
Liouville Theory and Index Theorem on Universal Teichmüller Space

In this talk, we are going to present our work on the universal Teichmüller space. The univer-
sal Teichmüller space has a group structure. There is a Hilbert space structure on the universal
Teichmüller space which carries a unique right invariant Kähler metric called the Weil-Petersson
metric. We generalized the definition of classical Liouville action on finite dimensional deformation
spaces to the universal Teichmüller space and proved that it is a potential of the Weil-Petersson
metric. We also consider the period mapping defined by a Grunsky operator B1, and show that
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which can be considered as a generalization of the holomorphic factorization theorem to the universal
Teichmüller space. In order to generalize this to n-differentials, we define natural period matrices of
holomorphic n-forms Nn for any domain associated to a point on the universal Teichmüller spaces
using Bers integral operator, and show that
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This is what we call the universal index theorem. Due to some technicalities, we actually only prove
this identity on the smooth subspace Möb(S1)\Diff+(S

1) of the universal Teichmüller space.
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