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OUTLINE

1. introduce the basics of the Berezin-Toeplitz quantization
schemes

2. both operator and deformation quantization
3. mostly concentrate on compact Kähler manifolds
4. coherent states, covariant symbols
5. asymptotic expansion of Berezin transform
6. Karabegov classification
7. revived interest: non-commutative geometry, fuzzy

manifolds, matrix limits
8. TQFT (quantization of moduli space of flat SU(n)

connections.
9. ...........
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THE GEOMETRIC SET-UP

(M, ω) a Kähler manifold.

M a complex manifold of complex dimension n

ω, the Kähler form, a non-degenerate closed, positive
(1,1)-form

ω = i
n∑

i,j=1

gij(z)dzi ∧ dz̄j ,

with local functions gij(z) such that the matrix (gij(z))i,j=1,...,n is
hermitian and positive definite



Consider (M, ω) as a symplectic manifold (i.e. take the fact that
dω = 0 and ω is non-degenerate).

For a symplectic manifold M we have on C∞(M) a Lie algebra
structure, the Poisson bracket {., .}.
For its definition
assign to f ∈ C∞(M) its Hamiltonian vector field Xf , and then

ω(Xf , ·) = df (·), { f ,g } := ω(Xf ,Xg)

Gives a Lie algebra structure in C∞(M) with Leibniz rule

{fg,h} = f{g,h}+ {f ,h}g, ∀f ,g,h ∈ C∞(M).



Quantization condition:

(M, ω) is called quantizable, if there exists an associated
quantum line bundle (L,h,∇)

L is a complex line bundle over M,
h a hermitian metric on L,
∇ a connection compatible with the metric in L,

fulfilling additionally

curv(L,∇) = −i ω



Kähler case

Require L to be a holomorphic line bundle and the connection
compatible both with the metric h and the complex structure of
the bundle

by this ∇ will be uniquely fixed

In local holomorphic coordinates and a local holomorphic frame
of the bundle the metric h is represented by a function ĥ

Then the curvature of the bundle is given by ∂∂ log ĥ

Quantum condition
i∂∂ log ĥ = ω .



EXAMPLES

(a) Cn is a Kähler manifold with Kähler form

ω = i
n∑

k=1

dzk ∧ dzk .

Poisson bracket

{f ,g} = i
n∑

k=1

(
∂f
∂zk
· ∂g
∂zk
− ∂f
∂zk

∂g
∂zk

)
quantum line bundle is the trivial line bundle with hermitian
metric fixed by the function ĥ(z) = exp(−

∑n
k=1 zkzk )



(b) Riemann sphere (or the complex projective line)
P1(C) = C ∪ {∞} ∼= S2

ω =
i

(1 + zz)2 dz ∧ dz .

the quantum line bundle is the dual to the tautological line
bundle, the hyper plane section bundle

(c) generalizes to the n-dimensional complex projective
space Pn(C).
Kähler form is the Fubini-Study form

ωFS := i
(1 + |w |2)

∑n
i=1 dwi ∧ dw i −

∑n
i,j=1 w iwjdwi ∧ dw j

(1 + |w |2)
2

Again, Pn(C) is quantizable with the hyper plane section bundle
as quantum line bundle



(d) (complex-) one-dimensional torus given as M = C/Γτ
where Γτ := {n + mτ | n,m ∈ Z} is a lattice with
τ ∈ C, im τ > 0

Kähler form
ω =

iπ
im τ

dz ∧ dz ,

quantum line bundle is the theta line bundle of degree 1, i.e. the
bundle whose global sections are scalar multiples of the
Riemann theta function.



(e) unit disc D := {z ∈ C | |z| < 1} (non-compact)
Kähler form is given by

ωD =
2i

(1− zz)2 dz ∧ dz .

(f) compact Riemann surface M of genus g ≥ 2
the unit disc D is the universal covering space
M can be given as a quotient of D by a Fuchsian subgroup of
SU(1,1), whose elements act by fractional linear
transformations
Kähler form ωD is invariant under fractional linear
transformations, hence it defines a Kähler form on M
the quantum line bundle is the canonical bundle, i.e. the bundle
whose local sections are the holomorphic differentials.
its global sections can be identified with automorphic forms of
weight 2 with respect to the Fuchsian group.



CONDITIONS FOR BEING QUANTIZABLE

Those examples might create the wrong impression that all
Kähler manifolds are quantizable.

A prominent counter-example are higher dimensional tori Cn/L.
Only those are quantisable which are abelian varieties, i.e.
those which admit enough theta functions.

For n ≥ 2 a generic torus will not be an abelian variety.

What is the reason?



For M compact! Recall the quantization condition

curvL,∇ = −iω

ω is positive =⇒ (up to factor) curv is positive, =⇒ L is a
positive line bundle =⇒ (via Kodaira Embedding Theorem) L
is an ample line bundle

there exists m0 ∈ N such that L⊗m0 has enough global
holomorphic sections to embed M into projective space (i.e.
L⊗m0 is very ample).

hence, quantizable compact Kähler manifolds are complex
submanifolds of PN(C).

If we read the relation above in the other direction: ω is a
integer class



Warning: This embedding φ is not a Kähler embedding, i.e.

φ∗(ω
(N)
FS ) 6= ωM .

vice versa: every projective submanifold is via restriction of the
Fubini-Study form and the hyper section bundle a quantizable
Kähler manifold.



THE BEREZIN-TOEPLITZ OPERATORS

(M, ω) a quantizable Kähler manifold with quantum line bundle
(L,h,∇).

Consider now Lm := L⊗m, with metric h(m).

Γ∞(M,Lm) the space of smooth sections

scalar product

〈ϕ,ψ〉 :=

∫
M

h(m)(ϕ,ψ) Ω, Ω :=
1
n!
ω ∧ ω · · · ∧ ω︸ ︷︷ ︸

n

Γ
(b)
hol(M,Lm) the space of bounded global holomorphic

sections

Π(m) : L2(M,Lm) −→ Γ
(b)
hol(M,Lm)



If M is compact then

Γ
(b)
hol(M,Lm) = Γhol(M,Lm) = H0(M,Lm)

is finite-dimensional.



Take f ∈ C∞(M), and s ∈ Γ
(b)
hol(M,Lm)

s 7→ Π(m)(f · s) =: T (m)
f (s)

defines
T (m)

f : Γ
(b)
hol(M,Lm)→ Γ

(b)
hol(M,Lm)

the Toeplitz operator of level m.

The Berezin-Toeplitz operator quantization is the map

f 7→
(

T (m)
f

)
m∈N0

.



Remark

instead considering the sequence of bundles L⊗m it is possible
to incorporate an auxiliary hermitian holomorphic vector bundle
E and consider the sequence of vector bundles

L⊗m ⊗ E

and the corresponding Toeplitz operators

An important case is the metaplectic correction. Here E is a
square root of the canonical bundle.
An example when this is needed is the case when considering
quotients to have at least asymptotically unitarity for
quantization commutes with reduction.



APPROXIMATION RESULTS FOR COMPACT KÄHLER

MANIFOLDS

Theorem (Bordemann, Meinrenken, and Schl. 1994)

(a)
lim

m→∞
||T (m)

f || = |f |∞

(b)
||mi [T (m)

f ,T (m)
g ]− T (m)

{f ,g}|| = O(1/m)

(c)
||T (m)

f T (m)
g − T (m)

f ·g || = O(1/m)

The BT quantization has the correct semi-classical behavior, or
strict quantization in the sense of Rieffel, or continuous field of
C∗ algebras with additional Dirac condition.



Certain other results

1. The Toeplitz map of level m

C∞(M)→ End(Γhol(M,L(m))), f → T (m)
f ,

is surjective, i.e. every operator is a Toeplitz operator.

2. T (m)
f

∗
= T (m)

f̄
(for real valued functions f the Toeplitz

operator Tf is selfadjoint),
3. Let A ∈ End(Γhol(M,L(m))) be a selfadjoint operator then

there exists a real valued function f , such that A = T (m)
f .

4. The Toeplitz map is never injective (M compact !) But it is
asymptotically injective, i.e. ||T (m)

f−g || → 0 for m→∞ implies
f = g.



Operator of geometric quantization

P(m)
f := ∇(m)

X (m)
f

+ if ·

∇(m) is the connection in Lm, and X (m)
f the Hamiltonian vector field of

f with respect to the Kähler form ω(m) = m · ω
Need a polarization, not unique, in the complex situation there
is canonical one by taking the projection to the space of
holomorphic sections.
Operator of geometric quantization:

Q(m)
f := Π(m)P(m)

f

By surjectivity of the Toeplitz map it can be written as Toeplitz
operator of a function fm (maybe different for every m)

Indeed Tuynman relation:

Q(m)
f = i T (m)

f− 1
2m ∆f

.



STAR PRODUCTS

Given the Poisson algebra (C∞(M), ·, { , }) of smooth functions
on a manifold M.
A star product for M is an associative product ? on C∞(M)[[ν]]
such that for f ,g ∈ C∞(M)

1. f ? g = f · g mod ν,
2. (f ? g − g ? f ) /ν = −i{f ,g} mod ν.

Can be written as

f ? g =
∞∑

k=0

νkCk (f ,g), Ck (f ,g) ∈ C∞(M)

with

C0(f ,g) = f · g, and C1(f ,g)− C1(g, f ) = −i{f ,g}



additional properties

I 1 ? f = f ? 1 = f (null on constants)
I local if

supp Cj(f ,g) ⊆ supp f ∩ supp g, ∀f ,g ∈ C∞(M).

locality is equivalent to the fact that the Cj are bidifferential
operators, and hence the star product defines for every open
subset U a star product. Such local star products are either
called local or differential star products



Equivalence of star products:

? and ?′ (for the same Poisson structure) are equivalent iff there
exists a formal series of linear operators

B =
∞∑

i=0

Biν
i , Bi : C∞(M)→ C∞(M),

with B0 = id such that B(f ) ?′ B(g) = B(f ? g)

Symplectic case: equivalence classes of differential star
products are uniquely classified by their Deligne-Fedosov class

cl([?]) =
1
iν

[ω] + H2
dR(M)[[ν]]

This is a 1:1 correspondence.
Hence for contractible manifolds there is a unique class.



For compact Kähler manifolds there are many different and
even non-equivalent star products.

Is there a star product which is given in a natural way?
Yes: the Berezin-Toeplitz star product to be introduced below.

A definition of Karabegov:
A differential star product is called star product with separation
of variables if and only if

f ? h = f · h, and h ? g = h · g,

for every locally defined antiholomorphic function g,
holomorphic function f , and arbitrary function h.

Equivalent conditions is Ck (., .) for k ≥ 1 has only derivatives in
the (anti-)holomorphic directions in the second (first) argument.
As such it was given by Bordemann-Waldmann and called star
product of (anti-)Wick type.



Karabegov and Bordemann-Waldmann proved that there exists
for every Kähler manifold star products of separation of
variables type.
Only a formal star product, no relation to an operator calculus,
contrary to the Berezin-Toeplitz star product

star products with separation of variables are classified by the
Karabegov form

1
ν
ω−1 +

∞∑
i=0

ωiν
i ,

ω−1 = ωM , and ωi are closed (1,1) forms
Here classification means up to identity

Warning: property of being a star product of separation of
variables type will not be kept by equivalence transformations.



BEREZIN-TOEPLITZ DEFORMATION QUANTIZATION

Theorem

∃ a unique differential star product

f ?BT g =
∑

νkCk (f ,g)

such that

T (m)
f T (m)

g ∼
∞∑

k=0

(
1
m

)k

T (m)
Ck (f ,g)

Asymptotic formula means the following for f ,g ∈ C∞(M) and for
every N ∈ N we have with suitable constants KN(f ,g) for all m

||T (m)
f T (m)

g −
∑

0≤j<N

(
1
m

)j

T (m)
Cj (f ,g)|| ≤ KN(f ,g)

(
1
m

)N

.



Theorem (Karabegov and Schl.)

(a) The Berezin-Toeplitz star product is a local star product
which is of separation of variable type with the role of
holomorphic and anti-holomorphic functions switched
(Wick-type).

(b) Its classifying Deligne-Fedosov class is

cl(?BT ) =
1
i

(
1
ν

[ω]− δ

2

)
(c) Its classifying Karabegov form is

−1
ν
ω + ωcan.

Let KM be the canonical line bundle of M, δ = c1(KM), and ωcan
the curvature form of KM with respect to the metric induced by
the Liouville form.



Proof of first theorem: mainly based on symbol calculus of
Boutet de Monvel and Guillemin

Proof of second theorem: asymptotic expansion of the
Bergman kernel off the diagonal.



I BMS Theorem (using Tuynman relation) =⇒ there exists
a star product ?GQ given by asymptotic expansion of
product of geometric quantisation operators

I ?GQ is equivalent to ?BT , B(f ) := (id − ν∆
2 )f

I ?GQ is not of separation of variable type



THE DISC BUNDLE

Now coming to the set-up of the proofs

I assume that the quantum line bundle L is already very
ample,

I pass to its dual (U, k) := (L∗,h−1) with dual metric k ,
U = L∗, k̂ = (ĥ)−1

I inside of the total space U, consider the circle bundle

Q := {λ ∈ U | k(λ, λ) = 1},

I disc bundle (interior of Q)

D := {λ ∈ U | k(λ, λ) < 1},

I τ : Q → M (or τ : U → M) the projection,



I the bundle Q is a contact manifold, i.e. there is a 1-form ν
(= ( 1

2i (∂ − ∂̄) log ĥ)|Q) such that µ = 1
2π τ
∗Ω ∧ ν is a volume

form on Q, also τ∗Ω = (dν)n.
I Q is a S1 bundle
I ∫

Q
(τ∗f )µ =

∫
M

f Ω, ∀f ∈ C∞(M).

I L2(Q, µ)

I H subspace of functions on Q which can be extended to
holomorphic functions on the disc bundle (“interior” of the
circle bundle), called generalized Hardy space

I generalized Szegö projector is the orthogonal projection
Π : L2(Q, µ)→ H



I H(m) subspace of H consisting of m-homogenous
functions on Q, homogenous means ψ(cλ) = cmψ(λ)

I space H is preserved by the S1-action. It can be
decomposed into eigenspaces H =

∏∞
m=0H(m) where

c ∈ S1 acts on H(m) as multiplication by cm.
I Szegö projector is S1 invariant and can be decomposed

into its components, the Bergman projectors

Π̂(m) : L2(Q, µ)→ H(m).



I Q is a S1−bundle, Lm are associated line bundles
I sections of Lm = U−m are identified with those functions ψ

on Q which are homogeneous of degree m,
I identification given via the map

γm : L2(M,Lm)→ L2(Q, µ), s 7→ ψs where

ψs(α) = α⊗m(s(τ(α))),

I Restricted to the holomorphic sections we obtain the
unitary isomorphism

γm : Γhol(M,Lm) ∼= H(m).



Now we have the the two projections

Π̂(m) : L2(Q, µ)→ H(m).

Π(m) : L2(M,Lm) −→ Γhol(M,Lm)

and the unitary map

γm : L2(M,Lm)→ L2(Q, µ)

and they are compatible

Π̂(m) ◦ γm = γm ◦ Π(m)

After identification with γm we can identify Π̂(m) with Π(m)

In particular the modes of Π can be identified with Π(m).



Bergman projectors Π̂(m) have smooth integral kernels,

the Bergman kernels Bm(α, β) on Q ×Q, i.e.

Π̂(m)(ψ)(α) =

∫
Q
Bm(α, β)ψ(β)µ(β).

In joint work with A. Karabegov we showed 2001 the
asymptotic expansion of the kernel off the diagonal.

The Bergman kernel can be given in terms of coherent states.
(see later)



TOEPLITZ STRUCTURE

(Π,Σ) Boutet de Monvel and Guillemin

Here only special case:

Π : L2(Q, µ)→ H is the Szegö projector and Σ is the
submanifold

Σ := { tν(λ) | λ ∈ Q, t > 0 } ⊂ T ∗Q \ 0

of the tangent bundle of Q defined with the help of the 1-form ν

Σ is a symplectic submanifold, a symplectic cone.



A (generalized) Toeplitz operator of order k is an operator
A : H → H of the form

A = Π · R · Π

where R is a ΨDO of order k on Q.

I build a ring
I symbol is the leading symbol of R: σ(A) := σ(R)|Σ
I the symbol is well-defined
I σ(A1A2) = σ(A1)σ(A2)

I σ([A1,A2]) = i{σ(A1), σ(A2)}Σ.
I if A is of (formal) order k with symbol σ(A) = 0 then A is of

order k − 1



We need the following Toeplitz operators

1. the generator of the circle action Dϕ =
1
i
∂

∂ϕ
, (ϕ is the

angular variable)
order 1 with symbol t
operates on H(m) as multiplication by m

2. f ∈ C∞(M) let Mf be the operator on L2(Q, µ)
corresponding to multiplication with τ∗f
Tf = Π ·Mf · Π : H → H (the global Toeplitz operator)
order 0 with symbol σ(Tf ) = τ∗Σ(f )



Tf commutes with the circle action and can be decomposed

Tf =
∞∏

m=0

T (m)
f ,

(T (m)
f the restriction of Tf to H(m))

after the identification of H(m) with Γhol(M,Lm) we see that
these T (m)

f are the Toeplitz operators T (m)
f (acting on the

sections of the bundle Lm) introduced before



Sketch of proof of part (c) of BMS theorem

A := Dϕ(Tfg − Tf Tg)

formally A is of order one, calculate its symbol:

σ(A) = t(τ∗Σ(f · g)− τ∗Σ(f ) · τ∗Σ(g))

as τ∗Σ(f · g) = τ∗Σ(f ) · τ∗Σ(g) we get σ(A) = 0

hence, A is of order zero

it is S1 invariant

M and hence also Q are compact manifolds =⇒ A is a
bounded operator



from S1-invariance

A =
∞∏

m=0

A(m)

where A(m) is the restriction of A on the space H(m).

for the norms we get ||A(m)|| ≤ ||A||

A(m) = A|H(m) = m(T (m)
f ·g − T (m)

f T (m)
g )

taking the norm bound and dividing it by m we get the claim

||T (m)
f T (m)

g − T (m)
f ·g || = O(1/m)



Sketch of proof of part (b) of BMS theorem

the commutator [Tf ,Tg] is a Toeplitz operator of order −1

consider the Toeplitz operator

A := D2
ϕ [Tf ,Tg] + iDϕ T{f ,g} .

formally this is an operator of order 1

But (using the quantum condition)

σ([Tf ,Tg]) = i{τ∗Σf , τ∗Σg}Σ = −it−1{f ,g}M

hence again σ(A) = 0 and A is an an operator of order 0 and
hence A is bounded
as before with

A(m) = A|H(m) = m2[T (m)
f ,T (m)

g ] + imT (m)
{f ,g}.

we obtain the claim

||mi [T (m)
f ,T (m)

g ]− T (m)
{f ,g}|| = O(1/m)



I our original proof of part (a) of BMS was quite complicated
and different.
now it is an easy consequence of the asymptotic expansion
of the Berezin transform (joint with A. Karabegov)

I existence proof of star product follows from generalisations
of the proofs indicated above done inductively in such a
way

AN = DN
ϕTf Tg −

N−1∑
j=0

DN−j
ϕ TCj (f ,g)

is always a Toeplitz operator of order zero. The operator
AN is S1-invariant, As it is of order zero his symbol is a
function on Q. By the S1-invariance symbol is given by (the
pull-back of) a function on M. We take this function as next
element CN(f ,g) in the star product.
Now AN − TCN (f ,g) is of order −1 and
AN+1 = Dϕ(AN − TCN (f ,g)) is of order 0 and induction can
continue.

I uniqueness follows from part (a)



COHERENT STATES AND BEREZIN TRANSFORM

Recall
ψs(α) = α⊗m(s(τ(α))),

Now we fix α ∈ U \ 0 and vary the sections s.

I coherent vector (of level m) associated to the point
α ∈ U \ 0 is the element e(m)

α of Γhol(M,Lm) with (for all
s ∈ Γhol(M,Lm))

〈e(m)
α , s〉 = ψs(α) = α⊗m(s(τ(α)))

for all s ∈ Γhol(M,Lm).
I check:

e(m)
cα = c̄m · e(m)

α , c ∈ C∗ := C \ {0} .



I coherent state (of level m) associated to x ∈ M is the
projective class

e(m)
x := [e(m)

α ] ∈ P(Γhol(M,Lm)), α ∈ τ−1(x), α 6= 0.

I The coherent state embedding is the antiholomorphic
embedding

M → P(Γhol(M,Lm)) ∼= PN(C), x 7→ [e(m)

τ−1(x)
].



Covariant Berezin symbol σ(m)(A)

(of level m) of an operator A ∈ End(Γhol(M,L(m))) is defined as

σ(m)(A) : M → C, x 7→ σ(m)(A)(x) :=
〈e(m)
α ,Ae(m)

α 〉
〈e(m)
α ,e(m)

α 〉
, α ∈ τ−1(x).

Can be rewritten as

σ(m)(A) = Tr(AP(m)
x ).

with the coherent projectors

P(m)
x =

|e(m)
α 〉〈e(m)

α |
〈e(m)
α ,e(m)

α 〉
, α ∈ τ−1(x)



I Also the notion of a contravariant symbol exists.

I the operator is represented as a certain integral against
the coherent projectors

I for a Toeplitz operator T (m)
f a contravariant symbol is f

itself



BEREZIN TRANSFORM

The map

I(m) : C∞(M)→ C∞(M), f 7→ I(m)(f ) := σ(m)(T (m)
f )

is called the Berezin transform (of level m).



Theorem (Karabegov, Schl.)

Given x ∈ M then the Berezin transform I(m)(f ) has a complete
asymptotic expansion in powers of 1/m as m→∞

I(m)(f )(x) ∼
∞∑

i=0

Ii(f )(x)
1

mi ,

where Ii : C∞(M)→ C∞(M) are maps with
I0(f ) = f , I1(f ) = ∆f .

I ∆ is the Laplacian with respect to the metric given by the
Kähler form ω,

I Complete asymptotic expansion: Given f ∈ C∞(M), x ∈ M
and an r ∈ N then there exists a positive constant A such
that ∣∣∣∣∣I(m)(f )(x)−

r−1∑
i=0

Ii(f )(x)
1

mi

∣∣∣∣∣
∞

≤ A
mr .



Starting point is here the Bergman kernel(
I(m)(f )

)
(x) =

1
Bm(α, α)

∫
Q
Bm(α, β)Bm(β, α)τ∗f (β)µ(β)

We can show

Bm(α, β) = 〈e(m)
α ,e(m)

β 〉.



NORM PRESERVATION OF BT QUANTUM OPERATORS

Theorem BMS (a) :

|f |∞ −
C
m

≤ ||T (m)
f || ≤ |f |∞

First statement

|I(m)(f )|∞ = |σ(m)(T (m)
f )|∞ ≤ ||T (m)

f || ≤ |f |∞ .



Proof of

|I(m)(f )|∞ = |σ(m)(T (m)
f )|∞ ≤ ||T (m)

f || ≤ |f |∞ .

First inequality:
Using Cauchy-Schwarz inequality (x = τ(α))

|σ(m)(T (m)
f )(x)|2 =

|〈e(m)
α ,T (m)

f e(m)
α 〉|2

〈e(m)
α ,e(m)

α 〉
2

≤
〈T (m)

f e(m)
α ,T (m)

f e(m)
α 〉

〈e(m)
α ,e(m)

α 〉
≤ ||T (m)

f ||2 .

(the last inequality in this line follows from the definition of the
operator norm)



Proof of

|I(m)(f )|∞ = |σ(m)(T (m)
f )|∞ ≤ ||T (m)

f || ≤ |f |∞ .

Second inequality:
Recall the multiplication operator M(m)

f on Γ∞(M,Lm)

||T (m)
f || = ||Π(m) M(m)

f Π(m)|| ≤ ||M(m)
f ||

for ϕ ∈ Γ∞(M,Lm), ϕ 6= 0

||M(m)
f ϕ||

2

||ϕ||2
=

∫
M h(m)(fϕ, fϕ)Ω∫

M h(m)(ϕ,ϕ)Ω
=

∫
M f (z)f (z)h(m)(ϕ,ϕ)Ω∫

M h(m)(ϕ,ϕ)Ω
≤ |f |2∞ .

Hence,

||T (m)
f ||| ≤ ||M(m)

f || = sup
ϕ6=0

||M(m)
f ϕ||
||ϕ||

≤ |f |∞.



Second,
I take xe ∈ M a point with |f (xe)| = |f |∞
I asymptotic expansion of the Berezin transform yields
|(I(m)f )(xe)− f (xe)| ≤ C/m with a constant C

I hence, ∣∣∣|f (xe)| − |(I(m)f )(xe)|
∣∣∣ ≤ C/m

I and

|f |∞ −
C
m

= |f (xe)| − C
m

≤ |(I(m)f )(xe)| ≤ |I(m)f |∞ .

I This gives the statement



BEREZIN STAR PRODUCT

I Construction of the Berezin star product, under very
restrictive conditions on the manifolds

I A(m) ≤ C∞(M), of level m covariant symbols.
I the symbol map is injective (follows from Toeplitz map

surjective)
I for σ(m)(A) and σ(m)(B) the operators A and B are uniquely

fixed, and we set

σ(m)(A) ?(m) σ
(m)(B) := σ(m)(A · B)

I ?(m) on A(m) is an associative and noncommutative product
I Crucial problem, how to obtain from ?(m) a star product for

all functions (or symbols) independent from the level m ?
I in general not possible, (only for limited classes of

manifolds)



CONSTRUCTION OF THE BEREZIN STAR PRODUCT FOR

ALL QUANTIZABLE KÄHLER MANIFOLDS

We start from the Berezin-Toeplitz star product.

take

I =
∞∑

i=0

Iiν i

with the operators from the asymptotic expansion of the
Berezin transform.

set:
f ?B g = I(I−1f ?BT I−1g)

as I0 = id this gives an equivalent star product, which we call
Berezin star product.

It is of separation of variable type (of anti-Wick type). If the
construction with the covariant symbols work it coincides with it.



RAWNSLEY’S EPSILON FUNCTION ε(m)

ε(m) : M → C∞(M), x 7→ ε(m)(x) :=
h(m)(e(m)

α ,e(m)
α )(x)

〈e(m)
α ,e(m)

α 〉
, α ∈ τ−1(x).

We have
0 6= 〈e(m)

α ,e(m)
α 〉 = α⊗m(e(m)

α (τ(α)))

hence,
e(m)
α (x) 6= 0, for x = τ(α), and

(The coherent vector e(m)
α cannot have a zero at x = τ(α) -

otherwise it cannot “see the non-vanishing sections there”. )
Warning: e(m)

α will have zeros, but they are elsewhere.
In fact ε(m) > 0 and we can introduce the modified measure

Ω(m)
ε (x) := ε(m)(x)Ω(x)

and obtain a modified scalar product 〈., .〉(m)
ε for C∞(M).



Some nice results
I

h(m)(s1, s2)(x) = 〈s1,P
(m)
x s2〉 · ε(m)(x) .

I Let s1, s2, . . . , sk be an arbitrary orthonormal basis of
Γhol(M,Lm). Then

ε(m)(x) =
k∑

j=1

h(m)(sj , sj)(x).

I If ε(m) is constant (as function of the points of the manifold):

ε(m) =
dim Γhol(M,Lm)

vol M
.



I When ε(m) will be constant?:
I Clear, when there is a transitive group action on M and

everything is homogeneous then from the sum above it
follows that it is constant.

I More precisely (Cahen–Gutt–Rawnsley): ε(m) is constant if
and only the quantization is projectively induced,

I in this case the Kähler form coincides with the pull-back of
the Fubini-Study form under the coherent state embedding.



CONTRAVARIANT SYMBOL

I Given an operator A ∈ End(Γhol(M,L(m))), the contravariant
Berezin symbol σ̌(m)(A) ∈ C∞(M) of A is defined by the
representation of the operator A as integral

A =

∫
M
σ̌(m)(A)(x)P(m)

x Ω(m)
ε (x),

if such a representation exists.
I For the Toeplitz operator T (m)

f we have

σ̌(m)(T (m)
f ) = f ,

In other words: the function f is a contravariant symbol of
the Toeplitz operator T (m)

f .
I Every operator A has a contravariant symbol (as every

operator is a Toeplitz operator.
I Attention: the contravariant symbols of fixed level are not

unique.



I Hilbert-Schmidt norm on End(Γhol(M,L(m)))

〈A,C〉HS = Tr(A∗ · C) .

I Theorem: The Toeplitz map f → T (m)
f and the covariant

symbol map A→ σ(m)(A) are adjoint:

〈A,T (m)
f 〉HS = 〈σ(m)(A), f 〉(m)

ε .

I every operator has a contravariant symbol, hence

〈A,B〉HS = 〈σ(m)(A), σ̌(m)(B)〉(m)

ε .

I By the adjointness property and surjectivity of the Toeplitz
map we get injectivity of the covariant symbol map σ(m).



Other applications
I

Tr A =

∫
M
σ(m)(A) Ω(m)

ε .

we use Id = T1 and by adjointness

Tr A = 〈A∗, Id〉HS = 〈σ(m)(A),1〉
(m)

ε .
I In particular,

tr(T (m)
f ) =

∫
M

f Ω(m)
ε =

∫
M
σ(m)(T (m)

f ) Ω(m)
ε .

I

dim Γhol(M,Lm) =

∫
M

Ω(m)
ε =

∫
M
ε(m)(x) Ω.

I For the special case ε(m)(x) = const

ε(m) =
dim Γhol(M,Lm)

volΩ(M)
.



TWO -POINT FUNCTION

I

ψ(m)(x , y) =
〈e(m)
α ,e(m)

β 〉〈e
(m)
β ,e(m)

α 〉

〈e(m)
α ,e(m)

α 〉〈e(m)
β ,e(m)

β 〉

with α = τ−1(x) = x and β = τ−1(y).
I This function is well-defined on M ×M.
I The two-point symbol

σ(m)(A)(x , y) =
〈e(m)
α ,Ae(m)

β 〉

〈e(m)
α ,e(m)

β 〉
.

is the analytic extension of the real-analytic covariant
symbol,

I well-defined on an open dense subset of M ×M containing
the diagonal.



Then

σ(m)(A) ?(m) σ
(m)(B)(x) = σ(m)(A · B)(x) =

〈e(m)
α ,A · B e(m)

α 〉
〈e(m)
α ,e(m)

α 〉

=

∫
M
σ(m)(A)(x , y) · σ(m)(B)(y , x) · ψ(m)(x , y) · Ω(m)

ε (y) .



PULL-BACK OF THE FUBINI-STUDY METRIC, EXTREMAL

METRICS, BALANCED EMBEDDINGS

I (M, ω) be a Kähler manifold with very ample quantum line
bundle L.

I choosing an orthonormal basis of the space Γhol(M,Lm)
we get an embedding φ(m) : M → PN(m) of M into
projective space of dimension N(m)

I On PN(m), the standard Kähler form, the Fubini-Study form
ωFS

I pull-back (φ(m))∗ωFS defines a Kähler form on M.
(independent on choice of the orthogonal basis)

I In general (φ(m))∗ωFS 6= ω (not even up to multiplication
with a constant.

I Zelditch (generalizing some results of Tian and Catlin)
shows: (Φ(m))∗ωFS admits a complete asymptotic
expansion in powers of 1

m as m→∞.



I it is related to the asymptotic expansion of the Bergman
kernel along the diagonal.

um(x) = Bm(α, α) = 〈e(m)
α ,e(m)

α 〉.

I The pullback calculates as(
φ(m)

)∗
ωFS = mω + i ∂∂̄ log um(x) .

I if we replace 1/m by ν we obtain the Karabegov form of
the star product ?B

ω̂ = F(
(
φ(m)

)∗
ωFS).



I Donaldson took the Tian-Yau-Zelditch expansion. as
starting point to study the existence and uniqueness of
constant scalar curvature Kähler metrics ω on compact
manifolds.

I he approximates them by using balanced metrics on
sequences of powers of the line bundle L obtained by
balanced embeddings.

I The “balanced condition” is equivalent to the fact that
Rawnsley’s epsilon function is constant.

I In fact if the metric h is real-analytic then

∂∂̄ log um(x) = ±ε(m)(x)



CALCULATION OF THE COEFFICIENTS OF THE BEREZIN

STAR PRODUCT

I In the paper together with Karabegov we showed that the
asymptotic expansion of the Berezin transform equals the
formal Berezin transform I = F(I(m)), of the star product ?B

I

I =
∞∑

i=0

Ii ν i , Ii : C∞(M)→ C∞(M).

I knowing the Ii gives the coefficients CB
k (f ,g) of ?B.

I The operators Ii can be expressed (at least in principle) by
the asymptotic expansion of expressions formulated in
terms of the Bergman kernel.



I for local functions f ,g , f anti-holomorphic, g holomorphic

f ? g = I(g · f ) = I(g ? f ).

I

CB
k (f ,g) = Ik (g · f ).

I By locality it is enough to consider the local functions zi
and z i and CB

k can be obtained by “polarizing” Ik .

Ik =
∑

(i),(j)

ak
(i),(j)

∂(i)+(j)

∂z(i)∂z(j)
, ak

(i),(j) ∈ C∞(M)

I

CB
k (f ,g) =

∑
(i),(j)

ak
(i),(j)

∂(j)f
∂z(j)

∂(i)g
∂z(i)

,



I From I we can recursively calculate the coefficients of the
inverse I−1 as I starts with id .

I From f ?BT g = I−1(I(f ) ?B I(g)), we can calculate (at least
recursively) the coefficients CBT

k starting from the CB
l .

I In practice, the recursive calculations turned out to become
quite involved.



EXAMPLE

I The simple case k = 1 (but instructive).
I We start from the Kähler form ω in local holomorphic

coordinates zi
I Laplace-Beltrami operator is given by

∆ =
∑
i,j

g ij ∂2

∂zi∂z j
,

I Poisson bracket

{f ,g} = ε ·
∑
i,j

g ij
(
∂f
∂z i

∂g
∂zj
− ∂f
∂zj

∂g
∂z i

)

I From I1 = ∆ we deduce immediately

CB
1 (f ,g) =

∑
i,j

g ij ∂f
∂z i

∂g
∂zj

.



I The inverse of I starts with id −∆ν + .....
I From

(id −∆ν)(((id + ∆ν)f ) ?B ((id + ∆ν)g))

for the terms of order one in ν we get

CBT
1 (f ,g) = CB

1 (f ,g) + (∆f )g + f (∆g)−∆(fg)

= −
∑
i,j

g ij ∂f
∂zi

∂g
∂z j

.

I not a surprise: This we could have obtained from the
polarisation of the Poisson bracket.



THE USE OF GRAPHS

I Gammelgaard: His starting point is the formal deformation
ω̂ of the Kähler form ω = ω−1.

I

f ? g =
∑

Γ∈A2

νW (Γ)

|Aut(Γ)|
DΓ(f ,g).

I A2 is a subset of certain subset of the isomorphism
classes of directed acyclic graphs.

I To each such graph a certain bidifferential operator
DΓ(f ,g) is assigned.



I Huo Xu: His starting point is the Berezin transform.
I He gave a graph expansion of it.
I Berezin transform fixes the Berezin star product.
I

f ?B g =
∑
Γ∈G

det(A(Γ−)− Id)

|Aut′(Γ)|
ν|E |−|V |DΓ(f ,g)

=
∞∑

k=0

CB
k (f ,g)νk .

I another class of graphs
I for more information see my second review.



SUMMARY OF NATURALLY DEFINED STAR PRODUCT

name Karabegov form Deligne
Fedosov class

?BT Berezin-Toeplitz −1
ν ω + ωcan (Wick)

1
i ( 1
ν [ω]− δ

2 ).

?B Berezin 1
νω+ F(i ∂∂ log um)

(anti-Wick)

1
i ( 1
ν [ω]− δ

2 ).

?GQ geometric
quantization

(—) 1
i ( 1
ν [ω]− δ

2 ).

?K standard product (1/ν)ω (anti-Wick) 1
i ( 1
ν [ω]− δ

2 ).

?BW Bordemann-
Waldmann

−(1/ν)ω (Wick) 1
i ( 1
ν [ω] + δ

2 ).

um Bergman kernel evaluated along the diagonal in Q ×Q
δ the canonical class of the manifold M


