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m Motivation and background discussion on Noncommutative

Quantum Mechanics (NCQM).

= Introduction to the nilpotent Lie group Gyc and its unitary
dual Gyc.

m A class of unitarily equivalent representations of Gy and
their relation to 1-parameter classes of gauge potentials.

m An explicit construction of noncommutative 4-tori using the
unitary dual of Gyc.
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What is noncommutative quantum mechanics?

Noncommutative quantum mechanics, abbreviated as NCQM in
the sequel, is the quantum mechanics in noncommutative
configuration space.
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What is noncommutative quantum mechanics?

Noncommutative quantum mechanics, abbreviated as NCQM in
the sequel, is the quantum mechanics in noncommutative
configuration space.

Focus on a nonrelativistic quantum mechanical system of
2-degrees of freedom. Here, we have 2 positions and 2 momenta
coordinates denoted by g1, g2, p1 and ps. Denote an element of
the 4-dimensional Abelian group of translations of R* as
(¢1,42,p1,p2). The Weyl-Heisenberg group is just a nontrivial
central extension of this Abelian group, a generic element of which
is denoted by (6, q1,q2,p1,p2). The Weyl-Heisenberg Lie algebra,
on the other hand, admits a realization of self adjoint differential
operators on the smooth vectors of L?(R?), the commutation
relations for which read as follows:

[Q1, P1] = [Qa, Bo] = il (1)
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e Here, Qi’s and P;’s are the self-adjoint representations of the Lie
algebra basis elements @);’s and P;’s where ¢ = 1,2. Note that the
noncentral basis elements ();’s and P;’s correspond to the group
parameters p;’s and ¢;’s, respectively, for ¢ = 1,2. Also, I stands
for the identity operator on L?(R?) and the central basis element
O of the algebra is mapped to scalar multiple of 1.
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e Here, Qi’s and P;’s are the self-adjoint representations of the Lie
algebra basis elements @);’s and P;’s where ¢ = 1,2. Note that the
noncentral basis elements ();’s and P;’s correspond to the group
parameters p;’s and ¢;’s, respectively, for ¢ = 1,2. Also, I stands
for the identity operator on L?(R?) and the central basis element
O of the algebra is mapped to scalar multiple of 1.

e In contrast to the well-known and much studied representation
theory of the Weyl-Heisenberg group, if one considers 3
inequivalent local exponents (see [?]) of the Abelian group of
translations in R* and extend it centrally using them to obtain a
7-dimensional real Lie group denoted by Gy in the sequel.
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e Here, Qi’s and P;’s are the self-adjoint representations of the Lie
algebra basis elements @);’s and P;’s where ¢ = 1,2. Note that the
noncentral basis elements ();’s and P;’s correspond to the group
parameters p;’s and ¢;’s, respectively, for ¢ = 1,2. Also, I stands
for the identity operator on L?(R?) and the central basis element
O of the algebra is mapped to scalar multiple of 1.

e In contrast to the well-known and much studied representation
theory of the Weyl-Heisenberg group, if one considers 3
inequivalent local exponents (see [?]) of the Abelian group of
translations in R* and extend it centrally using them to obtain a
7-dimensional real Lie group denoted by Gy in the sequel.

e The aim of introducing two other inequivalent local exponents
besides the one used to arrive at the Weyl-Heisenberg group was
to incorporate position-position and momentum-momentum
noncommutativity as employed in the formulation of
noncommutative quantum mechanics (NCQM).



an explicit
construction

of noncom-

A foreword

Mechanics

of unitary

Representation of the corresponding Lie algebra gy reads:

[Q1, Pr] = [Qa, P = i,

- I (2)

(@1, Q2] = iV, and [P, P»] = iBL.
Here, the central generators associated with the group parameters
0, ¢ and 1) are all mapped to scalar multiples of the identity
operator I on L?(IR?).

30



A quick recap of group extension

Given a connected and simply connected Lie group G, the local
exponents £ giving its central extensions are functions
PRSI (. G x G — R, obeying the following properties:
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£9", ") +€d"g,9) =€d",9'9) + €, 9)
5(976) =0= 5(6,9), €<g7g_l) = g(g_lag)'

orbits

of unitary 8 /30



A quick recap of group extension

NCQM and

Given a connected and simply connected Lie group G, the local
1 exponents £ giving its central extensions are functions
an explicit

construction

: : ¢ : G x G — R, obeying the following properties:

£9", ") +€d"g,9) =€d",9'9) + €, 9)
5(976) =0= g(e’g)’ €<g7g_l) = g(g_lag)'

We call the central extension trivial when the corresponding local
exponent is simply a coboundary term, in other words, when there
exists a continuous function ¢ : G — R such that the following
holds

£(d',9) = Ean(d',9) == C(g") +C(g) — ¢(d'9).
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Given a connected and simply connected Lie group G, the local
exponents £ giving its central extensions are functions

¢ : G x G — R, obeying the following properties:

£9", ") +€d"g,9) =€d",9'9) + €, 9)
5(976) =0= g(e’g)’ €<g7g_l) = g(g_lag)'

We call the central extension trivial when the corresponding local
exponent is simply a coboundary term, in other words, when there
exists a continuous function ¢ : G — R such that the following
holds

£(d',9) = Ean(g', 9) = C(g) +C(g) = ¢(d'9).
Two local exponents £ and £’ are equivalent if they differ by a

coboundary term, i.e. £'(¢’,9) = £(g', 9) + &eon(9', g). A local
exponent which is itself a coboundary is said to be trivial and the

corresponding extension of the group is called a trivial extension.
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Inequivalent local exponents to arrive at G,.

We shall show that certain triple central extension of the abelian
group of translations of R* reproduces the noncommutative
commutation relations (2). The relevant central extensions are
executed using inequivalent local exponents that are enumerated
in the following theorem:

Theorem

The three real valued functions &, £ and £ on G x G given by

1
£((q1, 92, p1,p2), (41,45, D1, Ph)) = §[q1p§+q2p'z—p1q'1—pzqé],
1
5/(((]17 QQ7p17p2>7 (qivq/QapllapIQ)) = 5[}7117/2 — p2p/1]a
1
¢"((q1, G2, p1,p2), (41,45, P1.P%) = =lads — 241,
2

are inequivalent local exponents for the group, Gr, of translations
in R
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The group Gy is a 7-dimensional real nilpotent Lie group. Its
group composition rule is given by (see [?])
(07 ¢’ /l/}’ q7 p)(el’ ¢/’ 1/117 q/’ pl)
o p
= (0 + 0, + §[<qa pl> - <pa q/>]’ ¢ + (rb/ + E[p A p/]7
S4aAnNq],q q,p P )
v+t Slandlatd.p+p) (3)

where «, 8 and vy some denote strictly positive dimensionful
constants associated with the triple central extension. Here,

a=(q1,92) and p = (p1, p2). Also, in (3), {.,.) and A are defined
as (q,p) := q1p1 + g2p2 and q A p := q1p2 — gap1, respectively..
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Coadjoint orbits of GG, and the unitary dual @Nc

: There is a natural action of Gy on its dual Lie algebra gy called
construction the coadjoint action. This coadjoint action is given by

of noncom-
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Kg(plap27 q1,42, 9, ¢) w)(X17X2aX37X4aX57X6’X7)

8] @]
=X —saXs+ észﬁ, Xo — —q2X5 — éplXG

2 2 2 2
o (0%
, X3+ %q2X7 + §p1X5, Xq— %th? + §P2X57X5’X67X7)

(4)
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There is a natural action of Gy on its dual Lie algebra gy called
the coadjoint action. This coadjoint action is given by

Kg(plap27 q1,42, 9, ¢) w)(X17X2aX37X4aX57X6’X7)

8] @]
= (X - §Q1X5 + ngXGa Xo — §Q2X5 - gplXG
a a
, X3+ %QQX7 + §p1X5, X4 — %%X? + §p2X5,X5,X6,X7)

(4)
If one denotes the 3-polynomial invariants X5, X¢ and X7 by p, o
and 7, respectively, then the underlying coadjoint orbits can be

classified based on the values of the triple (p,o,7) in the following
ways:
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m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBoT # 0, the
coadjoint orbits denoted by 07" are R*, considered as affine
4-spaces.
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m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBoT # 0, the
coadjoint orbits denoted by 07" are R*, considered as affine
4-spaces.

m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBo1 = 0, the
coadjoint orbits are denoted by "’5(95’4. For each ordered pair

(k,6) € R? along with p # 0 and ¢ € (—o0,0) U (0, c0)

satisfying p = o( = %, one obtains an R2-affine space to be

the underlying coadjoint orbit "’5(95’(.
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m When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBo1 = 0, the
coadjoint orbits are denoted by "’5(95 ¢ For each ordered pair
(k,6) € R? along with p # 0 and ¢ € (—o0,0) U (0, c0)
satisfying p = o( = %, one obtains an R2-affine space to be
the underlying coadjoint orbit "’5(95’(.

m When p # 0, 0 # 0, but 7 = 0, the coadjoint orbits denoted
by 0277 are R¥-affine spaces.
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When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — vBoT # 0, the
coadjoint orbits denoted by 07" are R*, considered as affine
4-spaces.

When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBoT = 0, the
coadjoint orbits are denoted by "’5(95 ¢ For each ordered pair
(k,6) € R? along with p # 0 and ¢ € (—o0,0) U (0, c0)
satisfying p = o( = %, one obtains an R2-affine space to be
the underlying coadjoint orbit "’5(95’(.

When p # 0, 0 # 0, but 7 = 0, the coadjoint orbits denoted
by 0277 are R¥-affine spaces.

When p # 0, 7 # 0, but 0 = 0, the coadjoint orbits denoted
by O are R*-affine spaces.
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When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — vBoT # 0, the
coadjoint orbits denoted by 07" are R*, considered as affine
4-spaces.

When p # 0, 0 # 0 and 7 # 0 satisfying p?a? — yBoT = 0, the
coadjoint orbits are denoted by "’5(95 ¢ For each ordered pair
(k,6) € R? along with p # 0 and ¢ € (—o0,0) U (0, c0)
satisfying p = o( = %, one obtains an R2-affine space to be
the underlying coadjoint orbit “’5(95’(.

When p # 0, 0 # 0, but 7 = 0, the coadjoint orbits denoted
by 0277 are R¥-affine spaces.

When p # 0, 7 # 0, but 0 = 0, the coadjoint orbits denoted
by O are R*-affine spaces.

When p =0, 7 # 0 and ¢ # 0, the coadjoint orbits denoted
by O9%7 are also R*-affine spaces.
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m When p # 0 only but both ¢ and 7 are taken to be identically
zero, the coadjoint orbits denoted by OZ’O’O are R%-affine
spaces.
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m When p # 0 only but both ¢ and 7 are taken to be identically
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m When p =7 =0 but ¢ # 0, the underlying coadjoint orbit
denoted by 4097 is an affine R%-plane. For each fixed
ordered pair (cs3,c4) such a 2-dimensional coadjoint orbit
exists.

coadj
orbits

of unitary

30



NCQM and
an explicit
construction

of noncom-

coadj
orbits

of unitary

m When p # 0 only but both ¢ and 7 are taken to be identically
zero, the coadjoint orbits denoted by (’)Z’O’O are R*-affine
spaces.

m When p =7 =0 but ¢ # 0, the underlying coadjoint orbit
denoted by 4097 is an affine R%-plane. For each fixed
ordered pair (cs3,c4) such a 2-dimensional coadjoint orbit
exists.

m When p = 0 = 0 but 7 # 0, the underlying coadjoint orbit
denoted by -2 Og’O’T is an affine R?-plane. For each fixed
ordered pair (c1,¢2) such a 2-dimensional coadjoint orbit
exists.
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When p # 0 only but both ¢ and 7 are taken to be identically
zero, the coadjoint orbits denoted by (’)Z’O’O are R*-affine
spaces.

When p =7 =0 but ¢ # 0, the underlying coadjoint orbit
denoted by 4097 is an affine R%-plane. For each fixed
ordered pair (cs3,c4) such a 2-dimensional coadjoint orbit
exists.

When p = o =0 but 7 # 0, the underlying coadjoint orbit
denoted by -2 Og’O’T is an affine R?-plane. For each fixed
ordered pair (c1,¢2) such a 2-dimensional coadjoint orbit
exists.

When p = 0 =7 =0, the coadjoint orbits are 0-dimensional
points denoted by ©1-¢2-¢3,¢4 (’)8’0’0. Every quadruple
(c1,c2,c3,c4) gives rise to such an orbit.



Unitary irreducible representations of G, and
those of its Lie algebra g,

Since, Gy¢ is a connected, simply connected nilpotent Lie group,
its unitary irreducible representations are in 1-1 correspondence
with the underlying coadjoint orbits as corroborated by the
method of orbit. There are nine distinct types of equivalence
classes of unitary irreducible representations of Gy¢ and its Lie
algebra gyc:
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Unitary irreducible representations of G, and
those of its Lie algebra g,.

Since, Gy¢ is a connected, simply connected nilpotent Lie group,
its unitary irreducible representations are in 1-1 correspondence
with the underlying coadjoint orbits as corroborated by the
method of orbit. There are nine distinct types of equivalence
classes of unitary irreducible representations of Gy¢ and its Lie
algebra gyc:

Case:p # 0,0 # 0,7 # 0 with p?a? —yBo7 # 0

Unirreps of Gyc:

(U8+(0,9,¢,q,p)f)(r)

— eip(9+0t171 ri+apzre+$qip1+ %Q2P2)6i0(¢+ §P1P2)

XeiT(w+’YQ2T1+%qlq2)f (7"1 +q1,m72 +q2 + Uﬂpl) ) (5)
po

where f € L*(R?,dr).
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Reps of gye:

Q1 =711 +id—, Q2 =13,

67“2 (6)
P ——'hi P __5 _ 'hi
1= ory’ 2T ory’

with the following identification:

he L 9o 9P aB=-T (7)

pa (par)? (po)

B := %, here, can be interpreted as the constant magnetic field
applied normally to the Q10Q5-plane.

5 /30
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Case: p# 0,0 # 0,7 # 0 with p?a? — yBoT =0
Unirreps of Gyc:
(U;g(ea ¢7¢7 q1, QQ,p1,p2)f)(7’)

ip(“2 q1q2—£p1p2)
xSt g

r—q1+ ﬁm
where f € L*(R,dr).

al ),

1PN G4
16 / 30

) .
_ eip (0+%¢+ 5"—«1)) +irg1+i6gz —iparpr — LGS rga+L2 (¢1p1 —g2p2)
¢
e

(8)



Case: p# 0,0 # 0,7 # 0 with p?a? — yBoT =0
NCQM and Unirreps of GNCZ

an explicit
construction

(Ugf(av ¢a 'l/}a q1, q2,p1,p2)f)(7n)

XezP(TBCQNIz*Q:DlZm)f(T -+ 7p2)’
og
where f € L*(R,dr).
Reps of gne:
A 0
Ql = QQ - Zﬂa’
h
Py = ik + ih he+

(9+ o+S 5 w)ertthu?quzparpl* 5 erz+i"7“(q1p1*quz)

(8)



On the gauge or unitarily equivalent irreducible
representations of NCQM

There are two popular gauges used in NCQM: Landau gauge and
N i Symmetric gauge. All we need to do is to choose an appropriate
Sl vector potential A = (Aq, As) so that the following holds:

n
NCQM and

B =045 — 0y A, (10)

Note that if one chooses, A = (—BQ3,0) using (6), then (10) is
automatically satisfied.

Classificationg
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On the gauge or unitarily equivalent irreducible
representations of NCQM

There are two popular gauges used in NCQM: Landau gauge and
Symmetric gauge. All we need to do is to choose an appropriate
vector potential A = (A1, As) so that the following holds:

B =045 — 0y A, (10)

Note that if one chooses, A = (—BQ5,0) using (6), then (10) is
automatically satisfied.

The natural question question to follow immediately is if there is
any other choice of gauges associated to NCQM. If the answer of
the question is in affirmative, then what would possibly be the
corresponding representation of the group Gyc and those of the
algebra associated with it. Such a representation, if exists, will
definitely be equivalent to the one (6) associated with the Landau
gauge for a fixed triple (%, ¥, B) since they are both supposed to
satisfy (2) for the given value of the triple (k, 3, B).



heorem

SO o] A continuous family of unitarily equivalent irreducible

v sl ‘ J : ! _ o )

construction representations, associated with the 4-dimensional coadjoint orbit
OF”" of the connected and simply connected nilpotent Lie group

Gye due to p=0 =1 =1, is given by

(Ul,m(97 ¢7 ’(rb7 q, p)f)(rlv 7"2)

u9+z¢>+up iap1Ti+iapera+

4-tori

Syed
wdhury

= o 7(1 2 ) g ra+ilygery

e ["“ +%]p1q1+z[%—W]pztmﬂ(m—f)ﬁmm

il 2y _2=nGBL_yBIm—a?)
xe L° =e

_ —a? )2
xf(ry — (- m) 2 + ”‘3“%}3 = q1,72 + mTﬁZH — —wl(laT) “—q2)

]thqz

where f € L*(R?,dr).




O e s The corresponding irreducible representation of the Lie algebra
= gne by self-adjoint operators on the smooth vectors of L?(R?, dr),
) is given by

construction

of noncom- N i3 0

Qr=r1—m—5-—,

287"2
3 B0
Q2:T2—|—(1 )26T
po_e=0) i [y tm—lm)—a’] O (12)
1_,Yﬂl_a27'2 a vBl — a2 ory’

(0% 67"2'

_ 2
_ b [7&(1 T) a ] 0
(6]

Classificationg
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The corresponding irreducible representation of the Lie algebra
gne by self-adjoint operators on the smooth vectors of L?(R?, dr),

is given by
A i 0
Ql =Ty — m?a—w’
A i 0
Q2 =179 —|— (1 — m)gairl’
po_e=0) i [y tm—lm)—a’] O (12)
Bl a Bl — a2 or’
. 1— 9
a « 67’2
Commutation relations:
[lepl] - [QQ,PQ] = i]L
«@
A A iB. s iy (13)
@1, Q2] = =51, [P1, Po] = ——31.

Classificationg
19 /30
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Inspired by the fact that the real parameters [ and m do not
contribute to the commutation relations of NCQM as has been
verified in (13), we can thereby choose a continuous family of

gauges using the noncommutative position operators Ql and Qg
given in (12).

Lemma

The 1-parameter family of vector potentials ffm given by

Ay = (—mBQa, (1 — m)BQ»), (14)

satisfies (10) and hence A, can be rightfully called the
1-parameter family of NCQM gauges.
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Classificationg

Inspired by the fact that the real parameters [ and m do not
contribute to the commutation relations of NCQM as has been
verified in (13), we can thereby choose a continuous family of
gauges using the noncommutative position operators Ql and Qg
given in (12).

Lemma

The 1-parameter family of vector potentials ffm given by

Ay = (—mBQa, (1 — m)BQ»), (14)

satisfies (10) and hence A, can be rightfully called the
1-parameter family of NCQM gauges.

e The Landau gauge corresponds to I = m = 1 and the symmetric

17— a(a—y/a2—yp)
20" VB )

gauge is given by m =
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Noncommutative 4-tori from G‘Nc

e A noncommutative n-tori or the algebra of smooth functions on
noncommutative n-tori to be more precise, abbreviated as NC
n-tori in the sequel and denoted by Ay = C*°(Ty), is a family of
noncommutative C* algebras generated by n unitaries subject to
the following defining relations:

UpU; = 2™ 05U Uy, (15)

where j,k=1,2,..,n and 0 = [#;;] is a skew-symmetric n x n
matrix. When 6 is the zero matrix, the C* algebra generated by
Uj’s is a commutative one and can be identified with the
continuous functions on the n-torus.
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Noncommutative 4-tori from G‘Nc

e A noncommutative n-tori or the algebra of smooth functions on
noncommutative n-tori to be more precise, abbreviated as NC
n-tori in the sequel and denoted by Ay = C*°(Ty), is a family of
noncommutative C* algebras generated by n unitaries subject to
the following defining relations:

UpU; = 2™ 05U Uy, (15)

where j,k=1,2,..,n and 0 = [#;;] is a skew-symmetric n x n
matrix. When 6 is the zero matrix, the C* algebra generated by
Uj’s is a commutative one and can be identified with the
continuous functions on the n-torus.

e We are particularly interested in the case n = 4 with 4
generators Uy, Uy, Us and Uy, satisfying the relations given by
(15). We construct the skew-symmetric 4 x 4 matrix 6 due to
different levels of underlying noncommutativity (9 distinct types
of equivalence classes outlined before).



Let us refer back to (5) and compute the following 4-one
parameter groups of unitary operators acting on L?(R?, dr):

(U(q)f)(r) = f(r1 +q1,72)
(U(g) f)(r) = 7" fry,ra + q2)

(U(pr)f)(x) = eiromm f ( v+ ;fp)
(U(pa2) f)(x) = P2 f(r),

ntations

(16)
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Let us refer back to (5) and compute the following 4-one
parameter groups of unitary operators acting on L?(R?, dr):

(U(q)f)(r) = f(r1 +q1,72)
(U(g) f)(r) = 7" fry,ra + q2)

(U(pr)f)(x) = eiromm f ( v+ ;fp)
(U(pa2) f)(x) = P2 f(r),

obeying the following set of Weyl commutation relations:
U(q)U(pr) = 17U (p1)U (1)

(42)U (p2) = €**2P2U (p3)U (g2)

(@1)U(g2) = €779 U (g2)U (q1)

U(p1)U(p2) = €7PP172U (pa)U (p1)

(q@)U(p2) = U(p2)U(q1)

(g2)U(p1) = U(p1)U(g2)-

(16)

d
<

(17)
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On the rep-

Suppress the group parameters q1, g2, p1 and ps by taking

aqip1 = aqap2 = 2T = Yq142 = Bp1p2

(18)

in (17) and denote the unitary operators U(q1), U(gz2), U(p1) and
U(p2) by Uy, Us, Us and Uy, respectively.

1PN G4
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Suppress the group parameters q1, g2, p1 and ps by taking

R aqipr = agaps = 2T = Yq1q2 = Bpip2 (18)

of noncom-

mu e

in (17) and denote the unitary operators U(q1), U(gz), U(p1) and
U(p2) by Uy, Us, Us and Uy, respectively.
e The Weyl commutation relations can then be recast as

U Uz = e*™PUsU,

UaUy = e*™PUL U,

U Us = 2™ U, U,

UsUy = ™7 U4Us

U,Uy =U,U,y

UyUs = UsUs.

(19)

of unitary 23 /30



e Comparison of (19) with (15) yields the skew-symmetric matrix
) 0(p, o, 7) with each of p, o and 7 being nonzero satisfying the
cemEtTsien inequality p? — o7 # 0 ( note that this is synonymous with

of noncom-

mutative p?a? — yBoT # 0 as a? = vf3, being a consequence of (18), holds).

0 T p 0
-7 0 0

o =20 o o0 b (20)
0 —p —0o O

24 /30
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e Comparison of (19) with (15) yields the skew-symmetric matrix
0(p,0,T) With each of p, o and 7 being nonzero satisfying the
inequality p?—or#0 ( note that this is synonymous with

p?a? — yBoT # 0 as a? = vf3, being a consequence of (18), holds).

0 T p 0
-7 0 0

0(p,o,7) o 0 0 Z (20)
0 —p —0o O

e We denote the family of C* algebras, generated by the
unitaries Uy, Uz, Us and U obeying the relations (19),
with Ay, ) where 0(p,0,7) is the skew-symmetric 4 x 4
matrix given by (20). Each member of the family Ay, .
of C* algebras is associated with one and only
4-dimensional coadjoint orbit O)”" of Gyc.
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4-tori

In exactly the same way, one can construct different families of C*

algebras from the unitary dual of Gyc. Due to time constraint, we
just present the main result of this section

= 1PN G4
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Theorem

The noncommutative 4-tori associated with the noncommutative
quantum mechanics in 2-dimensions is a family of C* algebras Ay
generated by 4 unitaries subject to the relations (15) with n = 4.
Let S, ={(p,0,7) €R®| p# 0,0 #0,7 # 0 and p*> — o7 = 0}.
Any point on the surface p?> — ot = 0 with nonzero p, o and T lies
on the straight line given by p = o = % for ¢ € (—o0,0) U (0, 00).
Here the skew-symmetric 4 X 4 matriz 0 is given by

0 T p 0
o=|" 0 0 p when (p,o,7) € R3\'S
7p 0 O o p7 I /LC)
0 —p —0 O
_ 21
0 p¢ p O (21)
= 0 0
0= _,DpC 0 0 g when (p,0,T) €Sy ¢.
| 0 —p —g 0




Now that we have the noncommutative differentiable manifold T,
we proceed to write down the star product between elements of

an explicit

SR C° (’Eg) as follows:

of noncom-

frgr) =" f(s)g(r —s)o(s,r —s), (22)

SEZ*

of unitary
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NCQM and
an explicit
construction

of noncom-

e

of unitary

Now that we have the noncommutative differentiable manifold T,
we proceed to write down the star product between elements of
C>(T}) as follows:

frgr)=Y_ f(s)g(r—s)ols,r —s), (22)

SEZ*

where o(r,s) := e~ ™Os) . 74 x 74 — T is a 2-cocycle on the
Abelian group Z* with O(r,s) given in terms of the various 4 x 4
skew-symmetric matrix 6 discussed in previous sections is as
follows:

4
O(r,s) = Y enlowsr, (23)

J,k=1

0
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NCQM and

an explicit

Now that we have the noncommutative differentiable manifold T,
we proceed to write down the star product between elements of
pey  C>°(T)) as follows:

f*g Zf I‘—S (S,I‘—S), (22)
s€74

where o(r,s) := e~ ™Os) . 74 x 74 — T is a 2-cocycle on the

Abelian group Z* with ©( i

) given in terms of the various 4 x 4
skew-symmetric matrix 6 discussed in previous sections is as
follows:

4
= § elifiksk

(23)
G k=1

In other words, C°°(T3) is nothing but the noncommutative
twisted group C* algebra C*(Z*, o).

of unitary



On the rep-

an explicit

construction

of unitary

e In the classical limit when p, 0,7 — 0, the skew-symmetric
matrix 6 approaches the 0-matrix making the noncommutative
twisted group C* algebra approach the ordinary commutative
group C* algebra C*(Z*).



NCQM and
an explicit
construction

of noncom-

of unitary

e In the classical limit when p, 0,7 — 0, the skew-symmetric
matrix 6 approaches the 0-matrix making the noncommutative
twisted group C* algebra approach the ordinary commutative
group C* algebra C*(Z*).

What do we want to do next:

e Not all such algebras for different skew-symmetric 4 x 4 matrices
are Morita inequivalent and thus arises the idea of quite
irrationality in this context. We would like to understand what it
means by two noncommutative 4-torus to be Morita equivalent in
terms of quite irrationality explicitly.
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NCQM and
an explicit
construction

of noncom-

of unitary

e In the classical limit when p, 0,7 — 0, the skew-symmetric
matrix 6 approaches the 0-matrix making the noncommutative
twisted group C* algebra approach the ordinary commutative
group C* algebra C*(Z*).

What do we want to do next:

e Not all such algebras for different skew-symmetric 4 x 4 matrices
are Morita inequivalent and thus arises the idea of quite
irrationality in this context. We would like to understand what it
means by two noncommutative 4-torus to be Morita equivalent in
terms of quite irrationality explicitly.

e Next we like to study spin geometries on Tj and see what the
spectral triple turns out to be in this context.



On the rep-

etc.

e Computation of cyclic cohomology for NC 4-tori, theta function

of unit
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On the rep-

e Computation of cyclic cohomology for NC 4-tori, theta function
etc.

e List of some useful reading;:

(1) Elements of Noncommutative geometry by Jose M.
Garcia-Bondia et al.

4-tori

o = = E = 1PN G4
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On the rep-

an explicit

an explicit. e Computation of cyclic cohomology for NC 4-tori, theta function
etc.

e List of some useful reading;:
(1) Elements of Noncommutative geometry by Jose M.
Garcia-Bondia et al.

(2) Morita equivalence of multidimensional noncommutative tori
by M. A. Rieffel and A. Schwarz.

of unitary
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construction
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(1) Elements of Noncommutative geometry by Jose M.
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(2) Morita equivalence of multidimensional noncommutative tori
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(3) Noncommutative geometry and quantization by J. C. Varilly.
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NCQM and
an explicit

construction
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of unitary

e Computation of cyclic cohomology for NC 4-tori, theta function
etc.

e List of some useful reading;:

(1) Elements of Noncommutative geometry by Jose M.
Garcia-Bondia et al.

(2) Morita equivalence of multidimensional noncommutative tori
by M. A. Rieffel and A. Schwarz.

(3) Noncommutative geometry and quantization by J. C. Varilly.
(4) Theta functions on noncommutative tori by A. Schwarz.

(5) Classical theta functions and quantum tori by A. Weinstein.
(6) Projective modules over higher dimensional noncommutative

tori by M. A. Rieffel.
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of noncom-

e

Thank you fOI‘

your patience!

of unit
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