MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Iterative Methods for Solving Split Feasibility Problem in Hilbert Space

A. Kılıçman *1 and L.B. Mohammed ${ }^{2}$
1,2 Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia

E-mail: akilic@upm.edu.my, lawanbulama@gmail.com

Abstract

Based on the recent work of Wang et al. (2012), in this paper, we construct a new algorithm for solving split feasibility problem for the class of total quasi-asymptotically nonexpansive and uniformly τ-Lipschitzian mappings in Hilbert space and prove its strong convergence result. The result presented in this paper, not only extend the result of Wang et al. Wang et al. (2012), but also extend, improve and generalize several well-known results in the literature.

Keywords: Iterative Algorithm; Total Quasi-Asymptotically Nonexpansive; Uniformly τ - Lipschitzian; Split Feasibility Problem; Strong Convergence.

1. Introduction

Let W be a Banach space, K_{1}, K_{2}, be two Hilbert spaces, $\langle.,$.$\rangle be an inner$ product, $\|\cdot\|$ stand for the corresponding norm, Δ and Ω be nonempty closed convex subset of K_{1} and K_{2} respectively, $M: K_{1} \rightarrow K_{2}$ be a bounded linear operator and M^{*} be the adjoint of M. And also let I be the identity operator
on K_{1}, $\operatorname{Fix}(\Psi)$ to donate the fixed point set of Ψ i.e., $F i x(\Psi)=\{r \in K$: $\Psi r=r\}, " \rightarrow "$ and " \rightharpoonup " to denote the weak and strong convergence, and $\omega_{\omega}\left(r_{m}\right)$ to denote the set of the cluster point of $\left\{r_{m}\right\}$ in the weak topology i.e., $\left\{\right.$ there exists $\left\{r_{m_{k}}\right\}$ of $\left.\left\{r_{m}\right\} \ni r_{m_{k}} \rightharpoonup r\right\}$.

The mapping $\Psi: K_{1} \rightarrow K_{1}$ is said to be; quasi nonexpansive, if $\operatorname{Fix}(\Psi) \neq \emptyset$ such that $\|\Psi w-z\| \leq\|w-z\|, \forall z \in F i x(\Psi)$ and $w \in K_{1}$, quasi-asymptotically nonexpansive, if $\operatorname{Fix}(\Psi) \neq \emptyset$ and there exists a sequence $\left\{r_{m}\right\} \subseteq[1, \infty)$ with $r_{m} \rightarrow 1 \ni \forall m \geq 1,\left\|\Psi^{m} w-z\right\|^{2} \leq r_{m}\|w-z\|^{2}, \forall z \in F i x(\Psi)$ and $w \in K_{1}$, total quasi-asymptotically nonexpansive, if $\operatorname{Fix}(\Psi) \neq \emptyset$, and there exists nonnegative real sequences $\left\{v_{m}\right\},\left\{\mu_{m}\right\}$ in $[0, \infty)$ with $v_{m} \rightarrow 0$ and $\mu_{m} \rightarrow 0$, and a strictly increasing continuous function $\delta: \Re^{+} \rightarrow \Re^{+}$with $\delta(0)=0 \ni \forall m \geq 1,\left\|\Psi^{m} w-z\right\|^{2} \leq\|w-z\|^{2}+v_{m} \delta(\|w-z\|)+\mu_{m}, \forall z \in$ Fix (Ψ) and $w \in K_{1}$, and it is said to be contraction with the coefficient $\varphi \in(0,1)$ if $\|\Psi(w)-\Psi(z)\| \leq \varphi\|w-z\|, \forall w, z \in K_{1}, \eta$-strongly monotone, if \exists a constant $\eta>0 \ni\langle\Psi w-\Psi z, w-z\rangle \geq \eta\|w-z\|, \forall w, z \in K_{1}$.

Remark: It's not difficult to see that, if $\Psi: K_{1} \rightarrow K_{1}$ is a contraction mapping with coefficient $\varphi \in(0,1)$, then $(I-\Psi)$ is $(1-\varphi)$-strongly monotone, i.e.,

$$
\begin{equation*}
\langle(I-\Psi) w-(I-\Psi) z, w-z\rangle \geq(1-\varphi)\|w-z\|^{2}, \forall w, z \in K_{1} \tag{1}
\end{equation*}
$$

A Banach space W is said to satisfy Opial's condition (see Opial (1967)) if for any sequence $\left\{r_{m}\right\} \subseteq W$ with $r_{m} \rightharpoonup r$ as $m \rightarrow \infty$, then

$$
\liminf _{m \rightarrow \infty}\left\|r_{m}-r\right\|<\liminf _{m \rightarrow \infty}\left\|r_{m}-r^{*}\right\|, \quad \forall r^{*} \in W \text { and } r^{*} \neq r
$$

It's well known that each Hilbert space satisfied the Opial's property.
And also Ψ is said to be; demiclosed at zero, if for any sequence $\left\{r_{m}\right\}$ in K_{1}, with

$$
r_{m} \rightharpoonup r \text { and } \Psi r_{m} \rightarrow 0 \text { as } m \rightarrow \infty \Rightarrow \Psi r=0,
$$

uniformly τ-Lipschitzian, if \exists a constant $\tau>0$ such that

$$
\left\|\Psi^{m} w-\Psi^{m} z\right\| \leq \tau\|w-z\|, \forall w, z \in K_{1}
$$

and it's said to be semi-compact, if for any bounded sequence $r_{m} \subseteq K_{1}$ with $\lim _{m \rightarrow \infty}\left\|\Psi r_{m}-r_{m}\right\|=0$, there exists sub-sequence $\left\{r_{m_{k}}\right\} \subseteq\left\{r_{m}\right\}$ such that $\left\{r_{m_{k}}\right\}$ converges strongly to some point $r^{*} \in K_{1}$.

The split feasibility problem (SFP) consist as find a vector r^{*} satisfying

$$
\begin{equation*}
r^{*} \in \Delta \ni M r^{*} \in \Omega \tag{2}
\end{equation*}
$$

The SFP (2) has been intensively studied by numerous authors due to its various applications in many physical problems such as; in image restoration, computer tomography and radiation therapy treatment planning (see Censor et al. (2006, 2005, 2007)). Iterative algorithm for approximating fixed points of nonexpansive mapping, quasi-nonexpansive, quasi asymptotically nonexpansive, total quasi-asymptotically nonexpansive mapping and their generalizations which solves problem (2) have been studied by a number of authors for example sees Ansari and Rehan (2014), Byrne (2002), Mohammed and Kılıç$\operatorname{man}(2015)$, Wang et al. (2012), Xu (2006), Yang (2004), Zhao and Yang (2005) and the references therein. One of the popular method that solves problem (2) is the Byne's algorithm see (Censor et al. (2007)) whose generates a sequence $\left\{r_{m}\right\}$ by

$$
\begin{equation*}
r_{m+1}:=\Psi_{\Delta}\left(I+\sigma M^{*}\left(\Psi_{\Omega}-I\right) M\right) r_{m}, \forall m \in \mathbb{N} \tag{3}
\end{equation*}
$$

where Ψ_{Δ} and Ψ_{Ω} are the orthogonal projection onto Δ and Ω respectively, M is a bounded linear mapping and M^{*} is the adjoint of M, and $\sigma \in\left(0, \frac{2}{L}\right)$ with L being the spectral radius of the operator $M^{*} M$. Suppose that, problem $\sqrt{2}$ has a solution, it's not difficult to see that $r^{*} \in \Delta$ solves (2) if and only if it solves the following equation:

$$
\begin{equation*}
r^{*}=\Psi_{\Delta}\left(I+\sigma M^{*}\left(\Psi_{\Omega}-I\right) M\right) r^{*}, \forall r^{*} \in \Delta \tag{4}
\end{equation*}
$$

where $\sigma>0, \Psi_{\Delta}, \Psi_{\Omega}, M$, and M^{*} as in (3) above. The Krasnosel'skii-Mann algorithm which is known as K-M algorithm see Krasnosel'skii (1955), Mann (1953), whose generate a sequence $\left\{r_{m}\right\}$ by

$$
\begin{equation*}
r_{m+1}:=\left(1-\gamma_{m}\right) r_{m}+\gamma_{m} \Psi r_{m}, \forall m \geq 0 \tag{5}
\end{equation*}
$$

where $\left\{\gamma_{m}\right\}$ is a sequence in $[0,1], r_{0} \in \Delta$ is chosen arbitrarily and Ψ is a nonexpansive mapping, that is $\|\Psi w-\Psi z\| \leq\|w-z\|, \forall w, z \in K$. It was proved in Reich (1979) that the sequence $\left\{r_{m}\right\}$ defined by (5) converged weakly to a common fixed point r^{*} of Ψ provided that $\left\{\gamma_{m}\right\}$ satisfies

$$
\begin{equation*}
\sum_{m=1}^{\infty}\left(1-\gamma_{m}\right) \gamma_{m}=\infty \tag{6}
\end{equation*}
$$

Algorithm (3) can be seen as a special case of algorithm (5), this is due to the fixed-point formulation of equation (4), one can apply algorithm (5) to the operator

$$
\Psi_{\Delta}\left(I+\sigma M^{*}\left(\Psi_{\Omega}-I\right) M\right)
$$

to obtain the following algorithm:

$$
\begin{equation*}
r_{m+1}:=\left(1-\gamma_{m}\right) r_{m}+\gamma_{m} \Psi_{\Delta}\left(I+\sigma M^{*}\left(\Psi_{\Omega}-I\right) M\right) r_{m}, \forall m \in \mathbb{N}, \tag{7}
\end{equation*}
$$

where $\sigma \in\left(0, \frac{2}{L}\right)$ and again L is the spectral radius of the operator $M^{*} M$. It's not difficult to see that as long as $\left\{\gamma_{m}\right\}$ satisfy equation (6), the sequence $\left\{r_{m}\right\}$ defined by algorithm (7) will converge weakly to the solution of problem (2). On the other hand, if problem (2) is not consistence, the Byne's algorithm converges to a minimizer of $\left\|\Psi_{\Delta}(M d)-(M d)\right\|$ over $d \in \Delta$, whenever such a minimizer exists.

Recently, Wang et al. (2012), introduced the following algorithm for solving SFP (2) whose generate a sequence $\left\{r_{m}\right\}$ by

$$
\left\{\begin{array}{l}
r_{1} \in K \tag{8}\\
u_{m}=r_{m}+\sigma M^{*}\left(\Phi^{m}-I\right) M r_{m} \\
r_{m+1}=\left(1-\beta_{m}\right) u_{m}+\beta_{m} \Psi^{m} u_{m}, \forall m \geq 1
\end{array}\right.
$$

where $\sigma \in\left(0, \frac{1}{\|M\|^{2}}\right), \beta_{m} \subset[0,1]$ satisfied the condition; $0<\liminf _{m \rightarrow \infty} \beta_{m} \leq$ $\limsup \beta_{m}<1$ and Φ, Ψ are total quasi-asymptotically nonexpansive and uniformly τ - Lipschitzian mappings satisfied some certain conditions see Wang et al. (2012). It was proved in Wang et al. (2012), the sequence $\left\{r_{m}\right\}$ defined by algorithm (8) converged weakly to the solution of SFP (2) and the strong convergence follows if Ψ is a semi-compact. This compactness type condition appear very strong as only few mappings are semi-compact. It's an interesting problem to continue studying this problem (SFP) and prove its strong convergence result without any compactness type condition assume.

It's the aim of this paper to modify the algorithm of Wang et al Wang et al. (2012) for the class of total quasi asymptotically nonexpansive and uniformly τ - Lipschitzian mappings so that the strong convergence is guaranteed for the solution of SFP (2).

In what follows, we denote the solution set of SFP 22 by Γ, i.e.,

$$
\begin{equation*}
\Gamma=\left\{r^{*} \in \Delta \text { such that } M r^{*} \in \Omega\right\} \tag{9}
\end{equation*}
$$

2. Preliminaries

Lemma 2.1. Marino and $X u$ (2007)) Let K_{1} be a real Hilbert space, then
(i) $\|w+z\|^{2}=\|w\|^{2}+2\langle w, z\rangle+\|z\|^{2}, \forall w, z \in K_{1}$
(ii) $\|k w+(1-k) z\|^{2}=k\|w\|^{2}+(1-k)\|z\|^{2}-k(1-k)\|w-z\|^{2}, \forall w, z \in K_{1}$ and $k \in[0,1]$.

Lemma 2.2. Yang et al. (2011)) Let $\left\{r_{m}\right\} \subseteq K_{1}$ such that $r_{m} \rightharpoonup r$, then $\limsup _{m \rightarrow \infty}\left\|r_{m}-z\right\|^{2}=\limsup _{m \rightarrow \infty}\left\|r_{m}-r\right\|^{2}+\|r-z\|^{2}, \forall z \in K_{1}$.

Lemma 2.3. Wang et al. (2012)) Let $\Psi: K_{1} \rightarrow K_{1}$ be $a\left(\left\{v_{m}\right\},\left\{\mu_{m}\right\}, \xi\right)$ total quasi-asymptotically nonexpansive mapping. Then for each $z \in F i x(\Psi)$, $w \in K_{1}$ and $m \geq 1$, the following inequalities are equivalent.
(i) $\left\|\Psi^{m} w-z\right\|^{2} \leq\|w-z\|^{2}+v_{m} \xi(\|w-z\|)+\mu_{m}$,
(ii) $2\left\langle w-\Psi^{m} w, w-z\right\rangle \geq\left\|\Psi^{m} w-w\right\|^{2}-v_{m} \xi(\|w-z\|)-\mu_{m}$,
(iii) $2\left\langle w-\Psi^{m} w, z-\Psi^{m} w\right\rangle \leq\left\|\Psi^{m} w-w\right\|^{2}+v_{m} \xi(\|w-z\|)+\mu_{m}$.

Lemma 2.4. (Yang et al. (2011)) Let C be a nonempty closed convex subset of K_{1} and $\Psi: C \rightarrow C$ be a $\left(k,\left\{v_{m}\right\},\left\{\mu_{m}\right\}, \xi\right)$ - total asymptotically strict pseudocontractive and uniformly $\tau-$ Lipschitzian mapping. Then $I-\Psi$ is demiclosed at zero in the sense that if $\left\{r_{m}\right\}$ is a sequence in C such that $r_{m} \rightharpoonup r^{*}$ and $\limsup _{m \rightarrow \infty}\left\|r_{m}-\Psi^{m} r_{m}\right\|=0$, then $\Psi r^{*}=r^{*}$. In particular, if $r_{m} \rightharpoonup r^{*}$ and $(I-\stackrel{m \rightarrow \infty}{\Psi}) r_{m} \rightarrow 0$ then $\Psi r^{*}=r^{*}$, i.e., Ψ is demiclosed at zero.

Based on Lemma 2.4, we obtain the following lemma.
Lemma 2.5. Let Δ be a nonempty closed convex subset of a Hilbert space K_{1} and $\Psi: \Delta \rightarrow \Delta$ be a $\left(\left\{v_{m}\right\},\left\{\mu_{m}\right\}, \xi\right)$ - total quasi-asymptotically nonexpansive mapping, then $I-\Psi$ is demiclosed at zero in the sense that, if $\left\{r_{m}\right\}$ is a sequence in Δ such that $r_{m} \rightharpoonup r^{*}$ and $\left(I-\Psi^{m}\right) r_{m} \rightarrow 0$, then $\Psi r^{*}=r^{*}$. In particular, if $r_{m} \rightharpoonup r^{*}$ and $(I-\Psi) r_{m} \rightarrow 0$ then $\Psi r^{*}=r^{*}$.

Proof. By the boundedness of $\left\{r_{m}\right\}$, we can define a function g on K_{1} by

$$
\begin{equation*}
g(r)=\limsup _{m \rightarrow \infty}\left\|r_{m}-r\right\|^{2}, \forall r \in K_{1} \tag{10}
\end{equation*}
$$

by Lemma 2.2 and the weak convergence of r_{m}, we have

$$
g(r)=g\left(r^{*}\right)+\left\|r^{*}-r\right\|^{2}, \forall r \in K_{1}
$$

In particular, for $m \geq 1$,

$$
\begin{equation*}
g\left(\Psi^{m} r^{*}\right)=g\left(r^{*}\right)+\left\|r^{*}-\Psi^{m} r^{*}\right\|^{2} \tag{11}
\end{equation*}
$$

On the other hand, Ψ is $\left(\left\{v_{m}\right\},\left\{\mu_{m}\right\}, \xi\right)-$ total quasi-asymptotically nonexpansive mapping, by 10), we get

$$
\begin{align*}
g\left(\Psi^{m} r^{*}\right) & =\limsup _{m \rightarrow \infty}\left\|r_{m}-\Psi^{m} r^{*}\right\|^{2} \\
& \leq \limsup _{m \rightarrow \infty}\left(\left\|r_{m}-r^{*}\right\|^{2}+v_{m} \xi\left(\left\|r_{m}-r^{*}\right\|\right)+\mu_{m}\right) \\
& =g\left(r^{*}\right) \tag{12}
\end{align*}
$$

By substituting (11) into (12), we have that

$$
g\left(r^{*}\right)+\left\|r^{*}-\Psi^{m} r^{*}\right\|^{2} \leq g\left(r^{*}\right)
$$

which implies that $\Psi^{m} r^{*}=r^{*}$. Hence, $\Psi r^{*}=r^{*}$.
Lemma 2.6. Tian and Di (2011)) Let $\left\{r_{m}\right\}$ and σ_{m} be two sequences of nonnegative real numbers satisfying

$$
r_{m+1} \leq\left(1-\delta_{m}\right) r_{m}+\sigma_{m}, m \geq 0
$$

where $\delta_{m} \subset(0,1)$ such that:
(i) $\lim _{m \rightarrow \infty} \delta_{m}=0$ and $\sum_{m=0}^{\infty} \delta_{m}=\infty$,
(ii) $\lim _{m \rightarrow \infty} \frac{\sigma_{m}}{\delta_{m}} \leq 0$ or $\sum_{m=0}^{\infty}\left|\sigma_{m}\right|<\infty$, then the $\lim _{m \rightarrow \infty} r_{m}=0$.

Lemma 2.7. Wang et al. (2012)) Let $\left\{r_{m}\right\},\left\{\delta_{m}\right\}$ and $\left\{\sigma_{m}\right\}$ be sequences of nonnegative real numbers satisfying

$$
r_{m+1} \leq\left(1+\delta_{m}\right) r_{m}+\sigma_{m}, m \geq 1
$$

if $\sum \delta_{m}<\infty$ and $\sum \sigma_{m}<\infty$, then the $\lim _{m \rightarrow \infty} r_{m}$ exists.
Lemma 2.8. Bauschke and Borwein (1996)) If $\left\{r_{m}\right\}$ is a Fejer monotone with respect to Δ, then
(i) $r_{m} \rightharpoonup r^{*} \in \Delta$ if and only if $\omega_{\omega}\left(r_{m}\right) \subset \Delta$;
(ii) The sequence $\left\{\Psi_{\Delta} r_{m}\right\}$ converges strongly to some point in Δ;
(iii) If $r_{m} \rightharpoonup r^{*} \in \Delta$, then $r^{*}=\lim _{m \rightarrow \infty} \Psi_{\Delta} r_{m}$.

Lemma 2.9. (Marino and $X u$ (2007)) Let Δ be a of K_{1}. Given $w \in K_{1}$ and $z \in \Delta$. Then $z=\Psi_{\Delta} w$ if and only if there hold the relation $\langle w-z, y-z\rangle \leq$ $0, \forall y \in \Delta$.

3. Main Results

In this section, we present the main result of this paper which is the extension of the Theorem (3.1) of Wang et al. (2012).

Theorem 3.1. Let K_{1}, K_{2} be two Hilbert spaces, $\Psi: K_{1} \rightarrow K_{1}, \Phi: K_{2} \rightarrow$ K_{2} be $\left(\left\{v_{m_{1}}\right\},\left\{\mu_{m_{1}}\right\}, \xi_{1}\right),\left(\left\{v_{m_{2}}\right\},\left\{\mu_{m_{2}}\right\}, \xi_{2}\right)$ - total quasi-asymptotically nonexpansive and uniformly $\tau_{1,2}$-Lipschitzian continuous mappings with $v_{m}=$ $\max \left\{v_{m_{1}}, v_{m_{2}}\right\}, \mu_{m}=\max \left\{\mu_{m_{1}}, \mu_{m_{2}}\right\}, \xi=\max \left\{\xi_{1}, \xi_{2}\right\}$ and $\tau=\max \left\{\tau_{1}, \tau_{2}\right\}$ such that $\sum v_{m}<\infty$ and $\sum \mu_{m}<\infty$, and also let $h: K_{1} \rightarrow K_{1}$ be a contraction mapping with the coefficient $\lambda \in(0,1)$ and N, N^{*} be positive constants such that $\xi(\delta) \leq \xi(N)+N^{*} \delta^{2}, \forall \delta \geq 0, M: K_{1} \rightarrow K_{2}$ be a bounded linear operator and $M^{*}: K_{2} \rightarrow K_{1}$ be the adjoint of M with $L=\left\|M M^{*}\right\|$. Assume that $\Gamma \neq \emptyset$ and let $\left\{r_{m}\right\}$ be define by

$$
\left\{\begin{array}{l}
r_{0} \in K_{1} \text { is chosen arbitrary } \tag{13}\\
u_{m}=r_{m}+\sigma M^{*}\left(\Phi^{m}-I\right) M r_{m} \\
y_{m}=(1-\beta) u_{m}+\beta \Psi^{m}\left(u_{m}\right) \\
r_{m+1}=\gamma_{m} h\left(r_{m}\right)+\left(1-\gamma_{m}\right) y_{m}, \forall m \geq 0
\end{array}\right.
$$

where $\beta \in(0,1), \sigma \in\left(0, \frac{1}{L}\right)$, and γ_{m} is sequence in $(0,1)$ satisfy the conditions;

$$
\left\{\begin{array}{l}
\text { (a) } \lim _{m \rightarrow \infty} \gamma_{m}=0 \text { and } \sum_{m=0}^{\infty} \gamma_{m}=\infty, \tag{14}\\
\text { (b) } 0<\eta<\gamma_{m}<1
\end{array}\right.
$$

Then the sequence $\left\{r_{m}\right\}$ defined by algorithm (13) converges to $r^{*} \in \Gamma$ which solves the variational inequality problem:

$$
\begin{equation*}
\left\langle(h-I) r^{*}, r-r^{*}\right\rangle \leq 0, \forall r \in \Gamma \tag{15}
\end{equation*}
$$

Note that, equation (15) is equivalent with $\Psi_{\Gamma} h\left(r^{*}\right)=r^{*}$ see Lemma (2.9), where Ψ_{Γ} is the metric projection of K_{1} onto Γ.

Proof. Step 1. In this step, we show that $\left\{r_{m}\right\}$ is bounded.
Let $r^{*} \in \Gamma$, from (13) and Lemma (2.1), we have

$$
\begin{align*}
&\left\|r_{m+1}-r^{*}\right\|^{2}=\left\|\gamma_{m} h\left(r_{m}\right)+\left(1-\gamma_{m}\right) y_{m}-r^{*}\right\|^{2} \\
& \leq \gamma_{m}\left\|h\left(r_{m}\right)-r^{*}\right\|^{2}+\left(1-\gamma_{m}\right)\left\|y_{m}-r^{*}\right\|^{2} \\
& \leq 2 \gamma_{m} \lambda^{2}\left\|r_{m}-r^{*}\right\|^{2}+2 \gamma_{m}\left\|h\left(r^{*}\right)-r^{*}\right\|^{2}+\left(1-\gamma_{m}\right)\left\|y_{m}-r^{*}\right\|^{2} . \tag{16}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\left\|y_{m}-r^{*}\right\|^{2} & =\left\|(1-\beta) u_{m}+\beta \Psi^{m}\left(u_{m}\right)-r^{*}\right\|^{2} \\
& \leq(1-\beta)\left\|u_{m}-r^{*}\right\|^{2}+\beta\left\|\Psi^{m}\left(u_{m}\right)-r^{*}\right\|^{2} \\
& -\beta(1-\beta)\left\|\Psi^{m}\left(u_{m}\right)-u_{m}\right\|^{2} \\
& \leq\left\|u_{m}-r^{*}\right\|^{2}+\beta v_{m} \xi\left(\left\|u_{m}-r^{*}\right\|\right) \\
& -\beta(1-\beta)\left\|\Psi^{m}\left(u_{m}\right)-u_{m}\right\|^{2}+\beta \mu_{m} \tag{17}\\
& \leq\left(1+\beta v_{m} N^{*}\right)\left\|u_{m}-r^{*}\right\|^{2} \\
& -\beta(1-\beta)\left\|\Psi^{m}\left(u_{m}\right)-u_{m}\right\|^{2}+\beta\left(v_{m} \xi(N)+\mu_{m}\right), \tag{18}
\end{align*}
$$

and

$$
\begin{align*}
\left\|u_{m}-r^{*}\right\|^{2} & =\left\|r_{m}+\sigma M^{*}\left(\Phi^{m}-I\right) M r_{m}-r^{*}\right\|^{2} \\
& \leq\left\|r_{m}-r^{*}\right\|^{2}+2 \sigma\left\langle M r_{m}-M r^{*},\left(\Phi^{m}-I\right) M r_{m}\right\rangle \\
& +\sigma^{2}\left\langle M M^{*}\left(\Phi^{m}-I\right) M r_{m},\left(\Phi^{m}-I\right) M r_{m}\right\rangle \\
& \leq\left\|r_{m}-r^{*}\right\|^{2}+\sigma^{2} L\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2} \\
& +2 \sigma\left\langle\Phi^{m} M r_{m}-M r^{*}-\left(\Phi^{m}-I\right) M r_{m},\left(\Phi^{m}-I\right) M r_{m}\right\rangle \\
& \leq\left\|r_{m}-r^{*}\right\|^{2}-\sigma(2-\sigma L)\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2} \\
& +2 \sigma\left\langle\Phi^{m} M r_{m}-M r^{*}, \Phi^{m} M r_{m}-M r_{m}\right\rangle . \tag{19}
\end{align*}
$$

By Lemma 2.3, we deduce that

$$
\begin{align*}
2 \sigma\left\langle\Phi^{m} M r_{m}-M r^{*}, \Phi^{m} M r_{m}-M r_{m}\right\rangle & \leq \sigma\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2} \\
& +\sigma v_{m} \xi\left(\left\|M r_{m}-M r^{*}\right\|\right)+\sigma \mu_{m} \\
& \leq \sigma\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2} \\
+\sigma v_{m} N^{*}\left\|M r_{m}-M r^{*}\right\|^{2}+ & \sigma\left(v_{m} \xi(N)+\mu_{m}\right) \tag{20}
\end{align*}
$$

Substitute (20) into 19), we have

$$
\begin{align*}
\left\|u_{m}-r^{*}\right\|^{2} & \leq\left(1+\sigma v_{m} N^{*} L\right)\left\|r_{m}-r^{*}\right\|^{2} \\
& -\sigma(1-\sigma L)\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2}+\sigma\left(v_{m} \xi(N)+\mu_{m}\right) . \tag{21}
\end{align*}
$$

Substitute (21) into 18), we have

$$
\begin{align*}
\left\|y_{m}-r^{*}\right\|^{2} & \leq\left(1+\beta v_{m} N^{*}\right)\left(1+\sigma v_{m} N^{*} L\right)\left\|r_{m}-r^{*}\right\|^{2} \\
& -\left(1+\beta v_{m} N^{*}\right) \sigma(1-\sigma L)\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2} \\
& +\left(v_{m} \xi(N)+\mu_{m}\right)\left(\left(1+\beta v_{m} N^{*}\right) \sigma+\beta\right) . \tag{22}
\end{align*}
$$

Substitute (22) into (16), we have

$$
\begin{align*}
&\left\|r_{m+1}-r^{*}\right\|^{2} \leq\left(2 \gamma_{m} \lambda^{2}+\left(1-\gamma_{m}\right)\left(1+\beta v_{m} N^{*}\right)\left(1+\sigma v_{m} N^{*} L\right)\right)\left\|r_{m}-r^{*}\right\|^{2} \\
&-\left(1-\gamma_{m}\right)\left(1+\beta v_{m} N^{*}\right) \sigma(1-\sigma L)\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2} \\
&+\left(1-\gamma_{m}\right)\left(v_{m} \xi(N)+\mu_{m}\right)\left(\left(1+\beta v_{m} N^{*}\right) \sigma+\beta\right) \\
&+2 \gamma_{m}\left\|h\left(r^{*}\right)-r^{*}\right\|^{2} \tag{23}\\
& \leq\left(1+\sigma v_{m} N^{*} L+2 \gamma_{m} \lambda^{2}+\beta v_{m} N^{*}\left(1+\sigma v_{m} N^{*} L\right)\right. \\
&\left.-\gamma_{m}\left(1+\beta v_{m} N^{*}\right)\left(1+\sigma v_{m} N^{*} L\right)\right)\left\|r_{m}-r^{*}\right\|^{2} \\
&+\left(1-\gamma_{m}\right)\left(v_{m} \xi(N)+\mu_{m}\right)\left(\left(1+\beta v_{m} N^{*}\right) \sigma+\beta\right)+2 \gamma_{m}\left\|h\left(r^{*}\right)-r^{*}\right\|^{2} \\
& \leq\left(1+\sigma v_{m} N^{*} L+2 \lambda^{2}+\beta v_{m} N^{*}\left(1+\sigma v_{m} N^{*} L\right)\right)\left\|r_{m}-r^{*}\right\|^{2} \\
&+(1-\eta)\left(v_{m} \xi(N)+\mu_{m}\right)\left(\left(1+\beta v_{m} N^{*}\right) \sigma+\beta\right)+2\left\|h\left(r^{*}\right)-r^{*}\right\|^{2} . \tag{24}
\end{align*}
$$

It follows from (24) that

$$
\begin{gather*}
\left\|r_{m+1}-r^{*}\right\|^{2} \leq\left(1+\delta_{m}\right)\left\|r_{m}-x^{*}\right\|^{2}+\varphi_{m}, \text { where } \tag{25}\\
\delta_{m}=\sigma v_{m} N^{*} L+2 \lambda^{2}+\beta v_{m} N^{*}\left(1+\sigma v_{m} N^{*} L\right) \text { and } \tag{26}\\
\varphi_{m}=(1-\eta)\left(v_{m} \xi(N)+\mu_{m}\right)\left(\left(1+\beta v_{m} N^{*}\right) \sigma+\beta\right)+2\left\|h\left(r^{*}\right)-r^{*}\right\|^{2} . \tag{27}
\end{gather*}
$$

Evidently, from equation (26) and 27), we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} \delta_{m}<\infty \text { and } \sum_{m=1}^{\infty} \varphi_{m}<\infty \tag{28}
\end{equation*}
$$

By Lemma 2.7, we conclude that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|r_{m}-r^{*}\right\| \text { exists, } \tag{29}
\end{equation*}
$$

therefore, $\left\{r_{m}\right\}$ is bounded.

Step 2. In this step, we show that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|r_{m}-r^{*}\right\|=\lim _{m \rightarrow \infty}\left\|u_{m}-r^{*}\right\|=\lim _{m \rightarrow \infty}\left\|y_{m}-r^{*}\right\| \tag{30}
\end{equation*}
$$

Proof. From (16), (22) and the fact that (29) exists, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|r_{m}-r^{*}\right\|=\lim _{m \rightarrow \infty}\left\|y_{m}-r^{*}\right\| \tag{31}
\end{equation*}
$$

And also, from 18, 21) and the fact that (31) holds, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|u_{m}-r^{*}\right\|=\lim _{m \rightarrow \infty}\left\|r_{m}-r^{*}\right\| \tag{32}
\end{equation*}
$$

Hence, equation (30) follows trivially from (31) and (32).

Step 3. In this step, we show that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|\Phi^{m} M r_{m}-M r_{m}\right\|=0 \text { and } \lim _{m \rightarrow \infty}\left\|\Psi^{m} u_{m}-u_{m}\right\|=0 \tag{33}
\end{equation*}
$$

Proof. The fact that Φ and Ψ are uniformly τ - Lipschitzian, and $M,\left\{r_{m}\right\}$, and $\left\{u_{m}\right\}$ are bounded, then $\left\{\Phi^{m} M r_{m}\right\}$ and $\left\{\Psi^{m} u_{m}\right\}$ are also, and from (23), we have

$$
\begin{align*}
& \sigma(1-\sigma L)\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2} \leq\left\|r_{m}-r^{*}\right\|^{2}-\left\|r_{m+1}-r^{*}\right\|^{2} \\
& \quad+\left[\left(\left(1-\gamma_{m}\right) \beta v_{m} N^{*}-\gamma_{m}\right)\left(1+\sigma v_{m} M^{*} L\right)+2 \gamma_{m} \lambda^{2}+\sigma v_{m} N^{*} L\right] \\
& \quad \times\left\|r_{m}-r^{*}\right\|^{2}-\sigma(1-\sigma L)\left[\left(1-\gamma_{m}\right) \beta v_{m} N^{*}-\gamma_{m}\right]\left\|\Phi^{m} M r_{m}-M r_{m}\right\|^{2} \\
& +\left(1-\gamma_{m}\right)\left(v_{m} \xi(N)+\mu_{m}\right)\left(\left(1+\beta v_{m} N^{*}\right) \sigma+\beta\right)+2 \gamma_{m}\left\|h\left(r^{*}\right)-r^{*}\right\|^{2} \tag{34}
\end{align*}
$$

Evidently, from (29) and (34), we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|\Phi^{m} M r_{m}-M r_{m}\right\|=0 \tag{35}
\end{equation*}
$$

and from (18) and (30), we also have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|\Psi^{m} u_{m}-u_{m}\right\|=0 \tag{36}
\end{equation*}
$$

Hence, equation (33) follows trivially from (35) and (36).

Step 4. In this step, we show that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|r_{m+1}-r_{m}\right\|=0 \text { and } \lim _{m \rightarrow \infty}\left\|u_{m+1}-u_{m}\right\|=0 \tag{37}
\end{equation*}
$$

Iterative Methods for Solving Split Feasibility Problem in Hilbert Space

Proof. From 13), we have

$$
\begin{align*}
\left\|r_{m+1}-r_{m}\right\| & =\left\|\gamma_{m}\left(h\left(r_{m}\right)-y_{m}\right)+y_{m}-r_{m}\right\| \\
& \leq \gamma_{m}\left\|h\left(r_{m}\right)-y_{m}\right\|+\left\|u_{m}-r_{m}\right\| \beta\left\|\Psi^{m} u_{m}-u_{m}\right\| \\
& \leq \gamma_{m}\left\|h\left(r_{m}\right)-y_{m}\right\|+\beta\left\|\Psi^{m} u_{m}-u_{m}\right\| \\
& +\sigma\|M\|\left\|\Phi^{m} M r_{m}-M r_{m}\right\| \tag{38}
\end{align*}
$$

In view of 35 and 36 and the fact that $\left\{r_{m}\right\}$ and $\left\{y_{m}\right\}$ are bounded, we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|r_{m+1}-r_{m}\right\|=0 \tag{39}
\end{equation*}
$$

Similarly, it follows from 35 and 39 that

$$
\begin{align*}
&\left\|u_{m+1}-u_{m}\right\| \leq\left\|r_{m+1}-r_{m}\right\|+\left\|\sigma M^{*}\left(\Phi^{m+1}-I\right) M r_{m+1}\right\| \\
&+\left\|\sigma M^{*}\left(\Phi^{m}-I\right) M r_{m}\right\| \rightarrow 0 \text { as } m \rightarrow \infty \\
& \Rightarrow \lim _{m \rightarrow \infty}\left\|u_{m+1}-u_{m}\right\|=0 \tag{40}
\end{align*}
$$

Hence, equation (37) follows trivially from 39 and 40 .

Step 5. In this step, we show that

$$
\begin{equation*}
\left\|u_{m}-\Psi u_{m}\right\| \rightarrow 0 \text { and }\left\|M r_{m}-\Phi M r_{m}\right\| \rightarrow 0 \text { as } m \rightarrow \infty \tag{41}
\end{equation*}
$$

Proof. The fact that $\left\|u_{m}-\Psi^{m} u_{m}\right\| \rightarrow 0,\left\|u_{m+1}-u_{m}\right\| \rightarrow 0$ and Ψ is uniformly τ-Lipschitzian continuous mapping, it follows that

$$
\begin{aligned}
\left\|u_{m}-\Psi u_{m}\right\| & \leq\left\|u_{m}-\Psi^{m} u_{m}\right\|+\left\|\Psi u_{m}-\Psi^{m} u_{m}\right\| \\
& \leq\left\|u_{m}-\Psi^{m} u_{m}\right\|+\tau\left\|u_{m}-\Psi^{m-1} u_{m}\right\| \\
& \leq\left\|u_{m}-\Psi^{m} u_{m}\right\|+\tau\left\|\Psi^{m-1} u_{m}-\Psi^{m-1} u_{m-1}\right\| \\
& +\tau\left\|u_{m}-\Psi^{m-1} u_{m-1}\right\| \\
& \leq\left\|u_{m}-\Psi^{m} u_{m}\right\|+\tau^{2}\left\|u_{m}-u_{m-1}\right\| \\
& +\tau\left\|u_{m}-u_{m-1}+u_{m-1}-\Psi^{m-1} u_{m-1}\right\| \\
& \leq\left\|u_{m}-\Psi^{m} u_{m}\right\|+\tau(\tau+1)\left\|u_{m}-u_{m-1}\right\| \\
& +\tau\left\|u_{m-1}-\Psi^{m-1} u_{m-1}\right\| \rightarrow 0 \\
& \Rightarrow\left\|u_{m}-\Psi u_{m}\right\| \rightarrow 0
\end{aligned}
$$

Similarly, from the fact that $\left\|M r_{m}-\Phi^{m} M r_{m}\right\| \rightarrow 0,\left\|r_{m+1}-r_{m}\right\| \rightarrow 0$ and Φ is uniformly τ - Lipschitzian continuous mapping, it's not difficult to see that $\left\|M r_{m}-\Phi M r_{m}\right\| \rightarrow 0$.

Step 6. In this step, we show that

$$
\begin{equation*}
r_{m} \rightharpoonup r^{*} \text { and } u_{m} \rightharpoonup r^{*} \text { as } m \rightarrow \infty \tag{42}
\end{equation*}
$$

In view of (30), we see that $\left\{r_{m}\right\},\left\{u_{m}\right\}$ are bounded, then \exists a sub-sequence $u_{m_{k}}$ of u_{m} such that

$$
\begin{equation*}
u_{m_{k}} \rightharpoonup r^{*}, \text { as } k \rightarrow \infty \tag{43}
\end{equation*}
$$

From (43) and 41), we deduce that

$$
\begin{equation*}
\left\|u_{m_{k}}-\Psi u_{m_{k}}\right\| \rightarrow 0, \text { as } k \rightarrow \infty . \tag{44}
\end{equation*}
$$

From (43), (44) and Lemma (2.5), we get that $r^{*} \in \operatorname{Fix}(\Psi)$.
Moreover, from (13), (43) and the fact $\left\|M r_{m}-\Phi^{m} M r_{m}\right\| \rightarrow 0$, as $m \rightarrow \infty$, we have

$$
r_{m_{k}}=u_{m_{k}}-\sigma M^{*}\left(\Phi^{m_{k}}-I\right) M r_{m_{k}} \rightharpoonup r^{*} .
$$

By the definition of M, we get

$$
\begin{equation*}
M r_{m_{k}} \rightharpoonup M r^{*} \text { as } k \rightarrow \infty \tag{45}
\end{equation*}
$$

In view of (41), we get

$$
\begin{equation*}
\left\|M r_{m_{k}}-\Phi M r_{m_{k}}\right\| \rightarrow 0, \text { as } k \rightarrow \infty \tag{46}
\end{equation*}
$$

From (45), (46) and Lemma (2.5), we have that $M r^{*} \in F i x(\Phi)$, this implies that $r^{*} \in \Gamma$, that is r^{*} is a solution of SFP (2).

Now we prove 42).
Suppose by contradiction, there exists another $u_{m_{k}}$ of u_{m} such that $u_{m_{k}} \rightharpoonup$ $z^{*} \in \Gamma$ with $r^{*} \neq z^{*}$. By (30) and Opial's property, we have

$$
\begin{aligned}
\liminf _{k \rightarrow \infty}\left\|u_{m_{k}}-r^{*}\right\| & <\liminf _{k \rightarrow \infty}\left\|u_{m_{k}}-z^{*}\right\|=\liminf _{m \rightarrow \infty}\left\|u_{m}-z^{*}\right\| \\
& =\liminf _{k \rightarrow \infty}\left\|u_{m_{k}}-z^{*}\right\|<\liminf _{k \rightarrow \infty}\left\|u_{m_{k}}-r^{*}\right\| \\
& =\liminf _{m \rightarrow \infty}\left\|u_{m}-r^{*}\right\| \\
& =\liminf _{k \rightarrow \infty}\left\|u_{m_{k}}-r^{*}\right\| \\
\Rightarrow \liminf _{k \rightarrow \infty}\left\|u_{m_{k}}-r^{*}\right\| & <\liminf _{k \rightarrow \infty}\left\|u_{m_{k}}-r^{*}\right\|
\end{aligned}
$$

which is contradiction. Therefore, $u_{m} \rightharpoonup r^{*}$. By using 13) and (33), we have $r_{m}=u_{m}-\sigma M^{*}\left(\Phi^{m}-I\right) M r_{m} \rightharpoonup r^{*}$ as $m \rightarrow \infty$. Thus, by Lemma (2.8) we deduce that

$$
\begin{equation*}
\Omega_{\Omega}\left(r_{n}\right) \subset \Gamma \tag{47}
\end{equation*}
$$

Step 7. In this step, we show that

$$
\begin{equation*}
\limsup _{m \rightarrow \infty}\left\langle(h-I) r^{*}, r_{m}-r^{*}\right\rangle \leq 0 \tag{48}
\end{equation*}
$$

Indeed from (??), there exists a sub-sequence $\left\{r_{m_{k}}\right\} \subset\left\{r_{m}\right\}$ such that

$$
\begin{align*}
\limsup _{m \rightarrow \infty}\left\langle(h-I) r^{*}, r_{m}-r^{*}\right\rangle & =\limsup _{k \rightarrow \infty}\left\langle(h-I) r^{*}, r_{m_{k}}-r^{*}\right\rangle \\
& \leq 0 . \tag{49}
\end{align*}
$$

Suppose without loss of generality that $r_{m_{k}} \rightharpoonup r$, from (??), it follows that $r \in \Gamma$. Since r^{*} is the unique solution of (15), implies that

$$
\begin{align*}
\limsup _{m \rightarrow \infty}\left\langle(h-I) r^{*}, r_{m}-r^{*}\right\rangle & =\limsup _{k \rightarrow \infty}\left\langle(h-I) r^{*}, r_{m_{k}}-r^{*}\right\rangle . \\
& =\left\langle(h-I) r^{*}, r-r^{*}\right\rangle \leq 0 . \tag{50}
\end{align*}
$$

Step 8. Finally, we show that

$$
\begin{equation*}
r_{m} \rightarrow r^{*} \text { as } m \rightarrow \infty \tag{51}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\left\|r_{m+1}-r^{*}\right\|^{2} & =\left\langle\gamma_{m} h\left(r_{m}\right)+\left(1-\gamma_{m}\right) y_{m}-r^{*}, r_{m+1}-r^{*}\right\rangle \\
& =\gamma_{m}\left\langle h\left(r_{m}\right)-r^{*}, r_{m+1}-r^{*}\right\rangle+\left(1-\gamma_{m}\right)\left\langle y_{m}-r^{*}, r_{m+1}-r^{*}\right\rangle \\
& \leq \gamma_{m}\left\langle h\left(r_{m}\right)-h\left(r^{*}\right), r_{m+1}-r^{*}\right\rangle+\gamma_{m}\left\langle h\left(r^{*}\right)-r^{*}, r_{m+1}-x^{*}\right\rangle \\
& +\frac{\left(1-\gamma_{m}\right)}{2}\left\|y_{m}-r^{*}\right\|^{2}+\frac{\left(1-\gamma_{m}\right)}{2}\left\|r_{m+1}-r^{*}\right\|^{2} \\
& \leq \frac{\gamma_{m} \lambda^{2}}{2}\left\|r_{m}-x^{*}\right\|^{2}+\frac{\gamma_{m}}{2}\left\|r_{m+1}-r^{*}\right\|^{2}+\frac{\left(1-\gamma_{m}\right)}{2}\left\|y_{m}-r^{*}\right\|^{2} \\
& +\frac{\left(1-\gamma_{m}\right)}{2}\left\|r_{m+1}-r^{*}\right\|^{2}+\gamma_{m}\left\langle h\left(r^{*}\right)-r^{*}, r_{m+1}-r^{*}\right\rangle \\
& =\frac{\left(1-\gamma_{m}\right)}{2}\left\|y_{m}-r^{*}\right\|^{2}+\frac{\gamma_{m} \lambda^{2}}{2}\left\|r_{m}-r^{*}\right\|^{2}+\frac{1}{2}\left\|r_{m+1}-r^{*}\right\|^{2} \\
& +\gamma_{m}\left\langle h\left(r^{*}\right)-r^{*}, r_{m+1}-r^{*}\right\rangle \\
\Rightarrow\left\|r_{m+1}-r^{*}\right\|^{2} & \leq\left(1-\gamma_{m}\right)\left\|y_{m}-r^{*}\right\|^{2}+\gamma_{m} \lambda^{2}\left\|r_{m}-r^{*}\right\|^{2} \\
& +2 \gamma_{m}\left\langle h\left(r^{*}\right)-r^{*}, r_{m+1}-r^{*}\right\rangle . \tag{52}
\end{align*}
$$

From (17), we deduced that

$$
\begin{equation*}
\left\|y_{m}-r^{*}\right\|^{2} \leq\left\|u_{m}-r^{*}\right\|^{2}+\beta v_{m} \xi\left(\left\|u_{m}-r^{*}\right\|\right)+\beta \mu_{m} \tag{53}
\end{equation*}
$$

In view of 19 and 20 , we deduced that

$$
\begin{equation*}
\left\|u_{m}-r^{*}\right\|^{2} \leq\left\|r_{m}-r^{*}\right\|^{2}+\sigma v_{m} \xi\left(\left\|M r_{m}-M r^{*}\right\|\right)+\sigma \mu_{m} \tag{54}
\end{equation*}
$$

Substituting (54) into (53), we have

$$
\begin{align*}
\left\|y_{m}-r^{*}\right\|^{2} & \leq\left\|r_{m}-r^{*}\right\|^{2}+\sigma v_{m} \xi\left(\left\|M r_{m}-M r^{*}\right\|\right) \\
& +\beta v_{m} \xi\left(\left\|u_{m}-r^{*}\right\|\right)+\mu_{m}(\beta+\sigma) \tag{55}
\end{align*}
$$

Substituting (55) into 5 , we have

$$
\begin{align*}
\left\|r_{m+1}-r^{*}\right\|^{2} & \leq\left(1-\gamma_{m}\left(1-\lambda^{2}\right)\right)\left\|r_{m}-r^{*}\right\|^{2} \\
& +\left(1-\gamma_{m}\right) \sigma v_{m} \xi\left(\left\|M r_{m}-M r^{*}\right\|\right) \\
& +\left(1-\gamma_{m}\right) \beta v_{m} \xi\left(\left\|u_{m}-r^{*}\right\|\right) \\
& +\left(1-\gamma_{m}\right) \mu_{m}(\beta+\sigma) \\
& +2 \gamma_{m}\left\langle h\left(r^{*}\right)-r^{*}, r_{m+1}-r^{*}\right\rangle \tag{56}
\end{align*}
$$

It follows from 56 that

$$
\begin{gather*}
\left\|r_{m+1}-r^{*}\right\|^{2} \leq\left(1-\varphi_{m}\right)\left\|r_{m}-r^{*}\right\|^{2}+\rho_{m}, \text { where } \tag{57}\\
\varphi_{m}=\gamma_{m}\left(1-\lambda^{2}\right) \tag{58}
\end{gather*}
$$

and

$$
\begin{align*}
\rho_{m} & =\left(1-\gamma_{m}\right) \sigma v_{m} \xi\left(\left\|M r_{m}-M r^{*}\right\|\right)+\left(1-\gamma_{m}\right) \beta v_{m} \xi\left(\left\|u_{m}-r^{*}\right\|\right) \\
& +\left(1-\gamma_{m}\right) \mu_{m}(\beta+\sigma)+2 \gamma_{m}\left\langle h\left(r^{*}\right)-r^{*}, r_{m+1}-r^{*}\right\rangle \tag{59}
\end{align*}
$$

It follows From (58) and (59) that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \varphi_{m}=0 \text { and } \sum_{m=1}^{\infty} \varphi_{m}=\infty \tag{60}
\end{equation*}
$$

In view of 58,5 , 58 and 59 , we have

$$
\begin{align*}
\lim _{m \rightarrow \infty} \frac{\rho_{m}}{\varphi_{m}} & \leq \frac{(1-\eta)}{\eta\left(1-\lambda^{2}\right)}\left(\sigma v_{m} \xi\left(\left\|M r_{m}-M r^{*}\right\|\right) \beta v_{m} \xi\left(\left\|u_{m}-r^{*}\right\|\right)+\mu_{m}(\beta+\sigma)\right) \\
& +\frac{2}{\left(1-\lambda^{2}\right)}\left\langle h\left(r^{*}\right)-r^{*}, r_{m+1}-r^{*}\right\rangle \\
& =0 \tag{61}
\end{align*}
$$

Hence, by Lemma 2.6 we conclude that

$$
r_{m} \rightarrow r^{*} \text { as } m \rightarrow \infty
$$

Taking $\gamma_{m}=0$ and $\beta=\beta_{m}$ in Theorem (3.1), we get
Corollary 3.1. (see Wang et al. (2012)) Let K_{1}, K_{2} be two Hilbert spaces, Ψ : $K_{1} \rightarrow K_{1}, \Phi: K_{2} \rightarrow K_{2}$ be two uniformly $\tau-$ Lipschitzian and $\left(\left\{v_{m}\right\},\left\{\mu_{m}\right\}, \xi\right)-$ total quasi-asymptotically nonexpansive mappings with $\sum v_{m}<\infty$ and $\sum \mu_{m}<\infty$ such that Ψ and Φ are demiclosed at zero. Let N and N^{*} be positive constants such that $\xi(\delta) \leq \xi(N)+N^{*} \delta^{2}, \forall \delta \geq 0$, and let $M: K_{1} \rightarrow K_{2}$ be a bounded linear operator and M^{*} be the adjoint of M with $L=\left\|M M^{*}\right\|$. Assume that $\Gamma \neq \emptyset$, and let $\left\{r_{m}\right\}$ be the sequence generated by (8), where $\beta_{m} \subseteq[0,1]$ such that $0<\liminf _{m \rightarrow \infty} \beta_{m} \leq \limsup _{m \rightarrow \infty} \beta_{m}<1$, and $\sigma \in\left(0, \frac{1}{L}\right)$. Then the sequence $\left\{r_{m}\right\}$ defined by (8) converges weakly to $r^{*} \in \Gamma$.

Corollary 3.2. Let K_{1}, K_{2} be two Hilbert spaces, $\Psi: K_{1} \rightarrow K_{1}, \Phi: K_{2} \rightarrow$ K_{2} be $\left\{v_{m_{1}}\right\},\left\{v_{m_{2}}\right\}-$ quasi-asymptotically nonexpansive mappings with $v_{m}=$ $\max \left\{v_{m_{1}}, v_{m_{2}}\right\}$ such that $\sum v_{m}<\infty$ and let $M, M^{*}, L, h, \beta, \sigma,\left\{\gamma_{m}\right\}$ and $\left\{r_{m}\right\}$ be as in Theorem (3.1). Assume that $\Gamma \neq \emptyset$,. Then $\left\{r_{m}\right\}$ converges strongly to $r^{*} \in \Gamma$ which solves the VIP (15).

Proof. Ψ and Φ are ($\left.\left\{v_{m}\right\},\left\{\mu_{m}\right\}, \xi\right)$ - total quasi-asymptotically nonexpansive and uniformly τ - Lipschitzian mappings with $\left\{v_{m}\right\}=\left\{k_{m}-1\right\}, \mu_{m}=0$, $\xi(\delta)=\delta^{2}, \forall \delta \geq 0$ and $\tau=\sup _{m \geq 1} v_{m}$ respectively. Therefore, all the conditions in Theorem (3.1) are satisfied . Hence, the conclusions of this Corollary follows directly from Theorem (3.1).

Corollary 3.3. Let K_{1}, K_{2} be two Hilbert spaces, $\Psi: K_{1} \rightarrow K_{1}, T: K_{2} \rightarrow K_{2}$ be two quasi-nonexpansive mappings, and let $M, M^{*}, L, h, \beta, \sigma,\left\{\gamma_{m}\right\}$ and $\left\{r_{m}\right\}$ be as in Theorem (3.1). Assume that $\Gamma \neq \emptyset$,. Then $\left\{r_{m}\right\}$ converges strongly to $r^{*} \in \Gamma$ which solves the VIP (15).

Proof. Ψ and Φ are (\{1\})- quasi-asymptotically nonexpansive and uniformly (\{1\})- Lipschitzian mappings. Therefore, all the conditions in Corollary (3.2) are satisfied. Hence, the conclusions of this Corollary follows directly from Corollary (3.2).

4. Conclusion

The results presented in this paper is the extension of the result of Wang et al. (2012) in the sense that;

- Take $\gamma_{m}=0$ and $\beta=\beta_{m}$ in Theorem (3.1), then our algorithm reduces to Wang et al. (2012) algorithm (8).
- The Wang's et al Wang et al. (2012) result gave a weak convergence result for the solution of SFP (9) and the strong convergence follows only if Ψ is a semi-compact, while our result gave the strong convergence result for the solution of SFP (9) without imposing the condition that Ψ is a semi-compact.
- In Wang et al. (2012) result, the demicloseness of $I-\Psi$ and $I-\Phi$ was imposed, while in our result the demicloseness of $I-\Psi$ and $I-\Phi$ was proved see Lemma 2.5).

Acknowledgment

The authors thank the referees for their comment and remarks that helped to improve the presentation of the manuscript. The authors also gratefully acknowledge that this research was partially supported by the Universiti Putra Malaysia (UPM) under the GP-IBT Grant Scheme having project number GPIBT/2013/9420100.

References

Ansari, Q. H. and Rehan, A. (2014). Split feasibility and fixed point problems. In Nonlinear Analysis, pages 281-322. Springer.

Bauschke, H. H. and Borwein, J. M. (1996). On projection algorithms for solving convex feasibility problems. SIAM review, 38(3):367-426.

Byrne, C. (2002). Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Problems, 18(2):441-453.

Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. (2006). A unified approach for inversion problems in intensity-modulated radiation therapy. Physics in Medicine and Biology, 51(10):2353-2365.

Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. (2005). The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Problems, 21(6):2071-2084.

Censor, Y., Motova, A., and Segal, A. (2007). Perturbed projections and subgradient projections for the multiple-sets split feasibility problem. Journal of Mathematical Analysis and Applications, 327(2):1244-1256.

Krasnosel'skii, M. A. (1955). Two remarks on the method of successive approximations. Uspekhi Matematicheskikh Nauk, 10(1):123-127.

Mann, W. R. (1953). Mean value methods in iteration. Proceedings of the American Mathematical Society, 4(3):506-510.

Marino, G. and Xu, H.-K. (2007). Weak and strong convergence theorems for strict pseudo-contractions in hilbert spaces. Journal of Mathematical Analysis and Applications, 329(1):336-346.

Mohammed, L. B. and Kılıçman, A. (2015). Strong convergence for the split common fixed-point problem for total quasi-asymptotically nonexpansive mappings in hilbert space. Abstract and Applied Analysis, 2015:Article ID 412318, 7pages.

Opial, Z. (1967). Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc, 73(4):591-597.

Reich, S. (1979). Weak convergence theorems for nonexpansive mappings in banach spaces. Journal of Mathematical Analysis and Applications, 67(2):274276.

Tian, M. and Di, L. (2011). Synchronal algorithm and cyclic algorithm for fixed point problems and variational inequality problems in hilbert spaces. Fixed Point Theory and Applications, 2011(1):1-14.

Wang, X. R., Chang, S.-s., Wang, L., and Zhao, Y.-h. (2012). Split feasibility problems for total quasi-asymptotically nonexpansive mappings. Fixed Point Theory and Applications, 2012(1):1-11.

Xu, H.-K. (2006). A variable krasnosel'skii-mann algorithm and the multipleset split feasibility problem. Inverse problems, 22(6):2021.

Yang, L., Chang, S.-S., Cho, Y. J., and Kim, J. K. (2011). Multiple-set split feasibility problems for total asymptotically strict pseudocontractions mappings. Fixed Point Theory and Applications, 2011(1):1-11.
Yang, Q. (2004). The relaxed cq algorithm solving the split feasibility problem. Inverse problems, 20(4):1261-1266.

Zhao, J. and Yang, Q. (2005). Several solution methods for the split feasibility problem. Inverse Problems, 21(5):1791-1799.

