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ABSTRACT

Based on the recent work of Wang et al. (2012), in this paper, we con-
struct a new algorithm for solving split feasibility problem for the class
of total quasi-asymptotically nonexpansive and uniformly τ−Lipschitzian
mappings in Hilbert space and prove its strong convergence result. The
result presented in this paper, not only extend the result of Wang et
al. Wang et al. (2012), but also extend, improve and generalize several
well-known results in the literature.
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1. Introduction

Let W be a Banach space, K1, K2, be two Hilbert spaces, 〈., .〉 be an inner
product, ‖.‖ stand for the corresponding norm, ∆ and Ω be nonempty closed
convex subset of K1 and K2 respectively, M : K1 → K2 be a bounded linear
operator and M∗ be the adjoint of M . And also let I be the identity operator
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on K1, F ix(Ψ) to donate the fixed point set of Ψ i.e., Fix(Ψ) = {r ∈ K :
Ψr = r}, ” → ”and ” ⇀ ” to denote the weak and strong convergence, and
ωω(rm) to denote the set of the cluster point of {rm} in the weak topology i.e.,
{ there exists {rmk

} of {rm} 3 rmk
⇀ r}.

The mapping Ψ : K1 → K1 is said to be; quasi nonexpansive, if Fix(Ψ) 6= ∅
such that ‖Ψw − z‖ ≤ ‖w − z‖ , ∀z ∈ Fix(Ψ) and w ∈ K1, quasi-asymptotically
nonexpansive, if Fix(Ψ) 6= ∅ and there exists a sequence {rm} ⊆ [1,∞)

with rm → 1 3 ∀m ≥ 1, ‖Ψmw − z‖2 ≤ rm ‖w − z‖2 , ∀z ∈ Fix(Ψ) and
w ∈ K1, total quasi-asymptotically nonexpansive, if Fix(Ψ) 6= ∅, and there
exists nonnegative real sequences {vm}, {µm} in [0,∞) with vm → 0 and
µm → 0, and a strictly increasing continuous function δ : <+ → <+ with
δ(0) = 0 3 ∀ m ≥ 1, ‖Ψmw − z‖2 ≤ ‖w − z‖2 + vmδ(‖w − z‖) + µm,∀z ∈
Fix(Ψ) and w ∈ K1, and it is said to be contraction with the coefficient
ϕ ∈ (0, 1) if ‖Ψ(w)−Ψ(z)‖ ≤ ϕ ‖w − z‖ , ∀w, z ∈ K1, η-strongly monotone, if
∃ a constant η > 0 3 〈Ψw −Ψz, w − z〉 ≥ η ‖w − z‖ ,∀w, z ∈ K1.

Remark: It’s not difficult to see that, if Ψ : K1 → K1 is a contraction
mapping with coefficient ϕ ∈ (0, 1), then (I−Ψ) is (1−ϕ)−strongly monotone,
i.e.,

〈(I −Ψ)w − (I −Ψ)z, w − z〉 ≥ (1− ϕ) ‖w − z‖2 ,∀w, z ∈ K1. (1)

A Banach space W is said to satisfy Opial’s condition (see Opial (1967)) if for
any sequence {rm} ⊆W with rm ⇀ r as m→∞, then

lim inf
m→∞

‖rm − r‖ < lim inf
m→∞

‖rm − r∗‖, ∀r∗ ∈W and r∗ 6= r.

It’s well known that each Hilbert space satisfied the Opial’s property.

And also Ψ is said to be; demiclosed at zero, if for any sequence {rm} in K1,
with

rm ⇀ r and Ψrm → 0 as m→∞⇒ Ψr = 0,

uniformly τ−Lipschitzian, if ∃ a constant τ > 0 such that

‖Ψmw −Ψmz‖ ≤ τ ‖w − z‖ ,∀w, z ∈ K1,

and it’s said to be semi-compact, if for any bounded sequence rm ⊆ K1 with
lim
m→∞

‖Ψrm−rm‖ = 0, there exists sub-sequence {rmk
} ⊆ {rm} such that {rmk

}
converges strongly to some point r∗ ∈ K1.

The split feasibility problem (SFP) consist as find a vector r∗ satisfying

r∗ ∈ ∆ 3Mr∗ ∈ Ω. (2)

128 Malaysian Journal of Mathematical Sciences



Iterative Methods for Solving Split Feasibility Problem in Hilbert Space

The SFP (2) has been intensively studied by numerous authors due to its
various applications in many physical problems such as; in image restoration,
computer tomography and radiation therapy treatment planning (see Censor
et al. (2006, 2005, 2007)). Iterative algorithm for approximating fixed points of
nonexpansive mapping, quasi-nonexpansive, quasi asymptotically nonexpan-
sive, total quasi-asymptotically nonexpansive mapping and their generaliza-
tions which solves problem (2) have been studied by a number of authors for
example sees Ansari and Rehan (2014), Byrne (2002), Mohammed and Kılıç-
man (2015), Wang et al. (2012), Xu (2006), Yang (2004), Zhao and Yang (2005)
and the references therein. One of the popular method that solves problem (2)
is the Byne’s algorithm see (Censor et al. (2007)) whose generates a sequence
{rm} by

rm+1 := Ψ∆

(
I + σM∗

(
ΨΩ − I

)
M
)
rm,∀m ∈ N, (3)

where Ψ∆ and ΨΩ are the orthogonal projection onto ∆ and Ω respectively, M
is a bounded linear mapping and M∗ is the adjoint of M, and σ ∈ (0, 2

L ) with
L being the spectral radius of the operator M∗M . Suppose that, problem (2)
has a solution, it’s not difficult to see that r∗ ∈ ∆ solves (2) if and only if it
solves the following equation:

r∗ = Ψ∆

(
I + σM∗

(
ΨΩ − I

)
M
)
r∗,∀r∗ ∈ ∆, (4)

where σ > 0, Ψ∆, ΨΩ, M , and M∗ as in (3) above. The Krasnosel’skii-Mann
algorithm which is known as K-M algorithm see Krasnosel’skii (1955), Mann
(1953), whose generate a sequence {rm} by

rm+1 := (1− γm)rm + γmΨrm,∀m ≥ 0, (5)

where {γm} is a sequence in [0, 1], r0 ∈ ∆ is chosen arbitrarily and Ψ is a
nonexpansive mapping, that is ‖Ψw −Ψz‖ ≤ ‖w − z‖ , ∀w, z ∈ K. It was
proved in Reich (1979) that the sequence {rm} defined by (5) converged weakly
to a common fixed point r∗ of Ψ provided that {γm} satisfies

∞∑
m=1

(1− γm)γm =∞. (6)

Algorithm (3) can be seen as a special case of algorithm (5), this is due to
the fixed-point formulation of equation (4), one can apply algorithm (5) to the
operator

Ψ∆

(
I + σM∗

(
ΨΩ − I

)
M
)

to obtain the following algorithm:

rm+1 :=(1− γm)rm + γmΨ∆

(
I + σM∗

(
ΨΩ − I

)
M
)
rm,∀m ∈ N, (7)
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where σ ∈ (0, 2
L ) and again L is the spectral radius of the operator M∗M .

It’s not difficult to see that as long as {γm} satisfy equation (6), the sequence
{rm} defined by algorithm (7) will converge weakly to the solution of problem
(2). On the other hand, if problem (2) is not consistence, the Byne’s algorithm
converges to a minimizer of ‖Ψ∆(Md)− (Md)‖ over d ∈ ∆, whenever such a
minimizer exists.

Recently, Wang et al. (2012), introduced the following algorithm for solving
SFP (2) whose generate a sequence {rm} by r1 ∈ K,

um = rm + σM∗(Φm − I)Mrm,
rm+1 = (1− βm)um + βmΨmum,∀m ≥ 1,

(8)

where σ ∈
(

0, 1
‖M‖2

)
, βm ⊂ [0, 1] satisfied the condition; 0 < lim inf

m→∞
βm ≤

lim sup
m→∞

βm < 1 and Φ, Ψ are total quasi-asymptotically nonexpansive and uni-

formly τ− Lipschitzian mappings satisfied some certain conditions see Wang
et al. (2012). It was proved in Wang et al. (2012), the sequence {rm} defined
by algorithm (8) converged weakly to the solution of SFP (2) and the strong
convergence follows if Ψ is a semi-compact. This compactness type condition
appear very strong as only few mappings are semi-compact. It’s an interesting
problem to continue studying this problem (SFP) and prove its strong conver-
gence result without any compactness type condition assume.

It’s the aim of this paper to modify the algorithm of Wang et al Wang et al.
(2012) for the class of total quasi asymptotically nonexpansive and uniformly
τ− Lipschitzian mappings so that the strong convergence is guaranteed for the
solution of SFP (2).

In what follows, we denote the solution set of SFP (2) by Γ, i.e.,

Γ =
{
r∗ ∈ ∆ such that Mr∗ ∈ Ω

}
. (9)

2. Preliminaries

Lemma 2.1. (Marino and Xu (2007)) Let K1 be a real Hilbert space, then

(i) ‖w + z‖2 = ‖w‖2 + 2 〈w, z〉+ ‖z‖2 , ∀w, z ∈ K1

(ii) ‖kw + (1− k)z‖2 = k ‖w‖2 +(1−k) ‖z‖2−k(1−k) ‖w − z‖2, ∀w, z ∈ K1

and k ∈ [0, 1].
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Lemma 2.2. (Yang et al. (2011)) Let {rm} ⊆ K1 such that rm ⇀ r, then
lim sup
m→∞

‖rm − z‖2 = lim sup
m→∞

‖rm − r‖2 + ‖r − z‖2 ,∀z ∈ K1.

Lemma 2.3. (Wang et al. (2012)) Let Ψ : K1 → K1 be a ({vm}, {µm}, ξ)-
total quasi-asymptotically nonexpansive mapping. Then for each z ∈ Fix(Ψ),
w ∈ K1 and m ≥ 1, the following inequalities are equivalent.

(i) ‖Ψmw − z‖2 ≤ ‖w − z‖2 + vmξ(‖w − z‖) + µm,

(ii) 2 〈w −Ψmw,w − z〉 ≥ ‖Ψmw − w‖2 − vmξ(‖w − z‖)− µm,

(iii) 2 〈w −Ψmw, z −Ψmw〉 ≤ ‖Ψmw − w‖2 + vmξ(‖w − z‖) + µm.

Lemma 2.4. (Yang et al. (2011)) Let C be a nonempty closed convex sub-
set of K1 and Ψ : C → C be a (k, {vm}, {µm}, ξ)− total asymptotically strict
pseudocontractive and uniformly τ−Lipschitzian mapping. Then I−Ψ is demi-
closed at zero in the sense that if {rm} is a sequence in C such that rm ⇀ r∗

and lim sup
m→∞

‖rm − Ψmrm‖ = 0, then Ψr∗ = r∗. In particular, if rm ⇀ r∗ and

(I −Ψ)rm → 0 then Ψr∗ = r∗, i.e., Ψ is demiclosed at zero.

Based on Lemma (2.4), we obtain the following lemma.

Lemma 2.5. Let ∆ be a nonempty closed convex subset of a Hilbert space K1

and Ψ : ∆→ ∆ be a ({vm}, {µm}, ξ)− total quasi-asymptotically nonexpansive
mapping, then I−Ψ is demiclosed at zero in the sense that, if {rm} is a sequence
in ∆ such that rm ⇀ r∗ and (I − Ψm)rm → 0, then Ψr∗ = r∗. In particular,
if rm ⇀ r∗ and (I −Ψ)rm → 0 then Ψr∗ = r∗.

Proof. By the boundedness of {rm}, we can define a function g on K1 by

g(r) = lim sup
m→∞

‖rm − r‖2,∀r ∈ K1, (10)

by Lemma (2.2) and the weak convergence of rm, we have

g(r) = g(r∗) + ‖r∗ − r‖2 ,∀r ∈ K1.

In particular, for m ≥ 1,

g(Ψmr∗) = g(r∗) + ‖r∗ −Ψmr∗‖2 . (11)
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On the other hand, Ψ is ({vm}, {µm}, ξ)− total quasi-asymptotically nonex-
pansive mapping, by (10), we get

g(Ψmr∗) = lim sup
m→∞

‖rm −Ψmr∗‖2

≤ lim sup
m→∞

(
‖rm − r∗‖2 + vmξ(‖rm − r∗‖) + µm

)
= g(r∗). (12)

By substituting (11) into (12), we have that

g(r∗) + ‖r∗ −Ψmr∗‖2 ≤ g(r∗),

which implies that Ψmr∗ = r∗. Hence, Ψr∗ = r∗.

Lemma 2.6. (Tian and Di (2011)) Let {rm} and σm be two sequences of
nonnegative real numbers satisfying

rm+1 ≤ (1− δm)rm + σm,m ≥ 0,

where δm ⊂ (0, 1) such that:

(i) lim
m→∞

δm = 0 and
∑∞
m=0 δm =∞,

(ii) lim
m→∞

σm

δm
≤ 0 or

∑∞
m=0 |σm| <∞, then the lim

m→∞
rm = 0.

Lemma 2.7. (Wang et al. (2012)) Let {rm}, {δm} and {σm} be sequences of
nonnegative real numbers satisfying

rm+1 ≤ (1 + δm)rm + σm,m ≥ 1,

if
∑
δm <∞ and

∑
σm <∞, then the lim

m→∞
rm exists.

Lemma 2.8. (Bauschke and Borwein (1996)) If {rm} is a Fejer monotone
with respect to ∆, then

(i) rm ⇀ r∗ ∈ ∆ if and only if ωω(rm) ⊂ ∆;

(ii) The sequence {Ψ∆rm} converges strongly to some point in ∆;

(iii) If rm ⇀ r∗ ∈ ∆, then r∗ = lim
m→∞

Ψ∆rm.

Lemma 2.9. (Marino and Xu (2007)) Let ∆ be a of K1. Given w ∈ K1 and
z ∈ ∆. Then z = Ψ∆w if and only if there hold the relation 〈w − z, y − z〉 ≤
0,∀y ∈ ∆.
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3. Main Results

In this section, we present the main result of this paper which is the exten-
sion of the Theorem (3.1) of Wang et al. (2012).

Theorem 3.1. Let K1, K2 be two Hilbert spaces, Ψ : K1 → K1, Φ : K2 →
K2 be ({vm1

}, {µm1
}, ξ1), ({vm2

}, {µm2
}, ξ2)− total quasi-asymptotically non-

expansive and uniformly τ1,2−Lipschitzian continuous mappings with vm =
max {vm1

, vm2
}, µm = max {µm1

, µm2
}, ξ = max {ξ1, ξ2} and τ = max {τ1, τ2}

such that
∑
vm <∞ and

∑
µm <∞, and also let h : K1 → K1 be a contrac-

tion mapping with the coefficient λ ∈ (0, 1) and N, N∗ be positive constants
such that ξ(δ) ≤ ξ(N) + N∗δ2,∀δ ≥ 0, M : K1 → K2 be a bounded linear
operator and M∗ : K2 → K1 be the adjoint of M with L = ‖MM∗‖. Assume
that Γ 6= ∅ and let {rm} be define by

r0 ∈ K1 is chosen arbitrary,
um = rm + σM∗(Φm − I)Mrm,
ym = (1− β)um + βΨm(um),
rm+1 = γmh(rm) + (1− γm)ym,∀m ≥ 0,

(13)

where β ∈ (0, 1), σ ∈ (0, 1
L ), and γm is sequence in (0, 1) satisfy the conditions; (a) lim
m→∞

γm = 0 and

∞∑
m=0

γm =∞,

(b) 0 < η < γm < 1.

(14)

Then the sequence {rm} defined by algorithm (13) converges to r∗ ∈ Γ which
solves the variational inequality problem:

〈(h− I)r∗, r − r∗〉 ≤ 0,∀r ∈ Γ. (15)

Note that, equation (15) is equivalent with ΨΓh(r∗) = r∗ see Lemma (2.9),
where ΨΓ is the metric projection of K1 onto Γ.

Proof. Step 1. In this step, we show that {rm} is bounded.

Let r∗ ∈ Γ, from (13) and Lemma (2.1), we have

‖rm+1 − r∗‖2 = ‖γmh(rm) + (1− γm)ym − r∗‖2

≤ γm ‖h(rm)− r∗‖2 + (1− γm) ‖ym − r∗‖2

≤ 2γmλ
2 ‖rm − r∗‖2 + 2γm ‖h(r∗)− r∗‖2 + (1− γm) ‖ym − r∗‖2 . (16)
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On the other hand,

‖ym − r∗‖2 = ‖(1− β)um + βΨm(um)− r∗‖2

≤ (1− β) ‖um − r∗‖2 + β ‖Ψm(um)− r∗‖2

− β(1− β) ‖Ψm(um)− um‖2

≤ ‖um − r∗‖2 + βvmξ(‖um − r∗‖)

− β(1− β) ‖Ψm(um)− um‖2 + βµm (17)

≤ (1 + βvmN
∗) ‖um − r∗‖2

− β(1− β) ‖Ψm(um)− um‖2 + β
(
vmξ(N) + µm

)
, (18)

and

‖um − r∗‖2 = ‖rm + σM∗(Φm − I)Mrm − r∗‖2

≤ ‖rm − r∗‖2 + 2σ 〈Mrm −Mr∗, (Φm − I)Mrm〉
+ σ2 〈MM∗(Φm − I)Mrm, (Φ

m − I)Mrm〉

≤ ‖rm − r∗‖2 + σ2L ‖ΦmMrm −Mrm‖2

+ 2σ 〈ΦmMrm −Mr∗ − (Φm − I)Mrm, (Φ
m − I)Mrm〉

≤ ‖rm − r∗‖2 − σ(2− σL) ‖ΦmMrm −Mrm‖2

+ 2σ 〈ΦmMrm −Mr∗,ΦmMrm −Mrm〉 . (19)

By Lemma (2.3), we deduce that

2σ 〈ΦmMrm −Mr∗,ΦmMrm −Mrm〉 ≤ σ ‖ΦmMrm −Mrm‖2

+ σvmξ(‖Mrm −Mr∗‖) + σµm

≤ σ ‖ΦmMrm −Mrm‖2

+σvmN
∗ ‖Mrm −Mr∗‖2 +σ

(
vmξ(N) + µm

)
. (20)

Substitute (20) into (19), we have

‖um − r∗‖2 ≤
(
1 + σvmN

∗L
)
‖rm − r∗‖2

− σ
(
1− σL

)
‖ΦmMrm −Mrm‖2 + σ

(
vmξ(N) + µm

)
. (21)

Substitute (21) into (18), we have

‖ym − r∗‖2 ≤ (1 + βvmN
∗)
(
1 + σvmN

∗L
)
‖rm − r∗‖2

− (1 + βvmN
∗)σ
(
1− σL

)
‖ΦmMrm −Mrm‖2

+
(
vmξ(N) + µm

)(
(1 + βvmN

∗)σ + β
)
. (22)
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Substitute (22) into (16), we have

‖rm+1 − r∗‖2 ≤
(

2γmλ
2 + (1− γm)(1 + βvmN

∗)
(
1 + σvmN

∗L
))
‖rm − r∗‖2

− (1− γm)(1 + βvmN
∗)σ
(
1− σL) ‖ΦmMrm −Mrm‖2

+ (1− γm)
(
vmξ(N) + µm

)(
(1 + βvmN

∗)σ + β
)

+ 2γm ‖h(r∗)− r∗‖2 (23)

≤
(

1 + σvmN
∗L+ 2γmλ

2 + βvmN
∗(1 + σvmN

∗L
)

− γm(1 + βvmN
∗)
(
1 + σvmN

∗L
))
‖rm − r∗‖2

+(1− γm)
(
vmξ(N) + µm

)(
(1 + βvmN

∗)σ + β
)

+ 2γm ‖h(r∗)− r∗‖2

≤
(

1 + σvmN
∗L+ 2λ2 + βvmN

∗(1 + σvmN
∗L
))
‖rm − r∗‖2

+(1− η)
(
vmξ(N) + µm

)(
(1 + βvmN

∗)σ + β
)

+ 2 ‖h(r∗)− r∗‖2 . (24)

It follows from (24) that

‖rm+1 − r∗‖2 ≤
(
1 + δm

)
‖rm − x∗‖2 + ϕm, where (25)

δm = σvmN
∗L+ 2λ2 + βvmN

∗(1 + σvmN
∗L
)

and (26)

ϕm = (1− η)
(
vmξ(N) + µm

)(
(1 + βvmN

∗)σ + β
)

+ 2 ‖h(r∗)− r∗‖2 . (27)

Evidently, from equation (26) and (27), we have

∞∑
m=1

δm <∞ and

∞∑
m=1

ϕm <∞. (28)

By Lemma (2.7), we conclude that

lim
m→∞

‖rm − r∗‖ exists, (29)

therefore, {rm} is bounded.

Step 2. In this step, we show that

lim
m→∞

‖rm − r∗‖ = lim
m→∞

‖um − r∗‖ = lim
m→∞

‖ym − r∗‖ . (30)
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Proof. From (16), (22) and the fact that (29) exists, we have

lim
m→∞

‖rm − r∗‖ = lim
m→∞

‖ym − r∗‖ . (31)

And also, from (18), (21) and the fact that (31) holds, we have

lim
m→∞

‖um − r∗‖ = lim
m→∞

‖rm − r∗‖ . (32)

Hence, equation (30) follows trivially from (31) and (32).

Step 3. In this step, we show that

lim
m→∞

‖ΦmMrm −Mrm‖ = 0 and lim
m→∞

‖Ψmum − um‖ = 0. (33)

Proof. The fact that Φ and Ψ are uniformly τ− Lipschitzian, and M , {rm},
and {um} are bounded, then {ΦmMrm} and {Ψmum} are also, and from (23),
we have

σ(1− σL) ‖ΦmMrm −Mrm‖2 ≤ ‖rm − r∗‖2 − ‖rm+1 − r∗‖2

+
[(

(1− γm)βvmN
∗ − γm

)
(1 + σvmM

∗L) + 2γmλ
2 + σvmN

∗L
]

×‖rm − r∗‖2 − σ(1− σL)
[
(1− γm)βvmN

∗ − γm
]
‖ΦmMrm −Mrm‖2

+(1− γm)
(
vmξ(N) + µm

)(
(1 + βvmN

∗)σ + β
)

+ 2γm ‖h(r∗)− r∗‖2 (34)

Evidently, from (29) and (34), we have

lim
m→∞

‖ΦmMrm −Mrm‖ = 0, (35)

and from (18) and (30), we also have

lim
m→∞

‖Ψmum − um‖ = 0. (36)

Hence, equation (33) follows trivially from (35) and (36).

Step 4. In this step, we show that

lim
m→∞

‖rm+1 − rm‖ = 0 and lim
m→∞

‖um+1 − um‖ = 0. (37)
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Proof. From (13), we have

‖rm+1 − rm‖ =
∥∥γm(h(rm)− ym

)
+ ym − rm

∥∥
≤ γm ‖h(rm)− ym‖+ ‖um − rm‖β ‖Ψmum − um‖
≤ γm ‖h(rm)− ym‖+ β ‖Ψmum − um‖
+ σ ‖M‖ ‖ΦmMrm −Mrm‖ . (38)

In view of (35) and (36) and the fact that {rm} and {ym} are bounded, we
have

lim
m→∞

‖rm+1 − rm‖ = 0. (39)

Similarly, it follows from (35) and (39) that

‖um+1 − um‖ ≤ ‖rm+1 − rm‖+ ‖σM∗(Φm+1 − I)Mrm+1‖
+ ‖σM∗(Φm − I)Mrm‖ → 0 as m→∞,

⇒ lim
m→∞

‖um+1 − um‖ = 0. (40)

Hence, equation (37) follows trivially from (39) and (40).

Step 5. In this step, we show that

‖um −Ψum‖ → 0 and ‖Mrm − ΦMrm‖ → 0 as m→∞. (41)

Proof. The fact that ‖um −Ψmum‖ → 0, ‖um+1 − um‖ → 0 and Ψ is uniformly
τ−Lipschitzian continuous mapping, it follows that

‖um −Ψum‖ ≤ ‖um −Ψmum‖+ ‖Ψum −Ψmum‖
≤ ‖um −Ψmum‖+ τ

∥∥um −Ψm−1um
∥∥

≤ ‖um −Ψmum‖+ τ
∥∥Ψm−1um −Ψm−1um−1

∥∥
+ τ

∥∥um −Ψm−1um−1

∥∥
≤ ‖um −Ψmum‖+ τ2 ‖um − um−1‖
+ τ

∥∥um − um−1 + um−1 −Ψm−1um−1

∥∥
≤ ‖um −Ψmum‖+ τ(τ + 1) ‖um − um−1‖
+ τ

∥∥um−1 −Ψm−1um−1

∥∥→ 0

⇒ ‖um −Ψum‖ → 0.

Similarly, from the fact that ‖Mrm − ΦmMrm‖ → 0, ‖rm+1 − rm‖ → 0 and Φ
is uniformly τ− Lipschitzian continuous mapping, it’s not difficult to see that
‖Mrm − ΦMrm‖ → 0.
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Step 6. In this step, we show that

rm ⇀ r∗ and um ⇀ r∗ as m→∞. (42)

In view of (30), we see that {rm}, {um} are bounded, then ∃ a sub-sequence
umk

of um such that
umk

⇀ r∗, as k →∞. (43)

From (43) and (41), we deduce that

‖umk
−Ψumk

‖ → 0, as k →∞. (44)

From (43), (44) and Lemma (2.5), we get that r∗ ∈ Fix(Ψ).

Moreover, from (13), (43) and the fact ‖Mrm − ΦmMrm‖ → 0, as m→∞,
we have

rmk
= umk

− σM∗(Φmk − I)Mrmk
⇀ r∗.

By the definition of M , we get

Mrmk
⇀Mr∗ as k →∞. (45)

In view of (41), we get

‖Mrmk
− ΦMrmk

‖ → 0, as k →∞. (46)

From (45), (46) and Lemma (2.5), we have that Mr∗ ∈ Fix(Φ), this implies
that r∗ ∈ Γ, that is r∗ is a solution of SFP (2).

Now we prove (42).

Suppose by contradiction, there exists another umk
of um such that umk

⇀
z∗ ∈ Γ with r∗ 6= z∗. By (30) and Opial’s property, we have

lim inf
k→∞

‖umk
− r∗‖ < lim inf

k→∞
‖umk

− z∗‖ = lim inf
m→∞

‖um − z∗‖

= lim inf
k→∞

‖umk
− z∗‖ < lim inf

k→∞
‖umk

− r∗‖

= lim inf
m→∞

‖um − r∗‖

= lim inf
k→∞

‖umk
− r∗‖

⇒ lim inf
k→∞

‖umk
− r∗‖ < lim inf

k→∞
‖umk

− r∗‖

which is contradiction. Therefore, um ⇀ r∗. By using (13) and (33) , we have
rm = um − σM∗(Φm − I)Mrm ⇀ r∗ as m → ∞. Thus, by Lemma (2.8) we
deduce that

ΩΩ(rn) ⊂ Γ. (47)
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Step 7. In this step, we show that

lim sup
m→∞

〈(h− I)r∗, rm − r∗〉 ≤ 0. (48)

Indeed from (??), there exists a sub-sequence {rmk
} ⊂ {rm} such that

lim sup
m→∞

〈(h− I)r∗, rm − r∗〉 = lim sup
k→∞

〈(h− I)r∗, rmk
− r∗〉

≤ 0. (49)

Suppose without loss of generality that rmk
⇀ r, from (??), it follows that

r ∈ Γ. Since r∗ is the unique solution of (15), implies that

lim sup
m→∞

〈(h− I)r∗, rm − r∗〉 = lim sup
k→∞

〈(h− I)r∗, rmk
− r∗〉 .

= 〈(h− I)r∗, r − r∗〉 ≤ 0. (50)

Step 8. Finally, we show that

rm → r∗ as m→∞. (51)

Proof.

‖rm+1 − r∗‖2 = 〈γmh(rm) + (1− γm)ym − r∗, rm+1 − r∗〉
= γm 〈h(rm)− r∗, rm+1 − r∗〉+ (1− γm) 〈ym − r∗, rm+1 − r∗〉
≤ γm 〈h(rm)− h(r∗), rm+1 − r∗〉+ γm 〈h(r∗)− r∗, rm+1 − x∗〉

+
(1− γm)

2
‖ym − r∗‖2 +

(1− γm)

2
‖rm+1 − r∗‖2

≤ γmλ
2

2
‖rm − x∗‖2 +

γm
2
‖rm+1 − r∗‖2 +

(1− γm)

2
‖ym − r∗‖2

+
(1− γm)

2
‖rm+1 − r∗‖2 + γm 〈h(r∗)− r∗, rm+1 − r∗〉

=
(1− γm)

2
‖ym − r∗‖2 +

γmλ
2

2
‖rm − r∗‖2 +

1

2
‖rm+1 − r∗‖2

+ γm 〈h(r∗)− r∗, rm+1 − r∗〉

⇒ ‖rm+1 − r∗‖2 ≤
(
1− γm

)
‖ym − r∗‖2 + γmλ

2 ‖rm − r∗‖2

+ 2γm 〈h(r∗)− r∗, rm+1 − r∗〉 . (52)

From (17), we deduced that

‖ym − r∗‖2 ≤ ‖um − r∗‖2 + βvmξ(‖um − r∗‖) + βµm. (53)
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In view of (19) and (20), we deduced that

‖um − r∗‖2 ≤ ‖rm − r∗‖2 + σvmξ(‖Mrm −Mr∗‖) + σµm. (54)

Substituting (54) into (53), we have

‖ym − r∗‖2 ≤ ‖rm − r∗‖2 + σvmξ(‖Mrm −Mr∗‖)
+ βvmξ(‖um − r∗‖) + µm(β + σ). (55)

Substituting (55) into (52), we have

‖rm+1 − r∗‖2 ≤
(
1− γm(1− λ2)

)
‖rm − r∗‖2

+
(
1− γm

)
σvmξ(‖Mrm −Mr∗‖)

+
(
1− γm

)
βvmξ(‖um − r∗‖)

+
(
1− γm

)
µm(β + σ)

+ 2γm 〈h(r∗)− r∗, rm+1 − r∗〉 . (56)

It follows from (56) that

‖rm+1 − r∗‖2 ≤
(
1− ϕm

)
‖rm − r∗‖2 + ρm, where (57)

ϕm = γm(1− λ2), (58)

and

ρm =
(
1− γm

)
σvmξ(‖Mrm −Mr∗‖) +

(
1− γm

)
βvmξ(‖um − r∗‖)

+
(
1− γm

)
µm(β + σ) + 2γm 〈h(r∗)− r∗, rm+1 − r∗〉 . (59)

It follows From (58) and (59) that

lim
m→∞

ϕm = 0 and

∞∑
m=1

ϕm =∞. (60)

In view of (48), (58) and (59), we have

lim
m→∞

ρm
ϕm
≤ (1− η)

η(1− λ2)

(
σvmξ(‖Mrm −Mr∗‖)βvmξ(‖um − r∗‖) + µm(β + σ)

)
+

2

(1− λ2)
〈h(r∗)− r∗, rm+1 − r∗〉

= 0. (61)

Hence, by Lemma (2.6) we conclude that

rm → r∗ as m→∞.
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Taking γm = 0 and β = βm in Theorem (3.1), we get

Corollary 3.1. (see Wang et al. (2012)) Let K1, K2 be two Hilbert spaces, Ψ :
K1 → K1, Φ : K2 → K2 be two uniformly τ−Lipschitzian and ({vm}, {µm}, ξ)−
total quasi-asymptotically nonexpansive mappings with

∑
vm <∞ and

∑
µm <∞

such that Ψ and Φ are demiclosed at zero. Let N and N∗ be positive constants
such that ξ(δ) ≤ ξ(N) + N∗δ2,∀δ ≥ 0, and let M : K1 → K2 be a bounded
linear operator and M∗ be the adjoint of M with L = ‖MM∗‖. Assume that
Γ 6= ∅, and let {rm} be the sequence generated by (8), where βm ⊆ [0, 1] such
that 0 < lim inf

m→∞
βm ≤ lim sup

m→∞
βm < 1, and σ ∈ (0, 1

L ). Then the sequence {rm}

defined by (8) converges weakly to r∗ ∈ Γ.

Corollary 3.2. Let K1, K2 be two Hilbert spaces, Ψ : K1 → K1, Φ : K2 →
K2 be {vm1}, {vm2}− quasi-asymptotically nonexpansive mappings with vm =
max {vm1

, vm2
}such that

∑
vm <∞ and let M, M∗, L, h, β, σ, {γm} and

{rm} be as in Theorem (3.1). Assume that Γ 6= ∅,. Then {rm} converges
strongly to r∗ ∈ Γ which solves the VIP (15).

Proof. Ψ and Φ are ({vm}, {µm}, ξ)− total quasi-asymptotically nonexpansive
and uniformly τ− Lipschitzian mappings with {vm} = {km − 1}, µm = 0,
ξ(δ) = δ2,∀δ ≥ 0 and τ = sup

m≥1
vm respectively. Therefore, all the conditions in

Theorem (3.1) are satisfied . Hence, the conclusions of this Corollary follows
directly from Theorem (3.1).

Corollary 3.3. Let K1, K2 be two Hilbert spaces, Ψ : K1 → K1, T : K2 → K2

be two quasi-nonexpansive mappings, and let M, M∗, L, h, β, σ, {γm} and
{rm} be as in Theorem (3.1). Assume that Γ 6= ∅,. Then {rm} converges
strongly to r∗ ∈ Γ which solves the VIP (15).

Proof. Ψ and Φ are ({1})− quasi-asymptotically nonexpansive and uniformly
({1})− Lipschitzian mappings. Therefore, all the conditions in Corollary (3.2)
are satisfied. Hence, the conclusions of this Corollary follows directly from
Corollary (3.2).

4. Conclusion

The results presented in this paper is the extension of the result of Wang
et al. (2012) in the sense that;
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• Take γm = 0 and β = βm in Theorem (3.1), then our algorithm reduces
to Wang et al. (2012) algorithm (8).

• The Wang’s et al Wang et al. (2012) result gave a weak convergence result
for the solution of SFP (9) and the strong convergence follows only if Ψ
is a semi-compact, while our result gave the strong convergence result
for the solution of SFP (9) without imposing the condition that Ψ is a
semi-compact.

• In Wang et al. (2012) result, the demicloseness of I − Ψ and I − Φ was
imposed, while in our result the demicloseness of I − Ψ and I − Φ was
proved see Lemma (2.5).
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