spaces $L^2_{\text{hol}}(\Omega, d\mu_h)$

Bergman kernels $K_h(x, y)$, Berezin transforms B_h , Toeplitz operators T_f . QUESTION: to find

- asymptotics of $K_h(x,y)$ as $h \searrow 0$
- asymptotics of B_h as $h \searrow 0$ $(B_h = \sum_j h^j Q_j)$
- asymptotics of $T_f T_g$ as $h \searrow 0$

$$(B_h = \sum_j h^j Q_j)$$

 $(T_f T_g = \sum_j h^j T_{C_j(f,g)}).$

NOTATION: $\alpha = 1/h \to +\infty$.

<u>On manifolds Ω </u> instead of domains:

- similar, only pass from functions to sections of a holomorphic line bundle \mathcal{L} , with the Hermitian metric (in the fibers) given locally by $e^{-\Phi}$; (i.e. curvature form $= -\omega$)
- and instead of $L^2_{\text{hol}}(\Omega, d\mu_h) \iff$ space of holomorphic L^2 sections of $\otimes^m \mathcal{L}$, where $m = 1/h = 1, 2, \ldots$
- \mathcal{L} exists $\iff [g_{k\overline{j}}] \in H^2(\Omega, \mathbf{R})$ lies actually in $H^2(\Omega, \mathbf{Z})$.

<u>Two APPROACHES</u>: independently 1997-1998

- <u>compact manifolds</u>:
 - [Zelditch 1998] asymptotics of $K_h(x, x), h \to 0$; [Catlin 1999] ditto for $K_h(x, y)$.
 - Did not consider B_h , T_f , but rather inspired by [Tian 1990] (\rightsquigarrow [Ruan 1996]).
 - Proofs via Boutet de Monvel–Guillemin theory of *Fourier* integral operators of Hermitian type.
 - Actually appeared already in [Bordemann, Meinrenken, Schlichenmaier 1994], who used it get the result about T_f , but not K_h , B_h .

Will describe this one. (Strongest.)

- domains in \mathbf{C}^n :
 - K_h , B_h : bare hands and $\overline{\partial}$ -techniques [M.E. 1996–2000] (notably: Fefferman/BdMonvel-Sjöst & Kerzman/Boas,Bell); needs some hypothesis on the behaviour of Φ at the boundary;
 - T_f : only for bounded domains & has to resort to BdM-G.
 - for n = 1 (Riemann surfaces) with Poincare metric [Klimek-Lesniewski 1991] (uniformization)
 - for $\Omega = \mathbf{C}^n$, Euclidean metric $(g^{k\overline{j}} = \delta_{jk}, \Phi(z) = ||z||^2)$: [Coburn 1993] [Borthwick 1994 - ?]
 - [Berezin 1975] Berezin quantization on \mathbb{C}^n , bded symm doms
 - [Borthwick-Lesniewski-Upmeier 1994]: B-T on bded symm doms (extension [M.E. 2004])

[Karabegov ca 1995]: equivalence of $*_{Bt} \& *_{Bq}$

- [Ma-Marinescu]; [Berndtsson-Berman-Sjöstrand]; [Schlichenmaier].

BASICS NOTIONS OF SEVERAL COMPLEX VARIABLES

 Ω a domain in ${\bf C}^n$

 $\Phi: \Omega \to \mathbf{R}$ is called <u>strictly-plurisubharmonic</u> (strictly-PSH) if for any $z \in \Omega$ and $v \in \mathbf{C}^n$, the function of one complex variable

$$t \mapsto \Phi(z+tv), \qquad t \in \mathbf{C}$$

is strictly subharmonic where defined.

Equivalently, Φ is strictly-PSH if the matrix of mixed second derivatives

$$\left[\frac{\partial^2 \Phi}{\partial z_j \partial \overline{z}_k}\right]_{j,k=1}^n$$

is positive definite.

A bounded domain $\Omega \subset \mathbf{C}^n$ with smooth boundary is called <u>strictly</u> <u>pseudoconvex</u> if there exists a function r such that

r > 0 on Ω , r = 0, $\|\nabla r\| > 0$ on $\partial\Omega$,

-r is strictly-PSH in a neighbourhood of $\overline{\Omega}$.

One calls r a strictly-PSH <u>defining function</u> for Ω .

Similarly: PSH functions, pseudoconvex domains.

Pseudoconvex domains are the natural domains in \mathbb{C}^n on which holomorphic functions live. (in dim=1: all)

Strictly pseudoconvex are the manageable ones.

Theorem B. $\Omega \subset \mathbb{C}^n$ smoothly bounded strictly pseudoconvex, Φ a strictly-PSH function on Ω ,

such that $e^{-\Phi} = r$ is a defining function for Ω . Then for the weights $w = e^{-\alpha \Phi} \det[\partial \overline{\partial} \Phi]$, we have as $\alpha \to +\infty$, $\alpha \in \mathbf{Z}$,

$$K_{\alpha}(x,x) \approx e^{\alpha \Phi(x)} \frac{\alpha^n}{\pi^n} \sum_{j=0}^{\infty} \frac{b_j(x)}{\alpha^j},$$

where
$$b_0 = \det[\frac{\partial^2 \Phi}{\partial z_j \partial \overline{z}_k}];$$

$$B_{\alpha} f = \sum_{j=0}^{\infty} \frac{Q_j f}{\alpha^j}$$

where Q_j are some differential operators, in particular $Q_0 = I$ and

$$Q_1 = \sum_{j,k=1}^n g^{\overline{j}k} \frac{\partial^2}{\partial z_k \partial \overline{z}_j},$$

 $g^{\overline{j}k}$ being the inverse matrix to $g_{j\overline{k}} := \frac{\partial^2 \Phi}{\partial z_j \partial \overline{z}_k}$.

PREVIOUS EXAMPLES: for $\Omega = \mathbf{B}^n$ (including $\Omega = \mathbf{D}$ for n = 1), choosing

$$\Phi(z) = \log \frac{1}{1 - \|z\|^2},$$

then Φ is strictly-PSH,

$$e^{-\Phi(z)} = 1 - \|z\|^2$$

is a defining function for \mathbf{B}^n , and

$$b_0(z) = \det\left[\frac{\partial^2 \Phi}{\partial z_j \partial \overline{z}_k}\right] = \frac{1}{(1 - \|z\|^2)^{n+1}}.$$

Thus we recover the formulas from the examples (b_0 explains the "shift in the power α "). Also, we see that $c_{\alpha} \sim \alpha^n$.

Works also for the Fock space: $\Omega = \mathbf{C}^n$, $\Phi(z) = ||z||^2$. Then $b_0(z) = \det[\delta_{jk}] = 1$, so there is no "shift" this time.

PREREQUISITES FOR THE PROOF OF THM B

(Will gloss over some technical details.)

• <u>Hartogs domains</u>: for a domain $\Omega \subset \mathbf{C}^n$ and a real-valued smooth function ϕ on it, it is

$$\widetilde{\Omega} := \{ (z,t) \in \Omega \times \mathbf{C} : |t|^2 < e^{-\phi(z)} \}.$$

- Pseudoconvex $\iff \phi$ PSH, Ω pscvx;
- strictly pseudoconvex and smoothly bounded if Ω strictly-pscvx, ϕ is strictly-PSH and $e^{-\phi} = r$ is a defining function for Ω .
- Then

$$\widetilde{r}(z,t) := r(z) - |t|^2 = e^{-\phi(z)} - |t|^2$$

is a defining function for $\widetilde{\Omega}$.

• <u>Hardy space</u>: Consider the compact manifold $X := \partial \widetilde{\Omega}$ equipped with the measure

$$d\sigma := \frac{J[\tilde{r}]}{\|\partial \tilde{r}\|} \, dS,$$

where dS stands for the surface measure on X and $J[\tilde{r}]$ for the Monge-Ampére determinant

$$J[\widetilde{r}] = -\det \begin{bmatrix} \widetilde{r} & \overline{\partial} \widetilde{r} \\ \partial \widetilde{r} & \partial \overline{\partial} \widetilde{r} \end{bmatrix} > 0.$$

Let $H^2(X) = H^2$ be the subspace in $L^2(X, d\sigma)$ of functions whose Poisson extension into $\widetilde{\Omega}$ is holomorphic.

Measure — natural (contact form).

• <u>Szegö kernel</u>: For each $(z,t) \in \widetilde{\Omega}$, the evaluation functional $f \mapsto f(z,t)$ on H^2 turns out to be continuous, hence is given by the scalar product with a certain element $k_{(z,t)} \in H^2$. The function

$$K_{\text{Szegö}}((x,t),(y,s)) := \langle k_{(y,s)}, k_{(x,t)} \rangle_{H^2}$$

on $\widetilde{\Omega} \times \widetilde{\Omega}$ is called the <u>Szegö kernel</u>.

<u>Note</u>: Introducing the coordinates

$$(z,t) = (z, e^{i\theta} e^{-\phi(z)/2}), \qquad z \in \Omega, \theta \in [0, 2\pi]$$

on X, we have (recall $r(z) = e^{-\phi(z)}$, $\tilde{r}(z,t) = r(z) - |t|^2$)

$$dS = \sqrt{r + \|\partial r\|^2} \, dz \, d\theta, \quad \|\partial \widetilde{r}\| = \sqrt{r + \|\partial r\|^2},$$
$$J[\widetilde{r}] = J[r] = e^{-(n+1)\phi} \det[\partial \overline{\partial}\phi],$$

so $d\sigma(z,t) = e^{-(n+1)\phi} \det[\partial \overline{\partial} \phi] dz d\theta$.

• <u>Ligocka's formula</u>: [Ligocka 1989] If f is holomorphic on $\widetilde{\Omega}$, then

$$f(z,t) = \sum_{j\geq 0} f_j(z) t^j$$

with f_j holomorphic on Ω . Also

$$f(z) t^j \perp g(z) t^k \qquad \forall f, g \text{ if } k \neq j$$

(orthogonality in H^2). Thus by a simple computation,

$$\begin{split} &\int_X |f(z,t)|^2 \, d\sigma(z,t) \\ &= \sum_{j\geq 0} \int_\Omega |f_j(z)|^2 \, \left(\int_0^{2\pi} |e^{i\theta} e^{-\phi(z)/2}|^{2j} \, d\theta \right) e^{-(n+1)\phi(z)} \det[\partial \overline{\partial} \phi(z)] \, dz \\ &= \sum_{j\geq 0} 2\pi \int_\Omega |f_j|^2 \, e^{-(j+n+1)\phi} \det[\partial \overline{\partial} \phi(z)] \, dz. \end{split}$$

It follows that $H^2(X) = \bigoplus_{j=1}^{\infty} L^2_{\text{hol}}(\Omega, 2\pi e^{-(j+n+1)\phi} \det[\partial \overline{\partial} \phi(z)] dz)$, and

$$K_{\text{Szegö}}((x,t),(y,s)) = \frac{1}{2\pi} \sum_{k=0}^{\infty} K_{e^{-(j+n+1)\phi} \det[\partial\overline{\partial}\phi(z)]}(x,y) (t\overline{s})^{j}.$$

- <u>Fefferman's theorem [1972]</u>: Let $D \subset \mathbb{C}^n$ be a bounded strictly pseudoconvex with smooth boundary, and $r \in \mathbb{C}^\infty$ defining function for D. Then there are functions $a, b \in \mathbb{C}^\infty(\mathbb{C}^n)$ such that
 - (a) for $x \in \partial D$, a(x) > 0 (an explicit formula is available);
 - (b) the Szegö kernel of D is given by the formula

$$K_{\text{Szegö}}(x,x) = \frac{a(x)}{r(x)^n} + b(x)\log r(x).$$

Extends also to $K_{\text{Szegö}}(x, y)$ with $x \neq y$:

$$K_{\text{Szegö}}(x,y) = \frac{a(x,y)}{r(x,y)^n} + b(x,y)\log r(x,y),$$

where a(x, y) etc. are almost-sesquiholomorphic extensions of a(x) = a(x, x) etc.

(c) $K_{\text{Szegö}}(x, y)$ is smooth on $\overline{\Omega \times \Omega} \setminus \mathcal{U}$, for any neighbourhood \mathcal{U} of the boundary diagonal $\{(x, x) : x \in \partial \Omega\}$.

• <u>Resolution of singularities</u>:

$$\sum_{k=0}^{\infty} k^{j} z^{k} = \begin{cases} j! (1-z)^{-j-1} + O((1-z)^{-j}) & \text{if } j \ge 0, \\ \frac{(-1)^{j}}{j!} (1-z)^{j} \log(1-z) + C^{j}(\overline{\mathbf{D}}) & \text{if } j < 0; \end{cases}$$
$$f(z) = \sum_{k=0}^{\infty} f_{k} z^{k} \in C^{j}(\overline{\mathbf{D}}) \implies f_{k} = O(k^{-j}) \quad \text{as } k \to +\infty.$$

Hence, if $f(z) = \sum_{k=0}^{\infty} f_k z^k$ is holomorphic in **D** and

$$f(z) = \frac{a(z)}{(1-z)^{n+1}} + b(z)\log(1-z), \quad a, b \in C^{\infty}(\overline{\mathbf{D}}),$$
$$= \sum_{j=1}^{n+1} \frac{\alpha_j}{(1-z)^j} + \sum_{j=0}^M \beta_j (1-z)^j \log(1-z) + C^M(\overline{\mathbf{D}})$$

(M = 0, 1, 2, ...), then

$$f_k \approx a_n k^n + a_{n-1} k^{n-1} + \dots + a_0 + \frac{a_{-1}}{k} + \dots,$$

for some constants a_n, a_{n-1}, \ldots , as $k \to \infty$.

SKETCH OF PROOF OF THEOREM B

Take the Hartogs domain

$$\widetilde{\Omega} = \{ (z,t) \in \Omega \times \mathbf{C} : |t|^2 < e^{-\Phi(z)} \}.$$

The hypotheses imply that $\widetilde{\Omega}$ is smoothly bounded, strictly pscvx, with

$$\widetilde{r}(z,t) := e^{-\Phi(z)} - |t|^2$$

a defining function.

Consider the Hardy space $H^2(X)$ on the boundary $X = \partial \widetilde{\Omega}$.
As mentioned above, by Ligocka's formula

(‡)
$$H^{2}(X) = \bigoplus_{k=n+1}^{\infty} L^{2}_{\text{hol}}(\Omega, e^{-k\Phi} \det[\partial \overline{\partial} \Phi])$$

(where $n = \dim \Omega$, so $n + 1 = \dim \widetilde{\Omega}$), and

$$K_{\text{Szegö}}((x,t),(y,s)) = \frac{1}{2\pi} \sum_{k=0}^{\infty} K_{k+n+1}(x,y) \ (s\bar{t})^k,$$

where

$$K_k(x,y) := \text{ the RK of } L^2_{\text{hol}}(\Omega, e^{-k\Phi} \det[\partial \overline{\partial} \Phi]).$$

Fefferman's theorem for the Szegö kernel:

$$K_{\text{Szegö}} = \frac{a}{\widetilde{r}^{n+1}} + b\log\widetilde{r}, \qquad a, b \in C^{\infty}(\overline{\widetilde{\Omega} \times \widetilde{\Omega}}).$$

Hence

$$\frac{1}{2\pi} \sum_{k=0}^{\infty} K_{k+n+1}(x,x) s^k = \widetilde{K}_{\text{Szegö}}((x,s),(x,1))$$

$$= \frac{a(x,s)}{(e^{-\Phi(x)} - s)^{n+1}} + b(x,s) \log(e^{-\Phi(x)} - s)$$

$$= \frac{a(x,s)e^{(n+1)\Phi(x)}}{(1 - se^{\Phi(x)})^{n+1}} + b(x,s) \log(1 - se^{\Phi(x)}) - b(x,s)\Phi(x)$$

$$= \frac{A(x,z)}{(1 - z)^{n+1}} + b(x,z) \log(1 - z),$$

with $A(x,z) = a(x, ze^{-\Phi(x)})e^{(n+1)\Phi(x)} - b(x, ze^{-\Phi(x)})\Phi(x)(1-z)^{n+1}$.

So for each x,

$$\sum_{k=0}^{\infty} e^{-k\Phi(x)} K_{k+n+1}(x,x) z^k = \frac{A(x,z)}{(1-z)^{n+1}} + b(x,z) \log(1-z).$$

Employing the resolution of singularities implies

$$K_k(x,x) = \frac{k^n}{\pi^n} e^{k\Phi(x)} \sum_{j=0}^{\infty} \frac{b_j(x)}{k^j},$$

proving the first part of Theorem B.

Can be extended also to $x \neq y$:

$$K_k(x,y) = \frac{k^n}{\pi^n} e^{k\Phi(x,y)} \sum_{j=0}^{\infty} \frac{b_j(x,y)}{k^j}$$

for (x, y) near the diagonal, where $\Phi(x, y)$, $b_j(x, y)$ are some almostsesquiholomorphic extensions of $\Phi(x) = \Phi(x, x)$ and $b_j(x) = b_j(x, x)$. The second part of Theorem B is proved by first showing that in the integral defining B_h

$$B_h f(x) = \int_{\Omega} f(y) \frac{|K_{\alpha}(x,y)|^2}{K_{\alpha}(x,x)} \ e^{-\alpha \Phi(y)} \ \det[\partial \overline{\partial} \Phi(y)] \ dy$$

the main contribution comes from a small neighbourhood of x.

In that neighbourhood, one replaces $K_{\alpha}(x, y)$ by its asymptotic expansion just proved. This reduces the problem to estimating integrals of the form

$$\int_{\text{neighbourhood of } x} F(y) \ e^{\alpha \left(\Phi(x,y) + \Phi(y,x) - \Phi(x) - \Phi(y) \right)} \ dy.$$

Finally, this kind of integrals is handled by the standard stationary-phase (Laplace, WJKB) method, yielding the result.

The first two terms can be evaluated explicitly, giving the desired outcomes $Q_0 = I$ and $Q_1 = \Delta$. \Box

BEREZIN-TOEPLITZ QUANTIZATION

For $f \in L^{\infty}(\Omega)$, let $T_f^{(m)}$ denote the Toeplitz operator with symbol f on

$$L^2_{\text{hol}}(\Omega, e^{-m\Phi} \det[\partial \overline{\partial} \Phi]).$$

Theorem BT. Let

- Ω be a smoothly bounded strictly pseudoconvex domain in \mathbb{C}^n ,
- $\Phi: \Omega \to \mathbf{R}$ a smooth strictly-PSH function, such that
- $e^{-\Phi} = r$, a defining function for Ω .

Then:

- (i) for any $f \in C^{\infty}(\overline{\Omega}), ||T_f^{(m)}|| \to ||f||_{\infty}$ as $m \to \infty$;
- (ii) there exist bilinear differential operators C_j (j = 0, 1, 2, ...) such that for any $f, g \in C^{\infty}(\overline{\Omega})$ and any integer M,

$$\left\| T_f^{(m)} T_g^{(m)} - \sum_{j=0}^M m^{-j} T_{C_j(f,g)}^{(m)} \right\| = O(m^{-M-1}) \quad \text{as } m \to \infty.$$

Furthermore, $C_0(f,g) = fg$, $C_1(f,g) - C_1(g,f) = \frac{i}{2\pi} \{f,g\}$. Hence, $f * g := \sum_{j=0}^{\infty} h^j C_j(f,g)$ defines a star-product on Ω . **Sketch of proof.** Consider again the Hartogs domain Ω

$$\widetilde{\Omega} = \{ (z,t) \in \Omega \times \mathbf{C} : |t|^2 < e^{-\Phi(z)} \}.$$

The hypothesis imply that $\widetilde{\Omega}$ is smoothly bounded, strictly pscvx, with a defining function $\widetilde{r}(z,t) := e^{-\Phi(z)} - |t|^2$.

As before, consider the <u>Szegö</u> kernel on the compact manifold $X = \partial \widetilde{\Omega}$ with respect to the measure

$$d\sigma := \frac{J[\widetilde{r}]}{\|\partial \widetilde{r}\|} \, dS$$

We have already seen that (Ligocka's formula)

 (\ddagger)

$$K_{\text{Szegö}}(x,t;y,s) = \frac{1}{2\pi} \sum_{k=0}^{\infty} K_{k+n+1}(x,y) \, (s\overline{t})^k,$$
$$H^2(X) = \bigoplus_{k=n+1}^{\infty} L^2_{\text{hol}}(\Omega, e^{-k\Phi} \det[\partial\overline{\partial}\Phi]).$$

In addition, it is also the case that

$$\bigoplus_{m=n+1}^{\infty} T_f^{(m)} = T_F, \quad \text{where } F(x,t) := f(x),$$

 T_F being the Toeplitz operator on $H^2(X)$ with symbol $F \in C^{\infty}(X)$:

$$T_F \psi := P_{\text{Szegö}}(F\psi),$$

where $P_{\text{Szegö}}$: $L^2(X, d\sigma) \to H^2(X)$ is the orthogonal projection.

Now following the ideas of Boutet de Monvel & Guillemin, we define Toeplitz operators T_Q by the same recipe also for <u>pseudodifferential</u> <u>operators</u> Q on X; i.e.

$$T_Q \psi := P_{\text{Szegö}} Q \psi.$$

(For Q the operator of multiplication by a function F on X, one recovers the Toeplitz operators T_F of the previous definition as a particular case.) The order $\operatorname{ord}(T_Q)$ and the symbol $\sigma(T_Q)$ of T_Q are defined as the order of Q and the restriction of the principal symbol $\sigma(Q)$ of Q to the symplectic submanifold

$$\Sigma := \{ (x,\xi) : \xi = t(\overline{\partial}r - \partial r)_x, t > 0 \}$$

of the cotangent bundle of X, respectively. It can be shown that these two definitions are unambiguous, and

- (P1) the generalized Toeplitz operators form an algebra under composition (i.e. $\forall Q_1, Q_2 \exists Q_3 : T_{Q_1}T_{Q_2} = T_{Q_3}$);
- (P2) $\operatorname{ord}(T_1T_2) = \operatorname{ord}(T_1) + \operatorname{ord}(T_2); \ \sigma(T_1T_2) = \sigma(T_1)\sigma(T_2);$
- (P3) $\sigma([T_1, T_2]) = \{\sigma(T_1), \sigma(T_2)\}_{\Sigma};$
- (P4) if $\operatorname{ord}(T) = 0$, then T is a bounded operator on H^2 ; and
- (P5) if $\operatorname{ord}(T_1) = \operatorname{ord}(T_2) = k$ and $\sigma(T_1) = \sigma(T_2)$, then $\operatorname{ord}(T_1 T_2) \le k 1$.

(P6) for $F \in C^{\infty}(X)$ and $(x,\xi) \in \Sigma$, $\sigma(T_F)(x,\xi) = F(x)$.

Let ${\mathcal T}$ be the subalgebra of all generalized Toeplitz operators which commute with the circle action on H^2

$$U_{\theta}: f(z, w) \mapsto f(z, e^{i\theta}w), \qquad (z, w) \in X, \ \theta \in \mathbf{R}.$$

Clearly, the operators T_F with F(x,t) = f(x), for some f on Ω (i.e. F constant along fibers), belong to \mathcal{T} .

Let $D: H^2(X) \to H^2(X)$ be the infinitesimal generator of the semigroup U_{θ} . Then D acts as multiplication by im on the *m*-th summand in (‡), for each m:

$$D = \bigoplus_{m} imI;$$

and also

$$D = T_{\partial/\partial\theta}$$

is a generalized Toeplitz operator of order 1.

Using (P1)–(P6) it can be shown that if $T \in \mathcal{T}$ is of order 0, then

$$T = T_F + D^{-1}R$$

for some (uniquely determined) $F \in C^{\infty}(X)$ which is constant along the fibers (hence, descends to a function on Ω), and $R \in \mathcal{T}$ of order 0. Repeated application of this formula reveals that, for each $k \geq 0$,

$$T = \sum_{j=0}^{k} D^{-j} T_{F_j} + D^{-k-1} R_k,$$

with $F_j(x,t) = f_j(x)$ for some $f_j \in C^{\infty}(\overline{\Omega})$ and $R_k \in \mathcal{T}$ of order 0. Invoking the fact that zeroth order operators are bounded, it follows that

$$D^{k+1}\left(T - \sum_{j=0}^{k} D^{-j}T_{F_j}\right) = R_k$$

is a bounded operator on H^2 .

In view of the decomposition $T_F = \bigoplus_m T_f^{(m)}$, this means that

$$\left\|T\right\|_{L^2(\Omega, e^{-m\Phi}\det[\partial\overline{\partial}\Phi])} - \sum_{j=0}^k m^{-j}T_{f_j}^{(m)}\right\| = O(m^{-k-1}).$$

Taking for T the product $T_F T_G$, with F(x,t) = f(x), G(x,t) = g(x)for some $f,g \in C^{\infty}(\overline{\Omega})$, & setting $C_j(f,g) := f_j$, we obtain the desired asymptotic expansion for $T_f^{(m)} T_g^{(m)}$.

Finally, the assertions concerning C_0 and C_1 follow from the above properties (P2) and (P3) of the symbol. \Box

[Coburn 1994] — Ψ DO's; [Klimek-Lesn] [Bwick-Lesn-Upm] — bare-hands.

CONCLUDING REMARKS

- surveys: [Schlichenmaier arXiv 2010], [Ali-E RMP 2005]
- $\alpha = 1/h \to +\infty$ noninteger
- generalizations of Fefferman:
 - weakly pscvx difficult!, unsolved (h-regular [Kamimoto])
 - weighted ok for r^{α} , $r^{\alpha} + r^{\alpha+1} \log r$; [Blaschke]
 - metric bad at the boundary $e^{-\Phi} \neq r$ (Cheng-Yau): partly
- generalizations of BdM-G: ([Bravermann])
- balanced metrics: $K_{\alpha}(x,x) = (\frac{\alpha}{\pi})^n \frac{e^{\alpha \Phi(x)}}{\det[\partial \overline{\partial} \Phi(x)]}$ [Donaldson]
- range of the Berezin symbol: [Coburn] [Xia] [Bommier-Hato] (curvature conditions)
- asymptotic of harmonic Bergman kernels: \mathbf{R}^n_+ [Jahn], \mathbf{B}^n [Blaschke], radial/horizontal [Englis 2015]

BEREZIN-TOEPLITZ QUANTIZATION AND NONCOMMUTATIVE GEOMETRY

(joint with B. Iochum & K. Falk, CPT, Marseille)

BERGMAN SPACE

 Ω a domain in ${\bf C}^n$

 $d\boldsymbol{z}$ the Lebesgue measure

 $L^2(\Omega) \supset L^2_{\text{hol}}(\Omega)$ the <u>Bergman space</u>

 $K(x,y) := K_y(x) = \overline{K_x(y)}$ the <u>reproducing kernel</u> for $L^2_{\text{hol}}(\Omega)$

TOEPLITZ OPERATORS

<u>Toeplitz operator</u> with symbol $\phi \in L^{\infty}(\Omega)$:

$$\mathbf{T}_{\phi}: L^2_{\text{hol}} \to L^2_{\text{hol}}, \qquad \mathbf{T}_{\phi}f = P(\phi f)$$

where $P: L^2 \to L^2_{hol}$ is the orthogonal projection (<u>Bergman projection</u>). Explicitly:

$$\mathbf{T}_{\phi}f(x) = \int_{\Omega} f(y)\phi(y)K(x,y)\,dy.$$

PROPERTIES:

- $f \mapsto \mathbf{T}_f$ linear • $\mathbf{T}_f^* = \mathbf{T}_{\overline{f}}$ • $\mathbf{T}_1 = I$
- $\|\mathbf{T}_f\| \leq \|f\|_{\infty}.$

Weighted variants.

SPECTRAL TRIPLES

[Connes 1990–1995, Noncommutative geometry]

X a topological space \longleftrightarrow the algebra C(X)

Recovers X as $\operatorname{Spec} C(X)$.

Recovering Riemmannian metric etc.: spectral triples.

Definition. Spectral triple $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ =following data:

- a unital algebra \mathcal{A} with involution,
- a faithful representation π of \mathcal{A} on a Hilbert space \mathcal{H}
- a selfadjoint operator \mathcal{D} on \mathcal{H} with compact resolvent such that the commutator $[\mathcal{D}, \pi(A)]$ is bounded for any $a \in \mathcal{A}$. (more precisely: extends to a bounded operator)

Example.
$$M$$
 a spin^c-manifold,
 $\mathcal{A} = C^{\infty}(M),$
 $\mathcal{H} = L^2(M, S),$ S =spinor bundle,
 $\mathcal{D} = D,$ the Dirac operator.

Connes' Reconstruction Thm. All commutative spectral triples (with certain extra structure) arise (essentially) in this way.

$$M = \operatorname{Spec}(\overline{\mathcal{A}}^{\|\cdot\|})$$

dist_M(x, y) = sup{|a(x) - a(y)| : ||[D, a]|| \le 1}
dim M = sup{d : |D|^{-1/d} is trace class}.

<u>Aim of this talk:</u> see if can get interesting examples of spectral triples using Toeplitz operators and Berezin-Toeplitz quantization.

(Work in progress.)

Will review some stuff first.

Scenario

 Ω a bounded domain in ${\bf C}^n$ with smooth (C^∞) boundary (manifolds — later)

r a (positively-signed) defining function for Ω :

$$r \in C^{\infty}(\overline{\Omega}), \qquad r > 0 \text{ on } \Omega,$$

 $r = 0, \|\nabla r\| > 0 \text{ on } \partial\Omega.$

Domain strictly pseudoconvex if r can be chosen so that

$$\Big[\frac{\partial^2 r}{\partial z_j \partial \overline{z}_k}\Big]_{j,k=1}^n < 0 \quad \text{on } \overline{\Omega}.$$

Guarantees that the one-form

$$\eta := \operatorname{Im} \partial r |_{\partial \Omega} = \frac{\overline{\partial} r - \partial r}{2i} \Big|_{\partial \Omega}$$

is a contact form, i.e.

$$\eta \wedge (d\eta)^{n-1}$$

is a nonvanishing volume element on the boundary $\partial \Omega$.

BOUTET DE MONVEL'S CALCULUS

 ${\bf K}$ the Poisson extension operator:

(*) $\mathbf{K}: L^2(\partial \Omega) \to L^2(\Omega), \qquad \Delta \mathbf{K} u = 0 \text{ on } \Omega, \qquad \mathbf{K} u|_{\partial \Omega} = u.$ Bounded $L^2 \to L^2$: in fact

$$\mathbf{K}: W^s(\partial \Omega) \xrightarrow{\sim} W^{s+\frac{1}{2}}_{\mathrm{harm}}(\Omega), \qquad \forall s \in \mathbf{R}.$$

Adjoint $\mathbf{K}^* : L^2(\Omega) \to L^2(\partial \Omega)$. The composition

$$(^{**}) \qquad \qquad \Lambda := \mathbf{K}^* \mathbf{K}$$

is a (classical) Ψ DO on $\partial\Omega$ of order -1, with $\sigma(\Lambda)(x,\xi) = 1/(2|\xi|)$. Comparing (*) and (**), we see that

$$\Lambda^{-1}\mathbf{K}^* =: \gamma$$

is the operator of taking the boundary values of harmonic functions. Bijection $W^{s+\frac{1}{2}}_{harm}(\Omega) \to W^s(\partial\Omega), \forall s \in \mathbf{R}.$ <u>Boutet de Monvel calculus</u>: operators of the form

 $\Lambda_w := \mathbf{K}^* w \mathbf{K}, \qquad w \text{ a function on } \Omega.$

If w is of the form

$$w = r^{\alpha}g, \qquad \alpha > -1, \ g \in C^{\infty}(\overline{\Omega}),$$

then Λ_w is a ΨDO on $\partial \Omega$ of order $-\alpha - 1$, with

$$\sigma(\Lambda_w)(x,\xi) = \frac{\Gamma(\alpha+1)g(x)}{2|\xi|^{\alpha+1}} \|\eta_x\|^{\alpha}.$$

(All this holds in fact for domains in \mathbb{R}^n not only \mathbb{C}^n .)

HARDY SPACE TOEPLITZ OPERATORS

Hardy space:

 $H^{2}(\partial \Omega) := \{ u \in L^{2}(\partial \Omega) : \mathbf{K}u \text{ is holomorphic on } \Omega \}.$

(Here $L^2(\partial\Omega)$ is taken with respect to $\eta \wedge (d\eta)^{n-1}$, but we could in principle choose any other surface element mutually absolutely continuous with respect to it.)

Szegö projection:

$$S: L^2(\partial \Omega) \to H^2$$
 orthogonal.

<u>Toeplitz operator</u>: for $f \in C^{\infty}(\partial \Omega)$, the operator on H^2 defined by

 $T_f u = S(f u).$

Clearly, $f \mapsto T_f$ is linear, $T_f^* = T_{\overline{f}}$, $T_1 = I$ (the identity operator) and $||T_f|| \leq ||f||_{\infty}$.

GENERALIZED TOEPLITZ OPERATORS

For P a Ψ DO on $\partial\Omega$, the operator T_P on H^2 defined by

 $T_P = SP|_{H^2}.$

Alternatively, can be viewed as

$$T_P = SPS$$

on all of $L^2(\partial\Omega)$ (by prolonging by zero).

For P the operator of multiplication by a function $f \in C^{\infty}(\partial \Omega)$, recovers $T_P = T_f$ we had before.

<u>Symbol calculus of GTO's</u>: it can happen that $T_P = T_Q$, but the restriction of $\sigma(P)$ to the half-line bundle

$$\Sigma := \{ (x, t\eta_x) \in T^* \partial \Omega : t > 0 \}$$

is determined uniquely. \implies One can define unambiguously the order and the principal symbol of a GTO by

$$\operatorname{ord}(T_P) := \inf \{ \operatorname{ord}(Q) : T_Q = T_P \},\$$

$$\sigma(T_P) := \sigma(Q)|_{\Sigma} \quad \text{for any } Q \text{ with } T_Q = T_P \text{ and } \operatorname{ord}(Q) = \operatorname{ord}(T_P).$$

(The order can be $-\infty$; in that case the symbol is not defined.)

$$\operatorname{ord}(T_P T_Q) = \operatorname{ord}(T_P) + \operatorname{ord}(T_Q),$$
$$\sigma(T_P T_Q) = \sigma(T_P)\sigma(T_Q),$$
$$\sigma([T_P, T_Q]) = \{\sigma(T_P), \sigma(T_Q)\}_{\Sigma}.$$

Perhaps the most important property of GTOs is that for any T_P , there exists a Q such that

$$T_P = T_Q$$
 and $QS = SQ$.

An immediate consequence is that GTOs form an algebra: for any P, Q, $T_P T_Q = T_R$ for some R.

The operators T_P have the standard mapping properties on the scale of holomorphic Sobolev spaces

 $W^{s}_{\text{hol}}(\partial\Omega) := \{ u \in W^{s}(\partial\Omega) : \mathbf{K}u \text{ is holomorphic on } \Omega \},\$

namely,

$$T_P: W^s_{\text{hol}}(\partial\Omega) \to W^{s-m}_{\text{hol}}(\partial\Omega), \qquad m = \text{ord}(T_P).$$

In particular, T_P is bounded on any $W^s_{\text{hol}}(\partial \Omega)$ if $m \leq 0$, and compact if m < 0.

A GTO is elliptic if $\sigma(T_P)$ does not vanish.

In that case, T_P has a parametrix, i.e. there exists a GTO T_Q of order -m such that $T_P T_Q - I$ and $T_Q T_P - I$ are smoothing operators (i.e. of order $-\infty$).

In particular, if T_P is elliptic of order $m \neq 0$ with $\sigma(T_P) > 0$ and is positive and selfadjoint as an operator on H^2 , then the inverse T_P^{-1} is also a GTO.

For
$$f = \mathbf{K}u \in L^2_{\text{hol}}(\Omega, w)$$
:
 $\|\mathbf{K}u\|^2_w = \langle w\mathbf{K}u, \mathbf{K}u \rangle_{L^2(\Omega)} = \langle \mathbf{K}^* w\mathbf{K}u, u \rangle_{L^2(\partial\Omega)}$
(*)
 $= \langle \Lambda_w u, u \rangle_{L^2(\partial\Omega)}$
 $= \langle T_{\Lambda_w} u, u \rangle_{H^2},$

because u = Su for **K**u holomorphic.

For $f \in C^{\infty}(\overline{\Omega})$ and $u, v \in H^2$, similarly as above

$$\langle \mathbf{T}_{f} \mathbf{K} u, \mathbf{K} v \rangle_{w} = \langle f \mathbf{K} u, \mathbf{K} v \rangle_{w} = \langle w f \mathbf{K} u, \mathbf{K} v \rangle_{L^{2}(\Omega)}$$
$$= \langle \Lambda_{wf} u, v \rangle_{L^{2}(\partial\Omega)} = \langle T_{\Lambda_{wf}} u, v \rangle_{H^{2}}$$
$$= \langle \mathbf{K} T_{\Lambda_{w}}^{-1} T_{\Lambda_{wf}} u, \mathbf{K} v \rangle_{w}$$

by (*). Thus

$$\gamma \mathbf{T}_f \mathbf{K} = T_{\Lambda_w}^{-1} T_{\Lambda_{wf}}.$$

For $w = r^{\alpha}g$, $g \in C^{\infty}(\overline{\Omega})$, and f vanishing on $\partial\Omega$ to order k, the rhs is a GTO of order -k.

EXAMPLES OF SPECTRAL TRIPLES: BERGMAN SPACES

Let w be a positive weight on Ω of the form

$$w = r^{\alpha}g, \qquad g \in C^{\infty}(\overline{\Omega}), \ \alpha > -1, \ g > 0 \text{ on } \partial\Omega.$$

Claim. Let

- \mathcal{H} be the Hilbert space $L^2_{hol}(\Omega, w)$;
- \mathcal{A} be the algebra (no closures taken) generated by the Toeplitz operators \mathbf{T}_f , $f \in C^{\infty}(\overline{\Omega})$, on $L^2_{\text{hol}}(\Omega, w)$; - \mathcal{D} the operator $\mathcal{D} = \mathbf{T}_r^{-1}$ on $L^2_{\text{hol}}(\Omega, w)$.

Then $(\mathcal{A}, \mathcal{H}, \mathcal{D})$, with π the identity representation, is a spectral triple. Here we note that

$$\langle \mathbf{T}_r f, f \rangle_w = \int_{\Omega} r |f|^2 w > 0$$

for any $f \neq 0$, so \mathbf{T}_r is a (bounded) positive selfadjoint operator on $L^2_{\text{hol}}(\Omega, w)$; hence it has a densely defined positive selfadjoint inverse \mathbf{T}_r^{-1} . Proof.

– a unital algebra \mathcal{A} with involution:

Clear.
$$(\mathbf{T_1} = I, \, \mathbf{T}_f^* = \mathbf{T}_{\overline{f}})$$

- a faithful representation π of \mathcal{A} on a Hilbert space \mathcal{H} : Clear.
- a selfadjoint operator \mathcal{D} on \mathcal{H} with compact resolvent such that the commutator $[\mathcal{D}, \pi(A)]$ is bounded for any $a \in \mathcal{A}$.

 $\mathcal{D}^{-1} = \mathbf{T}_r$ is compact, since $\gamma \mathbf{T}_r \mathbf{K} = T_{\Lambda_w}^{-1} T_{\Lambda_{rw}}$ is a GTO of order $\alpha + 1 - (\alpha + 2) = -1$, hence compact.

Boundedness of $[\mathbf{T}_r^{-1}, A]$ for $A \in \mathcal{A}$: enough to check for $A = T_f$; but using $\gamma \mathbf{T}_f \mathbf{K} = T_{\Lambda_w}^{-1} T_{\Lambda_{wf}}$,

$$[\mathbf{T}_r^{-1}, \mathbf{T}_f] = \mathbf{K}[T_{\Lambda_{rw}}^{-1} T_{\Lambda_w}, T_{\Lambda_w}^{-1} T_{\Lambda_{wf}}] \gamma = \mathbf{K}[GTO_1, GTO_0] \gamma.$$

The commutator on the rhs is a GTO of order 0, hence bounded.

Principal symbol — can be expressed using Reeb vector field.

EXAMPLES OF SPECTRAL TRIPLES: HARDY SPACES

Claim. Let

- \mathcal{H} be the Hardy space H^2 on $\partial\Omega$;
- \mathcal{A} be the algebra (no closures taken) generated by T_f , $f \in C^{\infty}(\partial \Omega)$, on H^2 ;
- \mathcal{D} be the operator $\mathcal{D} = T_P^{-1}$ on H^2 , where P is a positive selfadjoint ΨDO on $\partial \Omega$ of order -1.

Then $(\mathcal{A}, \mathcal{H}, \mathcal{D})$, with π the identity representation, is a spectral triple.

An example of P in the last item is e.g. $P = \Lambda = \mathbf{K}^* \mathbf{K}$: indeed, $\langle \Lambda u, u \rangle = \|\mathbf{K}u\|^2 > 0$ for $u \neq 0$ since \mathbf{K} is injective.

Proof. Analogous. \Box

In fact, could take $\mathcal{A} = GTOs$ of order 0.

Generalization: to arbitrary contact manifolds admitting a "Toeplitz structure".

EXAMPLES OF SPECTRAL TRIPLES: BEREZIN-TOEPLITZ QUANTIZATION

From now on, we fix a sequence of real numbers $\alpha > -1$ tending to $+\infty$, e.g. $\alpha = 0, 1, 2, \ldots$

Assume that $\log \frac{1}{r}$ is strictly plurisubharmonic on Ω (defining functions r with this property exist in abundance due to the strict pseudoconvexity of Ω). So that

$$g_{j\overline{k}}(z) := \frac{\partial^2}{\partial z_j \partial \overline{z}_k} \log \frac{1}{r(z)}$$

defines a Kähler metric on Ω ; and let

$$g = r^{n+1} \det[g_{j\overline{k}}] = -\det \begin{bmatrix} r & \partial r \\ \overline{\partial}r & \partial\overline{\partial}r \end{bmatrix}.$$

Consider the weighted Bergman spaces $L^2_{\text{hol}}(\Omega, r^{\alpha}g)$. Let

$$\mathbf{H} = \bigoplus_{\alpha} L^2_{\mathrm{hol}}(\Omega, r^{\alpha}g)$$

and let π_m stand for the orthogonal onto the summand $\alpha = m$.

For $f \in C^{\infty}(\overline{\Omega})$, we then have the orthogonal sums

$$\mathbf{T}_{f}^{\oplus} := \bigoplus_{\alpha} (\mathbf{T}_{f} \text{ on } L^{2}_{\mathrm{hol}}(\Omega, r^{\alpha}g))$$

of the Toeplitz operators \mathbf{T}_f , acting on \mathbf{H} . Clearly each \mathbf{T}_f^{\oplus} is again bounded with $\|\mathbf{T}_f^{\oplus}\| \leq \|f\|_{\infty}$, and $[\mathbf{T}_f^{\oplus}, \pi_m] = 0$ for all m. Let $\mathcal{B} = \{M \text{ bounded linear on } \mathbf{H} : [M, \pi_m] = 0 \text{ for all } m \text{ and}$

(*)
$$M \approx \sum_{m=0}^{\infty} \alpha^{-m} \mathbf{T}_{f_m}^{\oplus}$$
 as $m \to +\infty$

with some $f_m \in C^{\infty}(\overline{\Omega})$ (depending on M)}. Here " \approx " means that

$$\left\|\pi_j \left(M - \sum_{m=0}^{k-1} \alpha^{-m} \mathbf{T}_{f_m}^{\oplus}\right) \pi_j\right\| = O(j^{-k}) \quad \text{as } j \to +\infty$$

for any k = 0, 1, 2, ...

Berezin-Toeplitz quantization \implies finite products of \mathbf{T}_{f}^{\oplus} belong to \mathcal{B} . More specifically,

$$\mathbf{T}_{f}^{\oplus}\mathbf{T}_{g}^{\oplus} \approx \sum_{m=0}^{\infty} \alpha^{-m} \mathbf{T}_{C_{m}(f,g)}^{\oplus}$$

where

$$\sum_{j=0}^{\infty} h^j C_j(f,g) =: f \star g$$

defines a star product on $(\Omega, g_{i\overline{k}})$. Symbolically, we can write

$$\mathbf{T}_{f}^{\oplus}\mathbf{T}_{g}^{\oplus}=\mathbf{T}_{f\star g}^{\oplus}.$$

Another result is, incidentally, that

$$\|\pi_m \mathbf{T}_f^{\oplus} \pi_m\| \to \|f\|_{\infty} \quad \text{as } m \to +\infty,$$

implying, in particular, that for a given $M \in \mathcal{B}$ the sequence $\{f_m\}$ in (*) is determined uniquely.

Another depiction: consider the "unit disc bundle"

$$\widetilde{\Omega} := \{ (z,t) \in \Omega \times \mathbf{C} : |t|^2 < r(z) \}.$$

r defining function $\implies \widetilde{\Omega}$ smoothly bounded; Ω is strictly pseudoconvex, $\log \frac{1}{r}$ is strictly plurisubharmonic $\implies \widetilde{\Omega}$ is strictly pseudoconvex. Thus we have the Hardy space $H^2(\widetilde{\Omega}) =: \widetilde{H}$ of $\widetilde{\Omega}$ and the GTOs \widetilde{T}_P there, whose symbols P are now Ψ DOs on $\partial \widetilde{\Omega}$.

A function in H has the Taylor expansion in the fiber variable

$$f(z,t) = \sum_{m=0}^{\infty} f_m(z)t^m.$$

Denote by \widetilde{H}_m (m = 0, 1, 2, ...) the subspace in \widetilde{H} of functions with $f_j = 0 \ \forall j \neq m$.

Then the correspondence

$$f_m(z)t^m \longleftrightarrow f_m(z)$$

is an isometry (up to a constant factor) of \widetilde{H}_m onto $L^2_{\text{hol}}(\Omega, r^{m-n-1}g)$. Thus

$$\widetilde{H} = \bigoplus_{m=0}^{\infty} \widetilde{H}_{m+n+1} \cong \bigoplus_{m=0}^{\infty} L^2_{\text{hol}}(\Omega, r^m g) = \mathbf{H}.$$

Furthermore, viewing a function $f \in C^{\infty}(\Omega)$ also as the function f(z,t) := f(z) on $\partial \widetilde{\Omega}$ (i.e. identifying f with its pullback via the projection map), one has, under the above isomorphism,

$$\widetilde{T}_f \cong \bigoplus_m (\mathbf{T}_f \text{ on } L^2_{\text{hol}}(\Omega, r^m g)) = \mathbf{T}_f^{\oplus}.$$
Finally, let $\widetilde{\mathbf{K}}$ be the Poisson operator for $\widetilde{\Omega}$, and as before set

 $\widetilde{\Lambda} := \widetilde{\mathbf{K}}^* \widetilde{\mathbf{K}}.$

Thus $\widetilde{\Lambda}$ is a Ψ DO on $\partial \widetilde{\Omega}$ of order -1, and a positive selfadjoint compact operator on \widetilde{H} .

Since the fiber rotations $(z,t) \mapsto (z,e^{i\theta}t), \theta \in \mathbf{R}$, preserve holomorphy and harmonicity of functions, both $\widetilde{\mathbf{K}}$, $\widetilde{\Lambda}$ and the Szegö projection \widetilde{S} : $L^2(\partial \widetilde{\Omega}) \to \widetilde{H}$ must commute with them.

The GTOs $\widetilde{T}_{\widetilde{\Lambda}}$ on \widetilde{H} therefore likewise commutes with these rotations, and hence commutes also with the projections in \widetilde{H} onto \widetilde{H}_m , i.e. is diagonalized by the decomposition $\widetilde{H} = \bigoplus_m \widetilde{H}_m$.

Denote by $L = \bigoplus_m L_m$ the operator corresponding to $\widetilde{T}_{\widetilde{\Lambda}}$ under the isomorphism $\widetilde{H} \cong \mathbf{H} = \bigoplus_m L^2_{\text{hol}}(\Omega, r^m g).$

Claim. Let

- \mathcal{H} be the Hilbert space \mathbf{H} ;
- \mathcal{A} be the algebra (no closures taken) generated by \mathbf{T}_{f}^{\oplus} , $f \in C^{\infty}(\overline{\Omega})$, on \mathbf{H} ;
- \mathcal{D} be the operator $\mathcal{D} = L^{-1}$.

Then $(\mathcal{A}, \mathcal{H}, \mathcal{D})$, with π the identity representation, is a spectral triple.

Proof. "Direct sum" of the previous, using the above formalism. \Box

EXAMPLES OF SPECTRAL TRIPLES: STAR PRODUCTS

Can alternatively define \mathcal{A} in the last example as an algebra of formal power series.

More specifically, let κ be the linear map from $\mathcal B$ into the ring of formal power series

$$\mathcal{N} = C^{\infty}(\overline{\Omega})[[h]]$$

given by

(*)
$$\kappa: M \longmapsto \sum_{m=0}^{\infty} h^m f_m(z)$$

if

$$M \approx \sum_{m=0}^{\infty} \alpha^{-m} \mathbf{T}_{f_m}^{\oplus} \quad \text{as } m \to +\infty.$$

Note: κ is well defined and, owing to the B-T quantization, extending as usual \star from functions to all of \mathcal{N} by $\mathbf{C}[[h]]$ -linearity,

$$\kappa(MN) = \kappa(M) \star \kappa(N),$$

i.e. $\kappa : (\mathcal{B}, \circ) \to (\mathcal{N}, \star)$ is an algebra homomorphism.

Claim. Let

- \mathcal{H} be the space \mathbf{H} ;
- \mathcal{A} be the subalgebra (no closures) of (\mathcal{N}, \star) generated by $\kappa(\mathbf{T}_f^{\oplus})$, $f \in C^{\infty}(\overline{\Omega})$, and h;
- $-\pi$ be the representation

$$\pi \Big(\sum_{m=0}^{\infty} h^m f_m\Big) = \sum_m \alpha^{-m} \mathbf{T}_{f_m}^{\oplus}$$

which is well-defined from \mathcal{A} into \mathcal{B} ; $-\mathcal{D}$ be the operator $\mathcal{D} = \bigoplus_m L_m^{-1}$ on \mathbf{H} .

Then $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ is a spectral triple.

Proof. In view of the preceding result, the only thing we need to check is that π is well-defined (i.e. the right-hand side in (*) converges and defines a bounded operator in \mathcal{B}) and faithful. The former is immediate from the fact that \mathcal{A} consists of finite sums of finite products of $\kappa(\mathbf{T}_{f}^{\oplus})$, while $\kappa : (\mathcal{B}, \circ) \to (\mathcal{N}, \star)$ is an algebra homomorphism and $\pi(\kappa(\mathbf{T}_{f}^{\oplus})) = \mathbf{T}_{f}^{\oplus}$ by the definitions. For the faithfulness, note that $\kappa \circ \pi = \text{id on } \mathcal{A}$; thus $\pi(\mathcal{A}) = 0$ implies $\mathcal{A} = \kappa(\pi(\mathcal{A})) = 0$. \Box

... WHAT TO DO YET

(1) non-positive (natural/canonical) \mathcal{D} ? (For Ω =ball — Howe correspondence & Bargmann transform. Not quite right.)

("Phase" — conformal structure.)

(2) (In fact: $\mathcal{D}^{-1} \notin \mathcal{A}$ desirable.)

- (3) spectral dimension: n for Bergman/Hardy, n+1 for star product Geodesic distance? (Was $\sup\{|a(x) - a(y)|, \|[\mathcal{D}, A]\| \le 1\}$.) ???
- (4) manifolds not domains?

Bergman — boundary needed Hardy — any with "contact structure" star products — unit disc bundle, ok for polarized compact

(5) Utilization in physics?

REFERENCES:

• M. Engliš, B. Iochum, K. Falk: Spectral triples and Toeplitz operators, J. Noncomm. Geom. 9 (2015), 1041-1076.

THANKS FOR YOUR ATTENTION!