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Abstract. This is the note of my lectures that I will give at Expository Quantum Lecture
Series 8: Quantization, Noncommutativity and Nonlinearity at the Institute for Mathematical
Research (INSPEM) at Universiti Putra Malaysia (UPM) during January 18-22, 2016. I will
give a brief introduction to pre-Lie algebras, with emphasizing their relations with some related
structures. It is only for the internal communication and far away from a published version.
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1. Introduction

Definition 1.1. A pre-Lie algebra A is a vector space with a binary operation (x, y) → xy

satisfying
(xy)z − x(yz) = (yx)z − y(xz), ∀x, y, z ∈ A. (1.1)

1.1. Explanation of notions. Pre-Lie algebras have several other names. For example,
(a) left-symmetric algebra. Define the associator as

(x, y, z) = (xy)z − x(yz),∀x, y, z ∈ A. (1.2)

Then Eq. (1.1) is exactly the following identity

(x, y, z) = (y, x, z),∀x, y, z ∈ A, (1.3)

that is, the associator (1.2) is symmetric in the left two variables x, y. The notion of
left-symmetric algebra was given by Vinberg ([55]) in the study of convex homogenous
cones. Such a notion was used in many studies related to geometry.

(b) right-symmetric algebra. Namely, the associator (1.2) is symmetric in the right two
variables y, z, that is, the following identity is satisfied:

(xy)z − x(yz) = (xz)y − x(zy), ∀x, y, z ∈ A. (1.4)

Note that a vector space with a binary operation (x, y) → x·y is a left-symmetric algebra
(pre-Lie algebra) if and only if its opposite algebra (A, ·opp) is a right-symmetric algebra,
where x·oppy = y ·x for any x, y ∈ A. In this sense, the study of right-symmetric algebras
is completely parallel to the study of left-symmetric algebras. Thus, we only need to
consider the case of left-symmetric algebras.

(c) The notion of pre-Lie algebra is due to it close relations with Lie algebras, which will
be seen in the following sections. This notion was given by Gerstenhaber in [32] in the
study of deformations and cohomology theory of associative algebras. The original form
was given as a (graded) right-symmetric algebra. In the above sense and in order to be
consistent, we use left-symmetry uniformly to denote a pre-Lie algebra in this note.

(d) quasi-associative algebra. Pre-Lie algebras include associative algebras whose associators
are zero. So in this sense, pre-Lie algebras can be regarded as a kind of generalization of
associative algebras. The notion of quasi-associative algebra was given by Kupershmidt
([41]) in the study of phase spaces of Lie algebras.
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(e) Vinberg algebra or Koszul algebra or Koszul-Vinberg algebra. These notions are due to
the pioneer work of Koszul ([40]) in the study of affine manifolds and affine structures
on Lie groups and of Vinberg ([55]).

1.2. Two fundamental properties: close relationships with Lie algebras.
Let A be a pre-Lie algebra. For any x, y ∈ A, let L(x) and R(x) denote the left and right

multiplication operators respectively, that is, L(x)(y) = xy, R(x)(y) = yx. Let L : A → gl(A)
with x → L(x) and R : A → gl(A) with x → R(x) (for every x ∈ A) be two linear maps.

One of the close relationships between pre-Lie algebras and Lie algebras are given as follows.

Proposition 1.2. Let A be a pre-Lie algebra.

(a) The commutator

[x, y] = xy − yx, ∀x, y ∈ A, (1.5)

defines a Lie algebra g(A), which is called the sub-adjacent Lie algebra of A and A is
also called a compatible pre-Lie algebra structure on the Lie algebra g(A).

(b) Eq. (1.1) is just

[L(x), L(y)] = L([x, y]), ∀x, y ∈ A, (1.6)

which means that L : g(A) → gl(A) with x → L(x) gives a representation of the Lie
algebra g(A).

Remark 1.3. Recall that a Lie-admissible algebra is a vector space with a binary operation
(x, y) → xy whose commutator (1.5) defines a Lie algebra. It is equivalent to the following
identity:

(x, y, z) + (y, z, x) + (z, x, y) = (y, x, z) + (z, y, x) + (x, z, y),∀x, y, z ∈ A. (1.7)

So a pre-Lie algebra is a special Lie-admissible algebra whose left multiplication oper-
ators give a representation of the associated commutator Lie algebra.

A direct consequence is that if a Lie algebra g has a compatible pre-Lie algebra structure,
then there are two representations of the Lie algebra g on the underlying vector space of g

itself: one is given by the adjoint representation ad and another is given by L induced from the
compatible pre-Lie algebra. Many interesting structures related to geometry are obtained from
this approach.

1.3. Some subclasses. Some subclasses of pre-Lie algebras are very interesting. Even some of
them were introduced and then developed independently.

(a) Associative algebra. Needless to say more.
(b) Transitive left-symmetric algebra or complete left-symmetric algebra. A left-symmetric

algebra A is called transitive or complete if for any x ∈ A, the right multiplication
operator R(x) is nilpotent. In affine geometry, real transitive left-symmetric algebras
correspond to the complete affine connections ([35]). There are several equivalent con-
ditions ([49]). They play important roles in the study of structures of pre-Lie algebras
([19]).
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(c) Left-symmetric derivation algebra and left-symmetric inner derivation algebra. A left-
symmetric algebra A is called a derivation algebra (an inner derivation algebra respec-
tively) if for any x ∈ A, L(x) or R(x) is a derivation (an inner derivation respectively) of
the sub-adjacent Lie algebra g(A). These two notions were introduced in [47] to study
the left-invariant affine connections adapted to the (inner) automorphism structure of a
Lie group.

(d) Novikov algebra. A Novikov algebra A is a pre-Lie algebra satisfying an additional iden-
tity:

(xy)z = (xz)y, ∀x, y, z ∈ A. (1.8)

In other words, a Novikov algebra is a pre-Lie algebra whose right multiplication op-
erators are commutative. Novikov algebras were introduced in connection with the
Hamiltonian operators in the formal variational calculus ([31]) and Poisson brackets of
hydrodynamic type ([17]).

(e) Bi-symmetric algebra or assosymmetric algebra. A bi-symmetric algebra is a pre-Lie
algebra who is also a right-symmetric algebra with the same product. Such structures
were introduced under the notion of assosymmetric algebra by Kleinfeld from the pure
algebraic point of view in order to study the so-called near-associative algebras ([36]).
Note that the study of assosymmetric algebras was begun more early than the study of
pre-Lie algebras.

1.4. Organization of this note.
Pre-Lie algebras have relations with many fields in mathematics and mathematical physics.

As was pointed out by Chapoton and Livernet in [24], pre-Lie algebra “deserves more attention
than it has been given”. In particular, it has become a very active topic since the end of last
century due to the role in the quantum field theory ([26]). There are a lot of results in the
study of pre-Lie algebras. So it is impossible to list every result or progress and mention every
reference in my lectures. Even I would like to point out that this note is not a survey article
like [19].

I can only choose some materials to give a brief introduction to pre-Lie algebras. I hope that
these materials can help a beginner (not an expert in this field!) to know why pre-Lie algebras
are interesting. For this aim, I will pay main attention to interpret the relationships between
pre-Lie algebras and some related structures.

This note is organized as follows.
• In Section 2, we will introduce some background and the different motivation of intro-

ducing the notion of pre-Lie algebra.
• In Section 3, we introduce some basic properties of pre-Lie algebras including some

comments on the studies of structure theory and representation theory and some clas-
sification results. We also give the constructions of pre-Lie algebras from some known
structures like commutative associative algebras, Lie algebras, associative algebras and
linear functions.

• In Section 4, we will interpret the close relationship between pre-Lie algebras and clas-
sical Yang-Baxter equation, which the former are regarded as the underlying algebraic
structures of the latter.
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• In Section 5, we put pre-Lie algebras into a bigger framework as one of the algebraic
structures of the Lie analogues of Loday algebras. There is an operadic interpretation
of these algebraic structures which is related to Manin black products.

Throughout this note, without special saying, all vector spaces and algebras are finite-
dimensional over the complex field C, although many results still hold over other fields or in the
infinite-dimensional case.

1.5. For participants: materials needed and some references in advance.
I think the needed materials in advance for my lectures should include the following:

(a) Abstract Algebra at the undergraduate level, including some basic knowledge on associa-
tive algebras (rings).

(b) Lie Algebra. It is enough if one has studied the classical textbook by Humphreys (“In-
troduction to Lie algebras and representation theory”, GTM 9, Springer: New York,
1980) or any other standard textbook on Lie algebras.

(c) Not necessary, but much better. It would be better for a further understanding of the
related geometry if one has known some something on Differential Geometry and Lie
Group, such as manifolds, connections and the relationships between Lie groups and
Lie algebras. The same for Algebraic Topology and Homology Algebra and some more
advanced materials like Vertex Algebra, Quantum Group and Operad.

There are many references involving the study of pre-Lie algebras. It is impossible or not
necessary for a beginner to study every reference. Even some references are quite specialized. I
suggest the following references for a participant to make some preparation in advance:

(a) The survey paper [19] and the references therein.
(b) Pages 221-226 in [6]. It is a supplementary to [19].
(c) References [35] and [47] for the ones who are interested in a understanding of the related

geometry.
(d) Reference [5] for a understanding of the relations with the classical Yang-Baxter equation.

2. Some appearances of pre-Lie algebras

In this section, we will choose some appearances of pre-Lie algebras in different topics. I
hope that with the introduction of these appearances, one can know some background and the
different motivation of introducing the notion of pre-Lie algebra. I will emphasize the appearance
of “left-symmetry”.

Some materials can be found in [19]. I would like to point out that for the materials appearing
in both [19] and the note, I might express them in a “short version” since it seems enough in
the note to show only the appearances of “left-symmetry” in those often long and important
theories.

2.1. Left-invariant affine structures on Lie groups: a geometric interpretation of
“left-symmetry”.
Time: 1961-1963, J.-L. Koszul [35]; E.B. Vinberg [55] who gave the notion of left-
symmetric algebra
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Let G be a Lie group with a left-invariant affine structure: there is a flat torsion-free left-
invariant affine connection∇ on G, namely, for all left-invariant vector fields X, Y, Z ∈ g = T (G),

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z = 0, (2.1)

T (X, Y ) = ∇XY −∇Y X − [X, Y ] = 0. (2.2)

This means both the curvature R(X, Y ) and torsion T (X, Y ) are zero for the connection ∇. If
we define

∇XY = XY, (2.3)

then the identity (1.1) for a pre-Lie algebra exactly amounts to Eqs. (2.1) and (2.2).
See [35, 40, 47, 55] for more details.

2.2. Deformation complexes of algebras and right-symmetric algebras.
Time: 1963, M. Gerstenhaber [32] who gave the notion of pre-Lie algebra

Let V be a vector space. Denote by Cm(V, V ) the space of all m-multilinear maps from V ⊗n

to V . For f ∈ Cp(V, V ) and g ∈ Cq(V, V ), define the product

◦ : Cp(V, V )× Cq(V, V ) → Cp+q−1(V, V ), (f, g) 7→ f ◦ g

given by

f ◦ g(x1, · · · , xp+q−1) =
p∑

i=1

f(x1, · · · , xi−1, g(xi, · · · , xi+q−1), xi+q, · · · , xp+q−1). (2.4)

Proposition 2.1. The algebra (C•(V, V ), ◦) is a right-symmetric algebra.

When take V = A, where A is an associative algebra, the role of pre-Lie algebra is necessary
for the construction of cohomology theory. The product given by Eq. (2.4) should be modified
to be a “graded version”:

f ◦ g(x1, · · · , xp+q−1) =
p∑

i=1

(−1)(q−1)(i−1)f(x1, · · · , xi−1, g(xi, · · · , xi+q−1), xi+q, · · · , xp+q−1).

(2.5)
It satisfies the graded right-symmetry

(xy)z − x(yz) = (−1)|y||z|((xz)y − x(zy)), (2.6)

for any x, y, z in a graded vector space and |x| denotes the degree.
For the complex C•(A,A), the key is to define the coboundary operator d : Cp(A,A) →

Cp+1(A,A) such that d2 = 0. In fact, the operator d is given as

d(f) = −µ ◦ f + (−1)|µ||f |f ◦ u, ∀f ∈ Cp(A,A), (2.7)

where µ ∈ C2(A,A) is the multiplication map of A.
See [32] for more details.
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2.3. Rooted tree algebras: free pre-Lie algebras.
Time: 1896, A. Cayley [20]; 1998, A. Connes and D. Kreimer [26]; 2001, F. Chapo-

ton and M. Livernet [24]
A rooted tree is a finite, connected oriented graph without loops in which every vertex has

exactly one coming edge, except one (root) which has no incoming but only outgoing edges.
Let T be the vector space spanned by all rooted trees. One can introduce a bilinear product

y on T as follows. Let τ1 and τ2 be two rooted trees.

τ1 y τ2 =
∑

s∈Vertices(τ2)

τ1 ◦s τ2,

where τ1 ◦s τ2 is the rooted tree obtained by adding to the disjoint union of τ2 and τ1 an edge
going from the vertex s of τ2 to the root vertex of τ1.

Proposition 2.2. (T,y) is a free pre-Lie algebra on one generator.

Remark 2.3. The pre-Lie algebra (T,y) is isomorphic to the pre-Lie algebra (in the sense of
left-symmetry) given by Connes and Kreimer ([26]) in the study of quantum field theory. Note
in [26], the corresponding action (the so-called “glue” action of rooted trees obtained as the
opposite of the “cut” action) is not the same as the above y in the expressing form, whereas in
fact the two algebras are isomorphic.

See [20, 26, 24, 28] for more details.

2.4. Complex structures on Lie algebras.
Time: 2005, A. Andrada and S. Salamon [2]

Definition 2.4. Let g be a real Lie algebra. A complex structure on g is a linear endomorphism
J : g → g satisfying J2 = −id and the integrable condition:

J [x, y] = [Jx, y] + [x, Jy] + J [Jx, Jy], ∀x, y ∈ g (2.8)

Notation. Let ρ : g → gl(V ) be a representation of the Lie algebra g. On the vector space
g⊕ V , there is a natural Lie algebra structure (denoted by gnρ V ) given as follows:

[x1 + v1, x2 + v2] = [x1, x2] + ρ(x1)v2 − ρ(x2)v1, (2.9)

for any x1, x2 ∈ g, v1, v2 ∈ V .

Proposition 2.5. Let A be a real left-symmetric algebra A. Define a linear map J : A⊕ A →
A⊕A by

J(x, y) = (−y, x), ∀ x, y ∈ A. (2.10)

Then J is a complex structure on the Lie algebra g(A) nL A, where L is the representation of
the sub-adjacent Lie algebra g(A) induced by the left multiplication operators of A.

Remark 2.6. In fact, there is a correspondence between pre-Lie algebras and complex product
structures on Lie algebras ([2]), whereas a complex product structure is a pair of a complex
structure J and a product structure E satisfying JE = −EJ .

See [2, 4] for more details.
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2.5. Symplectic structures on Lie groups and Lie algebras, phase spaces of Lie alge-
bras and Kähler structures.

Time: 1973, B.Y. Chu [25]; 1994, B.A. Kupershmidt [41]; 1980, H. Shima [52]
A symplectic Lie group is a Lie group G with a left-invariant symplectic form ω+. The

corresponding structure at the level of Lie algebras is given as follows.

Definition 2.7. A Lie algebra g is called a symplectic Lie algebra if there is a nondegenerate
skew-symmetric 2-cocycle ω (the symplectic form) on g, that is,

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0, ∀x, y, z ∈ g. (2.11)

We denote it by (g, ω).

Theorem 2.8. Let (g, ω) be a symplectic Lie algebra. Then there exists a compatible pre-Lie
algebra structure “∗′′ on g given by

ω(x ∗ y, z) = −ω(y, [x, z]), ∀x, y, z ∈ g. (2.12)

Corollary 2.9. Let G be a symplectic Lie group with a left-invariant symplectic form ω+. Then
there is a left-invariant affine structure on G defined by

ω+(∇x+y+, z+) = −ω+(y+, [x+, z+])

for any left-invariant vector fields x+, y+, z+.

Conversely, there is a symplectic Lie algebra on the direct sum A⊕A∗ of underlying space of
a pre-Lie algebra A and its dual space A.

Proposition 2.10. Let A be a pre-Lie algebra. Set T ∗g(A) = g(A) nL∗ A∗, where L∗ is the
dual representation of the representation L induced by left multiplication operators. Define the
following bilinear form on A⊕A∗

ωp(x + a∗, y + b∗) = 〈a∗, y〉 − 〈x, b∗〉, ∀x, y ∈ A, a∗, b∗ ∈ A∗, (2.13)

where 〈, 〉 is the ordinary pair between A and A∗. Then (T ∗g(A), ωp) is a symplectic Lie algebra.

Remark 2.11. The above construction (T ∗g(A), ωp) is a phase space of the Lie algebra g(A)
in [41]. Moreover, Kupershmidt pointed out that pre-Lie algebras appear as an underlying
structure of those Lie algebras that possess a phase space and thus they form a natural category
from the point of view of classical and quantum mechanics ([42]).

Kähler structures on Lie algebras are closely related to the study of kähler Lie groups and
kähler manifolds ([44]).

Definition 2.12. Let g be a real Lie algebra. If there exists a complex structure J and a
nondegenerate skew-symmetric bilinear form ω such that the following conditions are satisfied:

(a) ω is a symplectic form on g;
(b) ω(J(x), J(y)) = ω(x, y) for any x, y ∈ g;
(c) ω(x, J(x)) > 0, for any x ∈ g and x 6= 0,

then {J, ω} is called a kähler structure on g.
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Proposition 2.13. Let (A, ·) be a left-symmetric algebra with a symmetric and positive definite
bilinear form B( , ). Suppose the bilinear form B satisfying the following condition:

B(x · y, z) + B(y, x · z) = 0, ∀x, y, z ∈ A. (2.14)

Then there exists a complex structure J on the phase space T ∗g(A) = g(A)nL∗ A∗ given by

J(x + y∗) = −y + x∗, ∀x, y ∈ A. (2.15)

where for any x =
∑n

i=1 λiei ∈ A, set x∗ =
∑n

i=1 λie
∗
i ∈ A∗. Here {e1, · · · , en} is a basis of A

such that B(ei, ej) = δij and {e∗1, · · · , e∗n} is its dual basis. Furthermore, there exists a kähler
structure {−J, ωp} on T ∗g(A), where ωp is given by Eq. (2.13).

Remark 2.14. In fact, the positive definite bilinear form B satisfying Eq. (2.14) on a pre-Lie
algebra induces a left-invariant Hessian metric on the corresponding connected real Lie group
G, thus making it be a Hessian manifold. Recall that a Hessian manifold M is a flat affine
manifold provided with a Hessian metric. Note that a Hessian metric on a smooth manifold M

is a Riemannian metric g such that for each point p ∈ M there exists a C∞-function ϕ defined
on a neighborhood of p such that gij = ∂2ϕ

∂xi∂xj ([52]).

See [25, 27, 44, 41, 42, 52, 4] for more details.

2.6. Vertex algebras (I): underlying algebraic structures.
Time: 2003, B. Bakalov and V. Kac [16]
Vertex algebras are fundamental algebraic structures in conformal field theory.

Definition 2.15. A vertex algebra is a vector space V equipped with a linear map

Y : V → Hom(V, V ((x))), v → Y (v, x) =
∑

n∈Z
vnx−n−1(where, vn ∈ EndV ) (2.16)

and equipped with a distinguished vector 1 ∈ V such that

Y (1, x) = 1;

Y (v, x)1 ∈ V [[x]] and Y (v, x)1|x=0(= v−11) = v, ∀v ∈ V,

and for u, v ∈ V , there is Jacobi identity:

x−1
0 δ(

x1 − x2

x0
)Y (u, x1)Y (v, x2)− x−1

0 δ(
x2 − x1

−x0
)Y (v, x2)Y (u, x1)

= x−1
2 δ(

x1 − x0

x2
)Y (Y (u, x0)v, x2), (2.17)

where δ(x) =
∑
n∈Z

xn.

Proposition 2.16. Let (V, Y,1) be a vertex algebra. Then

a ∗ b = a−1b (2.18)

defines a pre-Lie algebra.
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Proof. In fact, by Borcherd’s identities:

(am(b))n(c) =
∑

i≥0

(−1)iCi
m((am−i(bn+i(c)− (−1)mbm+n−i(ai(c))),

let m = n = −1, we have

(a−1b)−1c− a−1(b−1c) =
∑

i≥0

(a−2−i(bic) + b−2−i(aic)).

Then the conclusion follows. ¤

Remark 2.17. A vertex algebra is equivalent to a pre-Lie algebra and an algebra names Lie
conformal algebra with some compatible conditions.

See [16] for more details.

2.7. Vertex algebras (II): Hamiltonian operators in the formal variational calculus
and Poisson brackets of hydrodynamic type.

Time: 1979, I.M. Gel’fand and I. Ya. Dorfman [31]; 1985, A.A. Balinskii and S.P.
Novikov [17]; 2003, C. Bai, L. Kong and H. Li [9]

Proposition 2.18. Let A be a finite-dimensional algebra with a bilinear product (a, b) → ab.
Set

A = A⊗ C[t, t−1]. (2.19)

Then the bracket

[a⊗ tm, b⊗ tn] = (−mab + nba)⊗ tm+n−1, ∀a, b ∈ A, m, n ∈ Z (2.20)

defines a Lie algebra structure on A if and only if A is a Novikov algebra with the product ab.

Let A be a Novikov algebra. For any a ∈ A, we define the generating function:

a(x) =
∑

n∈Z
anx−n−1 =

∑

n∈Z
(a⊗ tn)x−n−1 ∈ A[[x, x−1]].

Then by Eq. (2.20), we have

[a(x1), b(x2)] = (ab + ba)(x1)
∂

∂x1
x−1

2 δ(
x1

x2
) + [

∂

∂x1
ab(x1)]x−1

2 δ(
x1

x2
). (2.21)

The above equation corresponds to a (linear) Poisson brackets of hydrodynamic type ([17]),
which also corresponds to the differential operator H with matrix components Hij ([31]):

Hij =
N∑

k=1

(ck
iju

(1)
k + (ck

ij + ck
ji)u

(0)
k

d

dx
), (2.22)

being Hamiltonian, where {ck
ij} is the set of structure constants of the Novikov algebra A.

There is a Z-grading on the Lie algebra A defined by Eqs. (2.19) and (2.20):

A =
⊕

n∈Z
A(n), A(n) = A⊗ t−n+1.
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Moreover,
A(n≤1) =

⊕

n≤1

A(n) =
⊕

n≤0

A(n) ⊕A(1)

is a Lie subalgebra of A.
Let C be the trivial module of A(n≤1) and we can get the following (Verma) module of A:

Â = U(A)⊗U(A(n≤1)) C,

where U(A) (U(A(n≤1))) is the universal enveloping algebra of A (A(n≤1)). Â is a natural
Z-graded A-module:

Â =
⊕

n≥0

Â(n),

where

Â(n) = {a(1)
−m1

· · · a(r)
−mr

1|m1 + · · ·+ mr = n− r, m1 ≥ · · · ≥ mr ≥ 1, r ≥ 0, a(i) ∈ A}.
Theorem 2.19. Let A be a Novikov algebra. Then there exists a unique vertex algebra structure
(Â, Y,1) on Â such that 1 = 1 ∈ C and Y (a, x) = a(x), ∀a ∈ A, and

Y (a(1)
(n1) · · · a

(r)
(nr)1, x) = a(1)(x)n1 · · · a(r)(x)nr1Â (2.23)

for any r ≥ 0, a(i) ∈ A,ni ∈ Z, where

a(x)nb(x) = Resx1((x1 − x)na(x1)b(x)− (−x + x1)nb(x)a(x1)). (2.24)

Theorem 2.20. Let (V, Y, 1) be a vertex algebra with the following properties:
(a) V = ⊕n≥0V(n), V(0) = C1, V(1) = 0;
(b) V is generated by V(2) with the following property

V = span{a(1)
−m1

· · · a(r)
−mr

1|mi ≥ 1, r ≥ 0, a(i) ∈ V(2)}
(c) KerD ∩ V2 = 0, where D is a linear transformation of V given by D(v) = v−21,∀v ∈ V .
(d) V is a graded (by the integers) vertex algebra, that is, 1 ∈ V(0) and V(i)n

V(j) ⊂ V(i+j−n−1).
Then V is generated by V(2) with the following property

V = span{a(1)
−m1

· · · a(r)
−mr

1|m1 ≥ · · · ≥ mr ≥ 1, r ≥ 0, a(i) ∈ V(2)}
and V(2) is a Novikov algebra with a product (a, b) → a ∗ b given by

a ∗ b = −D−1(b0a).

Remark 2.21. Furthermore, if the Novikov algebra A has an identity e, then −e corresponds
to the Virasoro element which gives a vertex operator algebra structure with zero central charge.
With a suitable central extension, the non-zero central charge will lead to a commutative asso-
ciative algebra with a nondegenerate symmetric invariant bilinear form (the so-called Frobenius
algebra).

Corollary 2.22. For the above vertex algebra (V, Y, 1), the algebra given by

a ∗ b = a−1b

is a graded pre-Lie algebra, that is Vm ∗ Vn ⊂ Vm+n.
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See [31, 17, 9] for more details.

3. Some basic results and constructions of pre-Lie algebras

In Section 3.1, we introduce some basic properties of pre-Lie algebras including some com-
ments on the studies of structure theory and representation theory and some classification results.
In Section 3.2, we give the constructions of pre-Lie algebras from some known structures like
commutative associative algebras, Lie algebras, associative algebras and linear functions.

3.1. Some basic results of pre-Lie algebras.

3.1.1. Some studies on structure theory.
A “good” structure theory for an algebraic system usually means that there is a well-defined

“radical” and the quotient by moduloing the radical is “semisimple” or “reductive” which is
roughly a direct sum of “simple” ones, like associative and Lie algebras. Usually a classification
of these “simple” objectives in certain sense should be obtained, too. Unfortunately, pre-Lie
algebras do not belong to this case.

In fact, there are a lot of studies on this subject (see [19] and the references therein). Roughly
speaking, there are several different approaches to define a “radical” of a pre-Lie algebra ([21]).
However, none of them is satisfactory enough to give a “good” structure theory in the above
sense. For example, some “radical” is an ideal (like the so-called Jacobson radical), but it seems
very difficult to give a further study on the quotient by moduloing it. It also leads to the
fact that there is not a complete theory of semisimple (simple) pre-Lie algebras, except for some
classification results in low dimensions. Even the authors in [21] suggested to give up such efforts
since they thought the identity (1.1) is too week and some additional identities are necessary
for a better structure theory.

Nevertheless, the following definition seems acceptable in a certain extent:

Definition 3.1. Let A be a pre-Lie algebra and T (A) = {x ∈ A|trR(x) = 0}. The largest left
ideal of A contained in T (A) is called the radical of A and is denoted by rad(A).

Remark 3.2. Note that the above rad(A) is only a left ideal of A and one cannot do A/rad(A)
if it is not an ideal. On the other hand, a pre-Lie algebra is transitive if and only if A = rad(A).

Definition 3.3. A pre-Lie algebra A is called simple if A has no ideals except for zero and itself
and AA 6= 0. A is called semisimple if A is a direct sum of simple ideals.

Moreover, the complexity of this problem can be seen from the following example.

Example 3.4. There exists a transitive simple pre-Lie algebra which combines “simplicity”
and certain “nilpotence”. For example, let A be a 3-dimensional pre-Lie algebra with a basis
{e1, e2, e3} whose non-zero products are given by

e1e2 = e2, e1e3 = −e3, e2e3 = e3e2 = e1.

On the other hand, the structure theory for some subclasses have been constructed.
(a) Novikov algebra. If A is a Novikov algebra, then rad(A) = T (A) is an ideal. Over an

algebraically closed field of characteristic zero, A/R(A) is a direct sum of fields and a
finite-dimensional simple Novikov algebra is isomorphic to the field ([58]).
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(b) Bi-symmetric algebra. If A is a bi-symmetric algebra, then rad(A) = T (A) is an ideal.
Over a field of characteristic which is not 2 or 3, A/R(A) is a semisimple associative
algebra and a simple bisymmetric algebra is isomorphic to a simple associative algebra
([36, 12]).

3.1.2. Some comments on representation theory.
The beauty of a representation theory is to study the algebras in terms of the computation

of matrices. However, there has not been a “natural” pre-Lie algebra structure on the vector
space End(V ) yet. On the other hand, there is the following definition of “representation”:

Definition 3.5. Let (A, ◦) be a pre-Lie algebra and V be a vector space. Let l, r : A → gl(V )
be two linear maps. (l, r, V ) is called a module of (A, ◦) if

l(x)l(y)− l(x ◦ y) = l(y)l(x)− l(y ◦ x), (3.1)

l(x)r(y)− r(y)l(x) = r(x ◦ y)− r(y)r(x),∀x, y ∈ A. (3.2)

However, it is a kind of “bimodule” structures, which is too formal to give a direct and
computable study in terms of matrices. So up to now, there has not been a suitable (and
computable) representation theory of pre-Lie algebras.

3.1.3. Some classification results.
The classification of algebras in the sense of algebraic isomorphisms is always one of the key

problems, and also always difficult. There have been certain progresses for the classification of
pre-Lie algebras, however, it is impossible to list every classification result here. We only choose
to list some classification results as follows. We would like to emphasize again that there has
not been a complete classification of simple pre-Lie algebras yet.

(a) The classification of pre-Lie algebras in low dimensions.
• The classification of 2-dimensional complex pre-Lie algebras was given in [11] and

[18]. The method is basically the computation of structure constants.
• The classification of 3-dimensional complex pre-Lie algebras was given in [7]. It

depends on a detailed study of 1-cocycles which divides the corresponding classifi-
cation problem into solving a series of linear problems. It includes the classification
of 3-dimensional complex Novikov algebras ([13]), bi-symmetric algebras ([12]) and
simple pre-Lie algebras ([18]), which have been obtained independently.

• The classification of 3-dimensional real pre-Lie algebras was given in [38]. It depends
on the study of the relationships between real and complex pre-Lie algebras.

• The classification of 4-dimensional complex transitive pre-Lie algebras on nilpotent
Lie algebras was given in [35]. The method is to use an extension theory of pre-Lie
algebras.

• The classification of 4-dimensional complex transitive simple pre-Lie algebras was
given in [18].

There are also some related classification results, like the classification of 3-dimensional
pre-Lie superalgebras and 2|2-dimensional Balinsky-Novikov superalgebras.

(b) Some infinite dimensional pre-Lie algebras.
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• The classification of infinite dimensional simple Novikov algebras was studied in
[48, 56, 57].

• The classification of compatible pre-Lie algebras on the Witt and Virasoro algebras
satisfying certain natural gradation conditions was given in [39] through the repre-
sentation theory of the Virasoro algebra, which includes the results given in [23, 42].
The “super” version of the classification result on the super-Virasoro algebras was
given in [37]. Moreover, a class of non-graded compatible pre-Lie algebras on the
Witt algebras was given in [54]. Note that the compatible pre-Lie algebras on the
Witt algebra are simple.

(c) Free pre-Lie algebras. Free pre-Lie algebras are the “biggest” pre-Lie algebras and every
pre-Lie algebra is a quotient of a free pre-Lie algebra.
• From a pure algebraic point of view, the basis of a free pre-Lie algebra was given

explicitly in [50].
• A free pre-Lie algebra with one generator interpreted in terms of rooted trees was

given in [24, 28].

3.1.4. Summary: main problems and ideas.
In a summary, due to the non-associativity, we think that there are the following main diffi-

culties on the study of pre-Lie algebras:
(a) There is not a suitable (and computable) representation theory.
(b) There is not a complete (and good) structure theory.

The main ideas are to try to find more examples! It includes two key points:
(a) Pay attention to the relations with other topics (including application).
(b) Realized or constructed by some known structures.

3.2. Constructions of pre-Lie algebras form some known structures.

3.2.1. Constructions from commutative associative algebras.

Proposition 3.6. (S. Gel’fand) Let (A, ·) be a commutative associative algebra, and D be its
derivation. Then the new product

a ∗ b = a ·Db, ∀a, b ∈ A (3.3)

makes (A, ∗) become a Novikov algebra.

Remark 3.7. There are some generalizations of the above result. Let (A, ·) be a commutative
associative algebra and D be its derivation. Then the new product

x ∗a y = x ·Dy + a · x · y, ∀ x, y ∈ A (3.4)

makes (A, ∗a) become a Novikov algebra for a ∈ F by Filipov ([30]) and for a fixed element
a ∈ A by Xu ([56]).

Definition 3.8. A linear deformation of a Novikov algebra (A, ∗) is a binary operation G1 :
A×A → A such that a family of algebras gq : A×A → A defined by

gq(a, b) = a ∗ b + qG1(a, b) (3.5)

are still Novikov algebras (for every q). If G1 is commutative, then G1 is called compatible.
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Remark 3.9. The two kinds of Novikov algebras given by Filipov and Xu are the special
compatible linear deformations of the algebras given by S. Gel’fand.

Proposition 3.10. ([14, 15]) The Novikov algebras in dimension ≤ 3 can be realized as the
algebras defined by S. Gel’fand and their compatible linear deformations.

It motivates to give the following conjecture:
Conjecture. Every Novikov algebra can be realized as the algebras defined by Eq. (3.3) and
their (compatible) linear deformations.

On the other hand, let Ω be any set. Let NP (Ω) be the commutative associative polynomial
ring over a ring R with the set of variables equal to

{a[i]|a ∈ Ω, i ≥ −1}. (3.6)

Let D : NP (Ω) → NP (Ω) be the R-derivation defined by

D(a[i]) = a[i + 1] (3.7)

and let ◦ be the binary operation on NP (Ω) defined by

a ◦ b = aD(b) (3.8)

Theorem 3.11. ([28]) Free Novikov algebra generated by any set Ω is isomorphic to (NP (Ω)0,
◦), where NP (Ω)0 is the set of elements in NP (Ω) of weight −1 (it is a subalgebra of NP (Ω)).

Corollary 3.12. Any Novikov algebra is a quotient of a subalgebra of an (infinite-dimensional)
algebra given by Eq. (3.3).

3.2.2. Constructions from Lie algebras.

Proposition 3.13. ([33]) Let (g, [, ]) be a Lie algebra and R : g → g be a linear map satisfying
the following equation

[R(x), R(y)] = R([R(x), y] + [x,R(y)]), ∀ x, y ∈ g. (3.9)

Then
x ∗ y = [R(x), y], ∀ x, y ∈ g (3.10)

defines a pre-Lie algebra.

Remark 3.14. The linear operator satisfying Eq. (3.9) is called the operator form of the classical
Yang-Baxter equation or the Rota-Baxter operator of weight zero in the context of Lie algebras.

We will give a more detailed interpretation of the above constructions in next section.

3.2.3. Constructions from associative algebras.
There are two approaches. One is a direct consequence of Proposition 3.13.

Corollary 3.15. Let (A, ·) be an associative algebra and R : A → A be a linear map satisfying

R(x) ·R(y) = R(R(x) · y + x ·R(y)),∀x, y ∈ A. (3.11)

Then
x ∗ y = R(x) · y − y ·R(x), ∀x, y ∈ A (3.12)

defines a pre-Lie algebra.
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Another approach is given as follows.

Proposition 3.16. ([33, 29]) Let (A, ·) be an associative algebra and R : A → A be a linear
map satisfying

R(x) ·R(y) + R(x · y) = R(R(x) · y + x ·R(y)),∀x, y ∈ A. (3.13)

Then
x ∗ y = R(x) · y − y ·R(x)− x · y, ∀x, y ∈ A (3.14)

defines a pre-Lie algebra.

Remark 3.17. The linear operators defined by Eqs. (3.11) and (3.13) are called called a Rota-
Baxter operator of weight zero and weight 1 respectively. The Rota-Baxter operators were
introduced to solve analytic and combinatorial problems and attract more attention in many
fields in mathematics and mathematical physics ([34]).

Remark 3.18. The linear operator defined by Eq. (3.13) is related to the so-called “modified
classical Yang-Baxter equation” ([51]).

3.2.4. Constructions from linear functions.

Proposition 3.19. ([53]) Let V be a vector space over the complex field C with the ordinary
scalar product (, ) and a be a fixed vector in V . Then

u ∗ v = (u, v)a + (u, a)v, ∀u, v ∈ V, (3.15)

defines a pre-Lie algebra on V .

Remark 3.20. The above construction gives the integrable (generalized) Burgers equation

Ut = Uxx + 2U ∗ Ux + (U ∗ (U ∗ U))− ((U ∗ U) ∗ U). (3.16)

Remark 3.21. In [3], we generalized the above construction to get pre-Lie algebras from linear
functions.

Corollary 3.22. The pre-Lie algebras given by Eq. (3.15) are simple.

4. Pre-Lie algebras and classical Yang-Baxter equation

In this section, we give a further detailed interpretation of the construction of pre-Lie algebras
given in Proposition 3.13, which is a direct consequence of the close relationships between pre-
Lie algebras and classical Yang-Baxter equation. Most of the study in this section can be found
in [5].

4.1. The existence of a compatible pre-Lie algebra on a Lie algebra.

Proposition 4.1. ([47]) The sub-adjacent Lie algebra of a finite-dimensional pre-Lie algebra A

over an algebraically closed field with characteristic 0 satisfies

[g(A), g(A)] 6= g(A). (4.1)

Remark 4.2. Therefore there does not exist a compatible pre-Lie algebra on every Lie algebra.
In particular, there is not a compatible pre-Lie algebra on a semisimple Lie algebra.
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A natural question arises: what is a necessary and sufficient condition that there exists a
compatible pre-Lie algebra on a Lie algebra?

Definition 4.3. Let g be a Lie algebra and ρ : g → gl(V ) be a representation of g. A 1-cocycle
q associated to ρ (denoted by (ρ, q)) is defined as a linear map from g to V satisfying

q[x, y] = ρ(x)q(y)− ρ(y)q(x),∀x, y ∈ g. (4.2)

Proposition 4.4. There is a compatible pre-Lie algebra on a Lie algebra g if and only if there
exists a bijective 1-cocycle of g.

Proof. Let (ρ, q) be a bijective 1-cocycle of g, then

x ∗ y = q−1ρ(x)q(y), ∀x, y ∈ A, (4.3)

defines a pre-Lie algebra structure on g. Conversely, for a pre-Lie algebra A, (L, id) is a bijective
1-cocycle of g(A). ¤

Remark 4.5. There are several equivalent conditions such as the existence of an étale affine
representation ([47]). On the other hand, such a conclusion provides linearization procedure of
classification of pre-Lie algebras, that is, divides the corresponding classification problem into
solving a series of linear problems, which leads to the classification of 3-dimensional complex
pre-Lie algebras ([7]).

4.2. Classical Yang-Baxter equation: unification of tensor and operator forms.

Definition 4.6. Let g be a Lie algebra and r =
∑
i

ai ⊗ bi ∈ g ⊗ g. r is called a solution of

classical Yang-Baxter equation (CYBE) in g if

[r12, r13] + [r12, r23] + [r13, r23] = 0 in U(g), (4.4)

where U(g) is the universal enveloping algebra of g and

r12 =
∑

i

ai ⊗ bi ⊗ 1; r13 =
∑

i

ai ⊗ 1⊗ bi; r23 =
∑

i

1⊗ ai ⊗ bi. (4.5)

r is said to be skew-symmetric if

r =
∑

i

(ai ⊗ bi − bi ⊗ ai). (4.6)

We also denote r21 =
∑
i

bi ⊗ ai.

Let r be a solution of CYBE. Set r =
∑

i,j rijei ⊗ ej , where {e1, · · · , en} is a basis of the Lie
algebra g. Then the matrix

r = (rij) =




r11 · · · r1n

· · · · · · · · ·
rn1 · · · rnn


 , (4.7)

is called a classical r-matrix.
Natural question: if a linear transformation (or generally, a linear map) R is given by the

classical r-matrix under a basis, what should R satisfy?
The first answer was given by Semenov-Tian-Shansky in [51]:
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Proposition 4.7. Let g be a Lie algebra. Let r ∈ g⊗g. Suppose that the following two conditions
are satisfied:

(a) there exists a nondegenerate symmetric invariant bilinear form B on g, that is,

B([x, y], z) = B(x, [y, z]), ∀x, y, z ∈ g;

(b) r is skew-symmetric.
Let R : g → g be a linear map corresponding to r under an orthonormal basis associated to B.
Then r is a solution of CYBE if and only if R satisfies Eq. (3.9).

Remark 4.8. In the above sense, Eq. (3.9) is called the operator form of the classical Yang-
Baxter equation.

Another approach was given Kupershmidt in [43] by canceling the above condition (a), but
replacing the linear transformation R : g → g by a linear map r : g∗ → g, where g∗ is the dual
space of g. Note that

g⊗ g ∼= Hom(g∗, g). (4.8)

Proposition 4.9. Let g be a Lie algebra. Let r ∈ g ⊗ g. Suppose that r is skew-symmetric.
Under the isomorphism by Eq. (4.8), we still denote the corresponding linear map from g∗ to g

by r. Then r is a solution of CYBE if and only if r satisfies

[r(x), r(y)] = r(ad∗r(x)(y)− ad∗r(y)(x)),∀x, y ∈ g∗, (4.9)

where ad∗ is the dual representation of adjoint representation (coadjoint representation).

Definition 4.10. Let g be a Lie algebra and ρ : g → gl(V ) be a representation of g. A linear
map T : V → g is called an O-operator if T satisfies

[T (u), T (v)] = T (ρ(T (u))v − ρ(T (v))u),∀u, v ∈ V. (4.10)

Remark 4.11. Kupershmidt introduced the notion of O-operator as a natural generalization
of CYBE since Eqs. (3.9) and (4.9) are O-operators associated to ad and ad∗ respectively.

There is a unification of the tensor and operator forms of CYBE given as follows.

Proposition 4.12. ([5]) Let g be a Lie algebra. Let ρ : g → gl(V ) be a representation of g and
ρ∗ : g → gl(V ∗) be the dual representation. Let T : V → g be a linear map which is identified as
an element in g⊗V ∗ ⊂ (gnρ∗ V ∗)⊗ (gnρ∗ V ∗). Then r = T −T 21 is a skew-symmetric solution
of CYBE in gnρ∗ V ∗ if and only if T is an O-operator.

4.3. Pre-Lie algebras, O-operators and CYBE.

Proposition 4.13. Let g be a Lie algebra and ρ : g → gl(V ) be a representation. Let T : V → g

be an O-operator associated to ρ. Then

u ∗ v = ρ(T (u))v, ∀u, v ∈ V (4.11)

defines a pre-Lie algebra on V .

Remark 4.14. When we take the adjoint representation, we get the construction of pre-Lie
algebras given in Proposition 3.13.
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Lemma 4.15. Let g be a Lie algebra and (ρ, V ) be a representation. Suppose f : g → V is
invertible. Then f is a 1-cocycle of g associated to ρ if and only if f−1 is an O-operator.

Corollary 4.16. Let g be a Lie algebra. There is a compatible pre-Lie algebra structure on g if
and only if there exists an invertible O-operator of g.

By Proposition 4.12 and since id is an O-operator associated to L, we give the following
construction of solutions of CYBE from pre-Lie algebras.

Proposition 4.17. Let A be a pre-Lie algebra. Then

r =
n∑

i=1

(ei ⊗ e∗i − e∗i ⊗ ei) (4.12)

is a solution of the classical Yang-Baxter equation in the Lie algebra g(A) nL∗ A∗, where
{e1, ..., en} is a basis of A and {e∗1, ..., e∗n} is the dual basis.

4.4. An algebraic interpretation of “left-symmetry”: construction from Lie algebras
revisited.

We come back the construction given in Proposition 3.13. In fact, it is a direct consequence
of Proposition 4.13 or the following result.

Lemma 4.18. Let g be a Lie algebra and f be a linear transformation on g. Then on g the new
product

x ∗ y = [f(x), y],∀x, y ∈ g (4.13)
defines a pre-Lie algebra if and only if

[f(x), f(y)]− f([f(x), y] + [x, f(y)]) ∈ C(g),∀x, y ∈ g, (4.14)

where C(g) = {x ∈ g|[x, y] = 0, ∀y ∈ g} is the center of g.

Furthermore, there is an algebraic interpretation of “left-symmetry” as follows. Let {ei} be
a basis of a Lie algebra g. Let r : g → g be an O-operator associated to ad, that is, r satisfies
Eq. (3.9). Set r(ei) =

∑
j∈I rijej . Then the basis-interpretation of Eq. (3.10) is given as

ei ∗ ej =
∑

l∈I

ril[el, ej ]. (4.15)

Such a construction of left-symmetric algebras (pre-Lie algebras) can be regarded as a Lie algebra
“left-twisted” by a classical r-matrix.

On the other hand, let us consider the right-symmetry. We set

ei · ej = [ei, r(ej)] =
∑

l∈I

rjl[ei, el]. (4.16)

Then the above product defines a right-symmetric algebra on g, which can be regarded as a Lie
algebra “right-twisted” by a classical r-matrix.

5. A larger framework: Lie analogues of Loday algebras

Pre-Lie algebras can be put into a bigger framework as one of the algebraic structures of the
Lie analogues of Loday algebras. There is an operadic interpretation of these algebraic structures
which is related to Manin black products.
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5.1. Pre-Lie algebras, dendriform algebras and Loday algebras.

Definition 5.1. ([46]) A dendriform algebra (A,≺,Â) is a vector space A with two binary
operations denoted by ≺ and Â satisfying (for any x, y, z ∈ A)

(x ≺ y) ≺ z = x ≺ (y ∗ z), (x Â y) ≺ z = x Â (y ≺ z), x Â (y Â z) = (x ∗ y) Â z, (5.1)

where x ∗ y = x ≺ y + x Â y.

Proposition 5.2. Let (A,≺,Â) be a dendriform algebra.
(a) The binary operation ∗ : A⊗A → A given by

x ∗ y = x ≺ y + x Â y, ∀x, y ∈ A, (5.2)

defines an associative algebra.
(b) The binary operation ◦ : A⊗A → A given by

x ◦ y = x Â y − y ≺ x,∀x, y ∈ A, (5.3)

defines a pre-Lie algebra.
(c) Both (A, ∗) and (A, ◦) have the same sub-adjacent Lie algebra g(A) defined by

[x, y] = x Â y + x ≺ y − y Â x− y ≺ x,∀x, y ∈ A. (5.4)

Relationship among Lie algebras, associative algebras, pre-Lie algebras and dendriform alge-
bras is given as follows in the sense of commutative diagram of categories ([22]):

Lie algebra ← Pre-Lie algebra
↑ ↑

Associative algebra ← Dendriform algebra
(5.5)

There are quite many similar algebra structures which have a common property of “splitting
associativity”, that is, expressing the multiplication of an associative algebra as the sum of a
string of binary operations. Explicitly, let (X, ∗) be an associative algebra over a field F of
characteristic zero and (∗i)1≤i≤N : X ⊗X → X be a family of binary operations on X. Then
the operation ∗ splits into the N operations ∗1, · · · , ∗N if

x ∗ y =
N∑

i=1

x ∗i y, ∀x, y ∈ X. (5.6)

Example 5.3. For example,
(a) N = 2: dendriform (di)algebra;
(b) N = 3: dendriform trialgebra;
(c) N = 4: quadri-algebra;
(d) N = 8: octo-algebra;
(e) N = 9: ennea-algebra;

All of these algebras are called Loday algebras.

Remark 5.4. For the case N = 2n, n = 0, 1, 2, · · · , there is the following “rule” of constructing
Loday algebras:

(a) Operation axioms can be summarized to be a set of “associativity” relations;
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(b) By induction, for the algebra (A, ∗i)1≤i≤2n , besides the natural (regular) module of A

on the underlying vector space of A itself given by the left and right multiplication
operators, one can introduce the 2n+1 operations {∗i1 , ∗i2}1≤i≤2n such that

x ∗i y = x ∗i1 y + x ∗i2 y, ∀x, y ∈ A, 1 ≤ i ≤ 2n, (5.7)

and their left and right multiplication operators can give a module of (A, ∗i)1≤i≤2n by
acting on the underlying vector space of A itself.

5.2. L-dendriform algebras.
Most of the study in this subsection can be found in [10].

Definition 5.5. Let A be a vector space with two binary operations denoted by . and / :
A⊗A → A. (A, ., /) is called an L-dendriform algebra if for any x, y, z ∈ A,

x . (y . z) = (x . y) . z + (x / y) . z + y . (x . z)− (y / x) . z − (y . x) . z, (5.8)

x . (y / z) = (x . y) / z + y / (x . z) + y / (x / z)− (y / x) / z. (5.9)

Proposition 5.6. Let (A, ., /) be an L-dendriform algebra.

(a) The binary operation • : A⊗A → A given by

x • y = x . y + x / y,∀x, y ∈ A, (5.10)

defines a (horizontal) pre-Lie algebra.
(b) The binary operation ◦ : A⊗A → A given by

x ◦ y = x . y − y / x,∀x, y ∈ A, (5.11)

defines a (vertical) pre-Lie algebra.
(c) Both (A, •) and (A, ◦) have the same sub-adjacent Lie algebra g(A) defined by

[x, y] = x . y + x / y − y . x− y / x,∀x, y ∈ A. (5.12)

Remark 5.7. Let (A, ., /) be an L-dendriform algebra. Then Eqs. (5.8) and (5.9) can be
rewritten as (for any x, y, z ∈ A)

x . (y . z)− (x • y) . z = y . (x . z)− (y • x) . z, (5.13)

x . (y / z)− (x . y) / z = y / (x • z)− (y / x) / z. (5.14)

The both sides of the above two equations can be regarded as a kind of “generalized associa-
tors”. In this sense, Eqs. (5.13) and (5.14) express certain “generalized left-symmetry” of the
“generalized associators”.

The “rule” of introducing the notion of L-dendriform algebra is given as follows.

Proposition 5.8. Let A be a vector space with two binary operations denoted by ., / : A⊗A → A.

(a) (A, ., /) is an L-dendriform algebra if and only if (A, •) defined by Eq. (5.10) is a pre-Lie
algebra and (L., R/, A) is a module.

(b) (A, ., /) is an L-dendriform algebra if and only if (A, ◦) defined by Eq. (5.11) is a pre-Lie
algebra and (L.,−L/, A) is a module.



22 CHENGMING BAI

Proposition 5.9. Any dendriform algebra (A,Â,≺) is an L-dendriform algebra by letting x.y =
x Â y, x / y = x ≺ y.

Remark 5.10. In the above sense, associative algebras are the special pre-Lie algebras whose
associators are zero, whereas dendriform algebras are the special L-dendriform algebras whose
“generalized associators” are zero.

Furthermore, there is the following commutative diagram:

Lie −← Pre-Lie
−,+← L-dendriform

−
↖ ⇑∈

−
↖ ⇑∈

−
↖

Associative +← Dendriform +← Quadri

(5.15)

where “ ⇑∈′′ means the inclusion. “+′′ means the binary operation x◦1 y+x◦2 y and “−′′ means
the binary operation x ◦1 y − y ◦2 x.

Remark 5.11. In fact, except for the above motivation, there are some more motivations to
introduce the notion of an L-dendriform algebra. For example, it is the underlying algebraic
structure of a pseudo-Hessian structure on a Lie group.

5.3. Lie analogues of Loday algebras.
Generalizing the study on pre-Lie algebras and L-dendriform algebras, we give the following

structures as Lie analogues of Loday algebras.
Let (X, [, ]) be a Lie algebra and (∗i)1≤i≤N : X ⊗X → X be a family of binary operations on

X. Then the Lie bracket [, ] splits into the commutator of N binary operations ∗1, · · · , ∗N if

[x, y] =
N∑

i=1

(x ∗i y − y ∗i x), ∀x, y ∈ X. (5.16)

“Rule” of construction
For the case that N = 2n, n = 0, 1, 2, · · · , there is a “rule” of constructing the binary

operations ∗i as follows: the 2n+1 binary operations give a natural module structure of an
algebra with the 2n binary operations on the underlying vector space of the algebra itself, which
is the beauty of such algebra structures. That is, by induction, for the algebra (A, ∗i)1≤i≤2n ,
besides the natural module of A on the underlying vector space of A itself given by the left and
right multiplication operators, one can introduce the 2n+1 binary operations {∗i1 , ∗i2}1≤i≤2n

such that

x ∗i y = x ∗i1 y − y ∗i2 x, ∀x, y ∈ A, 1 ≤ i ≤ 2n, (5.17)

and their left or right multiplication operators give a module of (A, ∗i)1≤i≤2n by acting on the
underlying vector space of A itself.

Example 5.12. We have the following results:

(a) When N = 1, the corresponding algebra (A, ∗i)1≤i≤N is a pre-Lie algebra;
(b) When N = 2, the corresponding algebra (A, ∗i)1≤i≤N is an L-dendriform algebra.
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Remark 5.13. Note that for n ≥ 1 (N ≥ 2), in order to make Eq. (5.16) be satisfied, there is
an alternative (sum) form of Eq. (5.17)

x ∗i y = x ∗i1 y + x ∗′i2 y, ∀x, y ∈ A, 1 ≤ i ≤ 2n, (5.18)

by letting x∗′i2 y = −y∗i2 x for any x, y ∈ A. In particular, in such a situation, it can be regarded
as a binary operation ∗ of a pre-Lie algebra that splits into the N = 2n (n = 1, 2 · · · ) binary
operations ∗1, ..., ∗N .

Definition 5.14. ([45]) Let A be a vector space with four bilinear products ↘,↗,↖, ↙:
A⊗A → A. (A,↘,↗,↖,↙) is called an L-quadri-algebra if for any x, y, z ∈ A,

x ↘ (y ↘ z)− (x ∗ y) ↘ z = y ↘ (x ↘ z)− (y ∗ x) ↘ z, (5.19)

x ↘ (y ↗ z)− (x ∨ y) ↗ z = y ↗ (x Â z)− (y ∧ x) ↗ z, (5.20)

x ↘ (y ↖ z)− (x ↘ y) ↖ z = y ↖ (x ∗ z)− (y ↖ x) ↖ z, (5.21)

x ↗ (y ≺ z)− (x ↗ y) ↖ z = y ↙ (x ∧ z)− (y ↙ x) ↖ z, (5.22)

x ↘ (y ↙ z)− (x Â y) ↙ z = y ↙ (x ∨ z)− (y ≺ x) ↙ z, (5.23)

where
x Â y = x ↘ y + x ↗ y, x ≺ y = x ↖ y + x ↙ y, (5.24)

x ∨ y = x ↘ y + x ↙ y, x ∧ y = x ↗ y + x ↖ y, (5.25)

x ∗ y = x ↘ y + x ↗ y + x ↖ y + x ↙ y = x Â y + x ≺ y = x ∨ y + x ∧ y. (5.26)

Remark 5.15. If both sides of Eqs. (5.19)-(5.23) are zero, we get the identities of the definition
of a quadri-algebra, which is the Loday algebra with 4 binary operations ([1]).

There is the following commutative diagram:

Lie ← Pre-Lie ← L-dendriform ← L-quadri
↖ ↖ ↖ ↖

Associative ← Dendriform ← Quadri ← Octo
(5.27)

5.4. An operadic interpretation : successors of operads and Manin black products.
Most of the study in this subsection can be found in [8].

Definition 5.16. Let P = T(V )/(R) be a binary algebraic operad on the S2-module V = V (2),
concentrated in arity 2 with a F[S2]-basis V, such that R is spanned, as an S2-module, by locally
homogeneous elements of the form

R :=

{
rs :=

∑

i

cs,iτs,i

∣∣∣cs,i ∈ F, τs,i ∈ {t(V), t ∈ R}, 1 ≤ s ≤ k, k ≥ 1

}
(5.28)

where R is a set of representatives of J/ ∼. The bisuccessor of P is defined to be the binary
algebraic operad BSu(P) = T( Ṽ )/(BSu(R)) where the S2-action on Ṽ is given by

(
ω
≺

) (12)
:=

(
ω(12)

Â

)
,

(
ω
Â

) (12)
:=

(
ω(12)

≺

)
, ω ∈ V, (5.29)
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and the space of relations is generated, as an S2-module, by

BSu(R) :=

{
Sux(rs) :=

∑

i

cs,iSux(ts,i)
∣∣∣ x ∈ Lin(ts,i), 1 ≤ s ≤ k

}
(5.30)

The notion of the bisuccessor BSu(P) of a binary operad P generalizing the relationships
among Loday algebras (and their Lie analogues) in the operadic sense.

Example 5.17. Let As,Dend, Quad, Lie,PreLie,LDend, LQuad be the operad of associa-
tive, dendriform, quadri-algebras, Lie, pre-Lie, L-dendriform and L-quadri-algebras respectively.
Then

BSu(As) = Dend, BSu(Dend) = Quad,

BSu(Lie) = PreLie, BSu(PreLie) = LDend, BSu(LDend) = LQuad.

Definition 5.18. Let P = F(V )/(R) and Q = F(W )/(S) be two binary quadratic operads with
finite-dimensional generating spaces. Define their Manin black product by the formula

P • Q := F(V ⊗W ⊗ F·sgnS2)/(Ψ(R⊗ S)). (5.31)

where the notations are given as follows.

(a) Let V be a (left) S2-module. The free operad F(V ) on V is given by the F-vector space
spanned by binary trees with vertices indexed by elements of V , together with an action
of the symmetric groups.

(b) Ψ is a S3-module homomorphism from F(V )(3) ⊗ F(W )(3) ⊗ F·sgnS3 to F(V ⊗ W ⊗
F·sgnS2)(3) satisfying certain conditions.

Example 5.19. The operad Lie, of Lie algebras is the neutral element for •. That is, for any
binary quadratic operad P, we know that

P = Lie • P = P • Lie. (5.32)

Theorem 5.20. Let P be a binary quadratic operad. Then we have the isomorphism of operads

BSu(P) = PreLie • P. (5.33)

Remark 5.21. In the above sense, we know that

(a) PreLie plays a role as a “splitting factor”;
(b) PreLie plays a role of “partition of unit” if Lie is regarded as a unit for the Manin black

product •.
Corollary 5.22. (a) Loday algebras

• Dend = PreLie •As;
• Quad = PreLie •Dend;

(b) Lie analogues of Loday algebras
• PreLie = PreLie • Lie;
• LDend = PreLie • PreLie;
• LQuad = PreLie • LDend.
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