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ABSTRACT

Unlike the real number field R, a bi-quadratic equation x4 + 1 = 0 is
solvable over some p−adic number fields Qp, say p = 17, 41, · · · . There-
fore, it is of independent interest to provide a solvability criterion for the
bi-quadratic equation over p−adic number fields Qp. In this paper, we
provide solvability criteria for the bi-quadratic equation x4 + ax2 = b
over domains Z∗

p, Zp \ Z∗
p, Qp \ Zp, Qp, where p > 2. Moreover, we

also provide the number of roots of the bi-quadratic equation over the
mentioned domains.
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1. Introduction

The field Qp of p−adic numbers which was introduced by German mathe-
matician K. Hensel was motivated primarily by an attempt to bring the ideas
and techniques of the power series into number theory. Their canonical repre-
sentation is analogous to the expansion of analytic functions into power series.
This is one of the manifestations of the analogy between algebraic numbers and
algebraic functions.

For a fixed prime p, it is denoted the field of p−adic numbers by Qp which
is a completion of the rational numbers Q with respect to the non-Archimedean
norm | · |p : Q→ R given by

|x|p =

{
p−k x 6= 0,
0, x = 0,

(1)

here, x = pk mn with r,m ∈ Z, n ∈ N, (m, p) = (n, p) = 1. A number k is called
a p−order of x and it is denoted by ordp(x) = k.

Any p−adic number x ∈ Qp can be uniquely represented in the following
canonical form (Borevich and Shafarevich, 1986)

x = pordp(x)
(
x0 + x1 · p+ x2 · p2 + · · ·

)

where x0 ∈ {1, 2, · · · p− 1} and xi ∈ {0, 1, 2, · · · p− 1}, i ≥ 1,

We respectively denote the set of all p−adic integers and units of Qp by

Zp = {x ∈ Qp : |x|p ≤ 1}, Z∗p = {x ∈ Qp : |x|p = 1}.

Any p−adic unit x ∈ Z∗p has the following unique canonical form

x = x0 + x1 · p+ x2 · p2 + · · ·

where x0 ∈ {1, 2, · · · p− 1} and xi ∈ {0, 1, 2, · · · p− 1}, i ∈ N.

Any nonzero x ∈ Qp has a unique representation x =
x∗

|x|p
, where x∗ ∈ Z∗p.

A number a0 ∈ Z is called an rth power residue modulo p if the following
congruent equation

xr ≡ a0 (mod p) (2)

is solvable in Z.

16 Malaysian Journal of Mathematical Sciences
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Proposition 1.1 (Rosen (2011)). Let p be an odd prime, a0 ∈ Z, with (a0, p) =
1 and d = (r, p− 1). The following statements hold true:

1. a0 is the rth power residue modulo p iff a
p−1
d ≡ 1 (mod p).

2. If a
p−1
d

0 ≡ 1 (mod p) then the congruent equation (2) has d number of
distinct (non-congruent) solutions in Z.

Throughout this paper, we always assume that p > 2 is an odd prime unless
otherwise mentioned.

Let us consider the following quadratic equation

x2 ≡ a0 (mod p) (3)

Due to Proposition 1.1, the congruent equation (3) is solvable iff a
p−1
2

0 ≡
1 (mod p) and it has two distinct non-congruent solutions in the set {1, 2, · · · , p−
1}. It is clear that one solution of the congruent equation (3) is less than p

2
and another solution is greater than p

2 .

Definition 1.1. We denote by
√
a0 (resp. −√a0) the solution of quadratic

congruent equation (3) which is less than p
2 (resp. greater than p

2 ).

Remark 1.1. Due to the definition,
√
a0 exists if and only if a

p−1
2

0 ≡ 1 (mod p).
Moreover,

√
a0 and −√a0 ∈ {1, 2, · · · , p− 1}.

Let us now consider the following quadratic equation over Qp

x2 = a (4)

where a ∈ Qp is a nonzero p−adic number. Let a = a∗

|a|p with a∗ = a0 + a1p+

a2p
2 + · · · such that

a0 ∈ {1, 2, · · · , p− 1}, ai ∈ {0, 1, 2, · · · , p− 1}, ∀ i ∈ N.

We know that the quadratic equation (4) is solvable in Qp iff a
p−1
2

0 ≡
1 (mod p) and logp |a|p is even. Moreover, it has two distinct solutions x+
and x− such that x∗+ ≡

√
a0 (mod p) and x∗− ≡ −

√
a0 (mod p).

Malaysian Journal of Mathematical Sciences 17
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Definition 1.2. We denote the solution x+ (resp. x−) of the quadratic equa-
tion equation (4) by

√
a (resp. −√a).

Remark 1.2. By the definition, for the given nonzero a ∈ Qp,
√
a exists if

and only if a
p−1
2

0 ≡ 1 (mod p) and logp |a|p is even. Moreover,
√
a is a solution

of the quadratic equation (4) such that (
√
a)
∗ ≡ √a0 (mod p) and −√a is a

solution of the quadratic equation (4) such that (−√a)
∗ ≡ −√a0 (mod p).

Unlike the real number field R, the bi-quadratic equation x4 + 1 = 0 is
solvable over some p−adic number fields Qp such as p = 17, 41, · · · . Therefore,
it is of independent interest to provide a solvability criterion of a bi-quadratic
equation x4 + ax2 = b over p−adic number fields Qp. In this paper, we provide
solvability criteria and the number of roots of the bi-quadratic equations x4 +
ax2 = b over the domains Z∗p, Zp \ Z∗p, Qp \ Zp, Qp.

It is worth of mentioning that the similar problems for cubic equations were
studied in refs. (see Mukhamedov and Saburov (2013), Mukhamedov et al.
(2013), Mukhamedov et al. (2014), Saburov and Ahmad (2014), and Saburov
and Ahmad (2015)). Applications of those results were demonstrated in refs.
(see Mukhamedov and Akin (2013a) and Mukhamedov and Akin (2013b)).

2. The Main Strategies

Obviously, we can apply the substitution method for the bi-quadratic equa-
tion. However, this method is not efficient. Let us explain it in a detail. We
consider the bi-quadratic equation

x4 + ax2 = b. (5)

where a, b ∈ Qp.

If we let y = x2 then we may have the following quadratic equation y2+ay =
b. In its own turns, in order to get a solvability criterion for the bi-quadratic
equation, we have to solve the following quadratic equations x2 = −a±

√
a2+4b
2 .

To check whether one of the last two quadratic equations has a root or not,
we have to verify that logp |−a±

√
a2+4b
2 | is even number and the first p−adic

digit of the p−adic unit
(
−a±

√
a2+4b
2

)∗
is a quadratic residue. This is a tedious

work. However, our aim is to provide a solvability criterion for the bi-quadratic
equation in terms of a, b. Therefore, we suggest another approach to fulfill our
aim.
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Remark 2.1. It is worth of mentioning that the solvability of a bi-quadratic
equation is completely different from the solvability of a quadratic equation
obtained by the substitution method. For example, this quadratic equation
y2 − 2py + p2 = 0 is solvable, i.e., y = p is a unique solution. However,
this bi-quadratic equation x4 − 2px2 + p2 = 0 is not solvable because of the fact
that √p does not exist.

We know that, by definition, two p−adic numbers are close when their dif-
ference is divisible by a high power of p. This property enables p−adic numbers
to encode congruence information in a way that turns out to be powerful tools
in the theory of polynomial equation. In fact, Hensel’s lifting lemma allows us
to lift a simple solution of a polynomial equation over the finite field Fp up to
the unique solution of the same polynomial equation over the ring Zp of p−adic
integer numbers. However, that solution cannot be any more lifted up to the
field Qp of p−adic numbers. At this point, we are aiming to study the relation
between solutions of the polynomial equations over Qp and Zp. We shall show
that, indeed, any solution of any bi-quadratic equation over Qp (or some special
sets) can be uniquely determined by a solution of another bi-quadratic equa-
tion over Z∗p. Consequently, in some sense, it is enough to study bi-quadratic
equations over Z∗p.

Whenever a, b 6= 0, let a = a∗

|a|p and b = b∗

|b|p where a∗ ∈ Z∗p, b∗ ∈ Z∗p with

a∗ = a0 + a1p+ a2p
2 + a3p

3 + · · · , b∗ = b0 + b1p+ b2p
2 + b3p

3 + · · ·

Remark 2.2. We use the notation r
√
a − ∃ whenever the monomial equation

xr = a is solvable in Qp. The solvability criterion for the last monomial equation
was given in ref. Mukhamedov and Saburov (2013). Namely, for p > 2, there

exists 4
√
a if and only if logp |a|p is divisible by 4 and a

p−1
d

0 ≡ 1 (mod p), where
d = (p− 1, 4), a∗ = a0 + a1p+ · · · , and a = a∗

|a|p .

If ab = 0 then the bi-quadratic equation (5) can be easily studied.

Proposition 2.1. Let ab = 0. The following statements hold true:

(i) Let a = 0 = b. Then (5) has a solution x0 = 0 of multiplicity-4.

(ii) Let a 6= 0 = b. If
√−a − ∃ then (5) has solutions x± = ±√−a and

x0 = 0 of multiplicity-2. Otherwise, (5) has only solution x0 = 0 of
multiplicity-2.
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(iii) Let a = 0 6= b. The bi-quadratic equation (5) is solvable over Qp if and
only if 4

√
b − ∃. In this case, if p ≡ 1 (mod 4) then (5) has 4 distinct

solutions and if p ≡ 3 (mod 4) then (5) has 2 distinct solutions.

The proof is straightforward.

What it follows, we always assume that ab 6= 0.

Let A ⊂ Z be any subset. We introduce the following set

Z∗p
pA

:=
{
x ∈ Qp : logp |x|p ∈ A

}
.

It is easy to check that
Z∗p
pA

=
⋃

i∈A

Spi(0),

where Spi(0) = {x ∈ Qp : |x|p = pi} is the sphere with the radius pi.

Proposition 2.2. Let p be any prime, a, b ∈ Qp with ab 6= 0, and A ⊂ Z be any

subset. The bi-quadratic equation (5) is solvable in the set
Z∗p
pA

iff there exists

a pair (y∗, k) ∈ Z∗p × A such that y is a solution of the following bi-quadratic
equation

y4 +Aky
2 = Bk (6)

where Ak = ap2k and Bk = bp4k. Moreover, in this case, a solution of the

bi-quadratic equation (5) has the form x =
y∗

pk
.

Proof. Let x ∈ Qp and |x|p = pk. Then x ∈ Z∗p
pA

is a solution of the bi-quadratic

equation (5) if and only if y∗ = x|x|p ∈ Z∗p is a solution of the bi-quadratic
equation (6). This completes the proof.

Here, we list frequently used domains in this paper.

1. If A1 = {0} then Z∗p
pA1

= Z∗p;

20 Malaysian Journal of Mathematical Sciences
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2. If A2 = N− (all negative natural numbers) then
Z∗p
pA2

= Zp \ Z∗p;

3. If A3 = N then
Z∗p
pA3

= Qp \ Zp;

4. If A4 = Z then
Z∗p
pA4

= Qp.

Corollary 2.1. Let p be any prime, a, b ∈ Qp with ab 6= 0, and Ai ⊂ Z be
a subset given as above, i = 1, 4. The bi-quadratic equation (5) is solvable in

the set
Z∗p
pAi

iff there exists (y∗, k) ∈ Z∗p × Ai such that y∗ is a solution of the

following bi-quadratic equation

y4 +Aky
2 = Bk

where Ak = ap2k and Bk = bp4k.

Consequently, it is enough to study solvability of the bi-quadratic equation
(5) over Z∗p, where a, b ∈ Qp with ab 6= 0.

Proposition 2.3. Let p be any prime and a, b ∈ Qp with ab 6= 0. If the
bi-quadratic equation (5) is solvable in Z∗p then either one of the following
conditions holds true:

(i) |a|p = |b|p ≥ 1;

(ii) |b|p < |a|p = 1;

(iii) |a|p < |b|p = 1.

Proof. Let x ∈ Z∗p be a solution of (5). Since ab 6= 0, one can get that

|b|p = |x4 + ax2|p ≤ max{1, |a|p},
|a|p = |ax2|p = |b− x4|p ≤ max{1, |b|p},
1 = |x4|p = |b− ax2|p ≤ max{|a|p, |b|p}.

Thus, if |a|p 6= |b|p then max{|a|p, |b|p} = 1 and if |a|p = |b|p then |a|p =
|b|p ≥ 1. This yields the claim.
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This proposition gives necessary conditions for solvability of the bi-quadratic
equation over Z∗p. To get the solvability criteria, we need Hensel’s lifting lemma.

Lemma 2.1 (Hensel’s Lemma). Let f(x) be polynomial whose coefficients are
p−adic integers. Let θ be a p−adic integer such that for some i ≥ 0 we have

f(θ) ≡ 0 (mod p2i+1),

f ′(θ) ≡ 0 (mod pi), f ′(θ) 6≡ 0 (mod pi+1).

Then f(x) has a unique p−adic integer root x0 which satisfies x0 ≡ θ (mod pi+1).

3. The Solvability Criteria

Throughout this section we always assume that p > 2.

We present a solvability criterion of the bi-quadratic equation over A

x4 + ax2 = b (7)

where
A ∈

{
Z∗p, Zp \ Z∗p, Qp \ Zp, Qp

}
.

Let a, b ∈ Qp with ab 6= 0 and D = a2 + 4b.

We then have that a =
a∗

|a|p
, b =

b∗

|b|p
and D =

D∗

|D|p
whenever D 6= 0, where

a∗ = a0 + a1p+ a2p
2 + · · ·

b∗ = b0 + b1p+ b2p
2 + · · ·

D∗ = d0 + d1p+ d2p
2 + · · ·

where a0, b0, d0 ∈ {1, 2, · · · p−1} and ai, bi, di ∈ {0, 1, 2, · · · p−1} for any i ∈ N.

Throughout this paper, the notation (a ∨ b) − ∃ means that there exists
either a or b, the notation (a Z b)− ∃ means that there exists only a or b, and
the notation (a [ b) − ∃ means that there exists both a and b. In this case, it
is clear that {(a ∨ b)− ∃} = {(a Z b)− ∃}⋃ {(a [ b)− ∃} .

3.1 The Solvability Criterion over Z∗
p

Theorem 3.1. The bi-quadratic equation (7) is solvable in Z∗p if and only if
either one of the following conditions holds true:
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1. |a|p < |b|p = 1, 4
√
b− ∃;

2. |b|p < |a|p = 1,
√−a− ∃;

3. |a|p = |b|p > 1,
√
ab− ∃;

4. |a|p = |b|p = 1 6= |D|p,
(√

D [
√
−2a

)
− ∃;

5. |a|p = |b|p = 1 = |D|p,
√
D − ∃,

(√
−a+

√
D

2 ∨
√
−a−

√
D

2

)
− ∃

Proof. Due to Proposition 2.3, if the bi-quadratic equation (7) is solvable in Z∗p
then either one of the following conditions must be satisfied: |a|p = |b|p ≥ 1 or
|b|p < |a|p = 1 or |a|p < |b|p = 1. We shall study case by case.

1. Let |a|p < |b|p = 1. In this case, we want to show that the bi-quadratic
equation (7) is solvable in Z∗p if and only if there exists

√
b or equivalently

b
p−1

(4,p−1)

0 ≡ 1 (mod p).

Only if part. Let x ∈ Z∗p be a solution of the bi-quadratic equation (7).
Since |a|p < 1, it yields that x4 ≡ b (mod p) or x40 ≡ b0 (mod p). This means

that b0 is the forth power residue modulo p, i.e., b
p−1

(4,p−1)

0 ≡ 1 (mod p).

If part. Let b
p−1

(4,p−1)

0 ≡ 1 (mod p). Then there exists x̄ ∈ {1, 2, · · · p − 1}
such that x̄4 ≡ b0 (mod p). Let us consider the following bi-quadratic function
fa,b(x) = x4 + ax2 − b. It is clear that

fa,b(x̄) = x̄4 + ax̄2 − b ≡ x̄4 − b ≡ x̄4 − b0 ≡ 0 (mod p),

f ′a,b(x̄) = 4x̄3 + 2ax̄ ≡ 4x̄3 6≡ 0 (mod p).

Then due to Hensel’s Lemma, there exists x ∈ Zp such that fa,b(x) = 0 and
x ≡ x̄ (mod p). Since x̄ 6≡ 0 (mod p), we have that x ∈ Z∗p.

2. Let |b|p < |a|p = 1. We show that the bi-quadratic equation (7) is solvable
in Z∗p if and only if there exists

√−a or equivalently (−a0)
p−1
2 ≡ 1 (mod p).

Only if part. Let x ∈ Z∗p be a solution of the bi-quadratic equation (7). Since
|b|p < 1, it yields x20(x20 + a0) ≡ 0 (mod p). We have that x20 ≡ −a0 (mod p).
So, −a0 is the quadratic residue modulo p, i.e, (−a0)

p−1
2 ≡ 1 (mod p).
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If part. Let (−a0)
p−1
2 ≡ 1 (mod p), so there exist x̄2 ≡ −a0 (mod p)

where (x̄, p) = 1. We consider the following bi-quadratic function fa,b(x) =
x4 + ax2 − b. It is clear that

fa,b(x̄) = x̄4 + ax̄2 − b ≡ x̄2(x̄2 + a) ≡ a02 − a02 ≡ 0 (mod p),

f ′a,b(x̄) = 4x̄3 + 2ax̄ ≡ 2x̄3 + 2x̄(x̄2 + a) ≡ 2x̄3 6≡ 0 (mod p).

Then due to Hensel’s Lemma, there exists x ∈ Zp such that fa,b(x) = 0 and
x ≡ x̄ (mod p). Since x̄ 6≡ 0 (mod p), we have that x ∈ Z∗p.

3. Let |a|p = |b|p > 1. We show that the bi-quadratic equation (7) is solvable
in Z∗p if and only if there exists

√
ab or equivalently (a0b0)

p−1
2 ≡ 1 (mod p)

(because of |ab|p = |a|2p). Since |a|p = |b|p = pk for some k ∈ N, the solvability
of the following two bi-quadratic equations are equivalent

x4 + ax2 = b, pkx4 + a∗x2 = b∗. (8)

Moreover, any solution of the first bi-quadratic equation is a solution of the sec-
ond one and vise versa. On the other hand, the second bi-quadratic equation is
suitable to apply Hensel’s lemma. Therefore, we study the second bi-quadratic
equation instead of the first one.

Only if part. Let x ∈ Z∗p be a solution of the bi-quadratic equation
pkx4 + a∗x2 = b∗. We then have that

pkx4 + a∗x2 ≡ b∗ (mod p)

a0x
2
0 ≡ b0 (mod p)

(a0x0)2 ≡ a0b0 (mod p).

This means that a0b0 is a quadratic residue modulo p or (a0b0)
p−1
2 ≡ 1 (mod p).

If part. Let (a0b0)
p−1
2 ≡ 1 (mod p). Then there exists (a0x̄)2 ≡ a0b0 (mod p)

where (x̄, p) = 1. We consider the following bi-quadratic function ga,b(x) =
pkx4 + a∗x2 − b∗. We get that

ga,b(x̄) = pkx̄4 + a∗x̄2 − b∗ ≡ a0x̄2 − b0 ≡ 0 (mod p),

g′a,b(x̄) = 4pkx̄3 + 2a∗x̄ ≡ 2a0x̄ 6≡ 0 (mod p).

Then due to Hensel’s Lemma, there exists x ∈ Zp such that ga,b(x) = 0 and
x ≡ x̄ (mod p). Since x̄ 6≡ 0 (mod p), we have that x ∈ Z∗p. This shows that
the bi-quadratic equation (7) is also solvable in Z∗p.

Now let us consider the bi-quadratic equation (7) in the form of

(2x2 + a)2 = D. (9)
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It is clear that if |a|p = |b|p = 1 then |D|p = |a2 + 4b|p ≤ 1.

4. We consider the case |a|p = |b|p = 1 6= |D|p.

Let D = 0. We have that 2x2 +a = 0. The last equation is solvable over Qp
if and only if there exists

√
−2a. Since |a|p = 1, we have that logp | − 2a|p = 0

is even. In this case, it can be easily checked that the solution x of the bi-
quadratic equation (7) is in Z∗p. Therefore, if |a|p = |b|p = 1 and D = 0 then the
bi-quadratic equation (7) is solvable in Z∗p if and only if (−2a0)

p−1
2 ≡ 1 (mod p).

Let 0 < |D|p < 1. Let y = 2x2 + a. The bi-quadratic equation (9) can
be reduced to the quadratic equation y2 = D. The last quadratic equation is
solvable in Qp iff logp |D|p is even and d

p−1
2

0 ≡ 1 (mod p) or equivalently there
exists

√
D.

If we let logp |D|p = −2k and d
p−1
2

0 ≡ 1 (mod p) where k > 0 then we may
have the following quadratic equation

x2 =
−a±

√
D

2
=
−a± pk

√
D∗

2
. (10)

The last quadratic equation (10) is solvable over Qp iff logp

∣∣∣−a±
√
D

2

∣∣∣
p
is even

and
[
2(−a0 ± pk

√
d0)
] p−1

2 ≡ 1 (mod p).

Let us find the value of
∣∣∣−a±

√
D

2

∣∣∣
p
where D = a2 + 4b. We know that

∣∣D − a2
∣∣
p

=
∣∣∣
√
D − a

∣∣∣
p

∣∣∣
√
D + a

∣∣∣
p

= |4b|p = 1

Since
∣∣∣
√
D ± a

∣∣∣
p
≤ 1, due to the previous equality, we have that

∣∣∣
√
D ± a

∣∣∣
p

= 1.

Therefore, logp

∣∣∣−a±
√
D

2

∣∣∣
p

= 0 is always even.

Since k > 0, we have that
[
2(−a0 ± pk

√
d0)
] p−1

2 ≡ (−2a0)
p−1
2 ≡ 1 (mod p).

This is equivalent to say that there exists
√
−2a. In this case, we can easily

checked that the solution x of the bi-quadratic equation (7) is in Z∗p. Therefore,
if |a|p = |b|p = 1 6= |D|p and there exists

√
D then the bi-quadratic equation

(7) is solvable in Z∗p if and only if there exists
√
−2a.

5. We consider the case |a|p = |b|p = 1 = |D|p.
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Then we have that
[
2(
√
d0 − a0)

] p−1
2 ≡ 1 (mod p) or

[
2(−
√
d0 − a0)

] p−1
2 ≡

1 (mod p). We can easily checked that the solution x of the bi-quadratic
equation (7) is in Z∗p. Therefore, if |a|p = |b|p = 1 = |D|p and there ex-
ists
√
D then the bi-quadratic equation (7) is solvable in Z∗p if and only if

[
2(
√
d0 − a0)

] p−1
2 ≡ 1 (mod p) or

[
2(−
√
d0 − a0)

] p−1
2 ≡ 1 (mod p) (this is

equivalently to say that there exists
√
−a+

√
D

2 or
√
−a−

√
D

2 ). This completes
the proof.

3.2 The Solvability Criterion over Zp \ Z∗
p

Theorem 3.2. The bi-quadratic equation (7) is solvable in Zp \Z∗p if and only
if either one of the following conditions holds true:

1. |a|2p < |b|p < 1, 4
√
b− ∃;

2. |b|p < |a|2p < 1,
√−a− ∃;

3. |a|2p > |b|p, |a|p > |b|p,
√
ab− ∃;

4. |D|p < |a|2p = |b|p < 1,
(√

D [
√
−2a

)
− ∃;

5. |D|p = |a|2p = |b|p < 1,
√
D − ∃,

(√
−a+

√
D

2 ∨
√
−a−

√
D

2

)
− ∃

Proof. Let x ∈ Qp be a nonzero p−adic number and |x|p = pk where k ∈ Z.
Due to Corollary 2.1, x is a solution of the bi-quadratic equation (7) in Zp \Z∗p
if and only if y = pkx is a solution of the following bi-quadratic equation

y4 +Aky
2 = Bk (11)

in Z∗p for some k ∈ N− where Ak = ap2k, Bk = bp4k.

It is clear that A∗k = a∗, B∗k = b∗ and |Ak|p = p−2k|a|p, |Bk|p = p−4k|b|p.
Let D = a2 + 4b and Dk = A2

k + 4Bk. Then Dk = p4kD and D∗k = D∗,
|Dk|p = p−4k|D|p whenever Dk 6= 0 (or equivalently D 6= 0). We know that,
due to Theorem 3.1, the bi-quadratic equation (11) is solvable in Z∗p if and only
if either one of the following conditions holds true:

I. |Ak|p < |Bk|p = 1, 4
√
Bk − ∃;
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II. |Bk|p < |Ak|p = 1,
√−Ak − ∃;

III. |Ak|p = |Bk|p > 1,
√
AkBk − ∃;

IV. |Ak|p = |Bk|p = 1 6= |Dk|p,
√
Dk − ∃,

√−2Ak − ∃;

V. |Ak|p = |Bk|p = 1 = |Dk|p,
√
Dk−∃,

(√
−Ak+

√
Dk

2 ∨
√
−Ak−

√
Dk

2

)
−∃

We want to describe all p−adic numbers a, b ∈ Qp for which at least one of
the conditions I–V should be satisfied for some k ∈ N−.

1. Let us consider the condition I: |Ak|p < |Bk|p = 1 and 4
√
Bk − ∃ (or equiva-

lently b
p−1

(4,p−1)

0 ≡ 1 (mod p)).

We have that logp p
−4k|b|p = 0. Hence, we obtain that 4k = logp |b|p. It

is clear that k ∈ N− if and only if logp |b|p is divisible by 4 and |b|p < 1.
Moreover, one has that |Ak|p = p−2k|a|p < 1, where k = 1

4 logp |b|p, if and only

if |a|2p < |b|p. Therefore, if |a|2p < |b|p < 1, 4 | logp |b|p and b
p−1

(4,p−1)

0 ≡ 1 (mod p)

(or equivalently |a|2p < |b|p < 1 and 4
√
b − ∃) then the condition I is satisfied

with k = 1
4 logp |b|p ∈ N−.

2. Let us consider the condition II: |Bk|p < |Ak|p = 1 and
√−Ak − ∃ (or

equivalently (−a0)
p−1
2 ≡ 1 (mod p)).

We have that |Ak|p = 1 if and only if 2k = logp |a|p. It is clear that k ∈ N− if
and only if logp |a|p is even and |a|p < 1. Besides that, we have that |Bk|p < 1,
where k = 1

2 logp |a|p, if only if |b|p < |a|2p. Hence, if |b|p < |a|2p < 1, 2 | logp |a|p
and (−a0)

p−1
2 ≡ 1 (mod p) (or equivalently |b|p < |a|2p < 1 and

√−a− ∃) then
the condition II is satisfied with k = 1

2 logp |a|p ∈ N−.

3. Let us consider the condition III: |Ak|p = |Bk|p > 1 and
√
AkBk − ∃; (or

equivalently (a0b0)
p−1
2 ≡ 1(mod p)).

We have that logp
(
p−4k|b|p

)
= logp

(
p−2k|a|p

)
> 0. Hence, we obtain that

2k = logp |b|p− logp |a|p. It is clear that k ∈ N− if and only if logp
|b|p
|a|p (equiva-

lently logp |ab|p) is even and |b|p < |a|p. Moreover, one has that logp(p
−2k|a|p) >

0, where k = 1
2 logp

|b|p
|a|p , if and only if |a|2p > |b|p. Therefore, if |a|2p > |b|p, |a|p >

|b|p, and
√
ab− ∃ then the condition III is satisfied with k = 1

2 logp
|b|p
|a|p ∈ N−.
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4. Let us consider the condition IV: |Ak|p = |Bk|p = 1 6= |Dk|p,
√
Dk − ∃, and√−2Ak − ∃.

We have that |Ak|p = 1 and |Bk|p = 1, simultaneously, if and only if
2k = logp |a|p and 4k = logp |b|p. This means that |a|2p = |b|p and logp |a|p
is even. It is clear that k ∈ N− if and only if |a|p < 1, |b|p < 1, logp |a|p
is even and |a|2p = |b|p. From here, if logp |a|p is even then logp |b|p is also
divisible by 4. We know that logp |Dk|p = −4k + logp |D|p. So, logp |Dk|p is
even if and only if logp |D|p is even. Besides that, we have that |Dk|p < 1 if
and only if |D|p < |a|2p = |b|p, where k = 1

2 logp |a|p = 1
4 logp |b|p. Therefore, if

|D|p < |a|2p = |b|p < 1,
√
D−∃, and

√
−2a−∃ then the condition V is satisfied

with k = 1
2 logp |a|p = 1

4 logp |b|p ∈ N−.

5. Let us consider the condition V: |Ak|p = |Bk|p = 1 = |Dk|p,
√
Dk − ∃,(√

−Ak+
√
Dk

2 ∨
√
−Ak−

√
Dk

2

)
− ∃.

We have that |Ak|p = 1 and |Bk|p = 1, simultaneously, if and only if 2k =
logp |a|p and 4k = logp |b|p. This means that |a|2p = |b|p and logp |a|p is even. It
is clear that k ∈ N− if and only if |a|p < 1, |b|p < 1, logp |a|p is even, and |a|2p =
|b|p. Besides that, we have that |Dk|p = 1 if and only if |D|p = |a|2p = |b|p, where
k = 1

2 logp |a|p = 1
4 logp |b|p. From here, if logp |a|p is even then logp |b|p and

logp |D|p are also divisible by 4. In this case,
(√

−Ak+
√
Dk

2 ∨
√
−Ak−

√
Dk

2

)
−

∃ is equivalent to
(√

−a+
√
D

2 ∨
√
−a−

√
D

2

)
− ∃. Therefore, if |D|p = |a|2p =

|b|p < 1,
√
D − ∃,

(√
−a+

√
D

2 ∨
√
−a−

√
D

2

)
− ∃ then the condition V is

satisfied with k = 1
2 logp |a|p = 1

4 logp |b|p ∈ N−. This completes the proof.

3.3 The Solvability Criteria over Qp \ Zp and Qp

The proof of the following theorem is similar to the proof of Theorem 3.2.

Theorem 3.3. The bi-quadratic equation (7) is

(A) Solvable in Qp \ Zp iff either one of the following conditions holds true:

1. |a|2p < |b|p, |b|p > 1, 4
√
b− ∃;

2. |a|2p > |b|p, |a|p > 1,
√−a− ∃;
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3. |a|2p > |b|p, |a|p < |b|p,
√
ab− ∃;

4. |D|p < |a|2p = |b|p, |b|p > 1,
(√

D [
√
−2a

)
− ∃;

5. |D|p = |a|2p = |b|p > 1,
√
D − ∃,

(√
−a+

√
D

2 ∨
√
−a−

√
D

2

)
− ∃.

(B) Solvable in Qp iff either one of the following conditions holds true:

1. |a|2p < |b|p, 4
√
b− ∃;

2. |a|2p > |b|p,
(√−a ∨

√
ab
)
− ∃;

3. |a|2p = |b|p > |D|p,
(√

D [
√
−2a

)
− ∃;

4. |a|2p = |b|p = |D|p,
√
D − ∃,

(√
−a+

√
D

2 ∨
√
−a−

√
D

2

)
− ∃.

Remark 3.1. In the p−adic analysis, the field Q2 should be treated in a com-
pletely different way from the field Qp for p > 2. In a forthcoming paper, we
are aiming to study the bi-quadratic equation in Q2.

4. The Number of Roots

In this section, we present the number NA(x4 + ax2− b) of roots (including
multiplicity) of bi-quadratic equation

x4 + ax2 = b (12)

where
A ∈

{
Z∗p, Zp \ Z∗p, Qp \ Zp, Qp

}
.

Theorem 4.1. Let the bi-quadratic equation (12) be solvable in A where A ∈{
Z∗p, Zp \ Z∗p, Qp \ Zp, Qp

}
. Then the following statements hold true:

NZ∗
p
(x4 + ax2 − b) =

=





4, |a|p < |b|p = 1, 4
√
b− ∃, p ≡ 1 (mod 4)

4, |a|p = |b|p = 1 > |D|p,
(√

D [
√
−2a

)
− ∃

4, |a|p = |b|p = 1 = |D|p,
√
D − ∃,

(√
−a+

√
D

2 [
√
−a−

√
D

2

)
− ∃

2, |a|p < |b|p = 1, 4
√
b− ∃, p ≡ 3 (mod 4)

2, |b|p < |a|p = 1,
√−a− ∃

2, |a|p = |b|p > 1,
√
ab− ∃

2, |a|p = |b|p = 1 = |D|p,
√
D − ∃,

(√
−a+

√
D

2 Z
√
−a−

√
D

2

)
− ∃
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NZp\Z∗
p
(x4 + ax2 − b) =

=





4, |a|2p < |b|p < 1, 4
√
b− ∃, p ≡ 1 (mod 4)

4, |b|p < |a|2p < 1,
(√−a [

√
ab
)
− ∃

4, |D|p < |a|2p = |b|p < 1,
(√

D [
√
−2a

)
− ∃

4, |D|p = |a|2p = |b|p < 1,
√
D − ∃,

(√
−a+

√
D

2 [
√
−a−

√
D

2

)
− ∃

2, |a|2p < |b|p < 1, 4
√
b− ∃, p ≡ 3 (mod 4)

2, |b|p < |a|2p < 1,
(√−a Z

√
ab
)
− ∃

2, |a|p > |b|p, |a|p ≥ 1,
√
ab− ∃

2, |D|p = |a|2p = |b|p < 1,
√
D − ∃,

(√
−a+

√
D

2 Z
√
−a−

√
D

2

)
− ∃

NQp\Zp
(x4 + ax2 − b) =

=





4, |a|2p < |b|p, |b|p > 1, 4
√
b− ∃, p ≡ 1 (mod 4)

4, |a|2p > |b|p, |a|p < |b|p,
(√−a [

√
ab
)
− ∃

4, |D|p < |a|2p = |b|p, |b|p > 1,
(√

D [
√
−2a

)
− ∃

4, |D|p = |a|2p = |b|p > 1,
√
D − ∃,

(√
−a+

√
D

2 [
√
−a−

√
D

2

)
− ∃

2, |a|2p < |b|p, |b|p > 1, 4
√
b− ∃, p ≡ 3 (mod 4)

2, |a|2p > |b|p, |a|p < |b|p,
(√−a Z

√
ab
)
− ∃

2, |a|p ≥ |b|p, |a|p > 1,
√−a− ∃

2, |D|p = |a|2p = |b|p > 1,
√
D − ∃,

(√
−a+

√
D

2 Z
√
−a−

√
D

2

)
− ∃

NQp
(x4 + ax2 − b) =

=





4, |a|2p < |b|p, 4
√
b− ∃, p ≡ 1 (mod 4)

4, |a|2p > |b|p,
(√−a [

√
ab
)
− ∃

4, |a|2p = |b|p > |D|p,
(√

D [
√
−2a

)
− ∃

4, |a|2p = |b|p = |D|p,
√
D − ∃,

(√
−a+

√
D

2 [
√
−a−

√
D

2

)
− ∃

2, |a|2p < |b|p, 4
√
b− ∃, p ≡ 3 (mod 4)

2, |a|2p > |b|p,
(√−a Z

√
ab
)
− ∃

2, |a|2p = |b|p = |D|p,
√
D − ∃,

(√
−a+

√
D

2 Z
√
−a−

√
D

2

)
− ∃
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Proof. Let us discuss the case Z∗p. As we refer to Theorm 3.1, the bi-quadratic
equation (12) is solvable in Z∗p if and only if one of the conditions 1− 5 should
be satisfied. We want to verify the number of solutions for every case.

Condition 1 : |a|p < |b|p = 1, 4
√
b− ∃. This means that b

p−1
4,p−1

0 ≡ 1 (mod p).
In this case, the number of solutions of bi-quadratic equation (12) is the same
as the number of solutions of the equation x40 ≡ b0 (mod p). If p ≡ 1 (mod 4)
then the last congruent equation has 4 solutions and if p ≡ 3 (mod 4) then
the last congruent equation has 2 solutions . Therefore, if |a|p < |b|p = 1,

there exists 4
√
b and p ≡ 1 (mod 4) then the bi-quadratic equation (12) has 4

solutions in Z∗p and if |a|p < |b|p = 1, there exists 4
√
b and p ≡ 3 (mod 4) then

the bi-quadratic equation (12) has 2 solutions in Z∗p.

Condition 2 : |b|p < |a|p = 1,
√−a−∃. In this case, the number of solutions

of the bi-quadratic equation (12) is the same as the number of solutions of the
congruent equation x20 + a0 ≡ 0 (mod p). The last equation has two solutions
because of (−a0)

p−1
2 ≡ 1 (mod p). Therefore, if |b|p < |a|p = 1 and there exists√−a then the bi-quadratic equation (12) has two solutions in Z∗p.

Condition 3 : |a|p = |b|p > 1,
√
ab−∃. In this case, the number of solutions

of the bi-quadratic equation (12) is the same as the number of solution of the
equation a0x

2
0 ≡ b0 (mod p). The last congruent equation has two solutions

because of (a0b0)
p−1
2 ≡ 1 (mod p). Therefore, if |a|p = |b|p > 1 and there exists√

ab then the bi-quadratic equation (12) has two solutions in Z∗p.

Now, let us consider the bi-quadratic (12) in the form of

(2x2 + a)2 = D. (13)

Condition 4 : |a|p = |b|p = 1 > |D|p,
√
D − ∃,

√
−2a− ∃.

Let D = 0. We have that (2x2 + a)2 = 0. It is clear that 2x2 + a = 0 and it
has two solutions because of (−2a0)

p−1
2 ≡ 1 (mod p). We can easily verify that

these solutions are in Z∗p. Therefore, if |a|p = |b|p = 1, D = 0 and there exists√
−2a then the bi-quadratic equation (12) has four solutions (two solutions of

multiplicity-2) in Z∗p.

Let 0 < |D|p < 1. The bi-quadratic equation (13) has the same number
of solutions as the total number of solutions of equations 2x2 + a =

√
D and

2x2 + a = −
√
D. Each of the equations have two solutions because of (−2a±√

D)
p−1
2 ≡ (−2a0)

p−1
2 ≡ 1 (mod p). It is easily can be checked that these four
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solutions are in Z∗p. Hence, if |a|p = |b|p = 1 > |D|p 6= 0, there exist
√
D and√

−2a then the bi-quadratic equation (12) has four solutions in Z∗p.

Condition 5 : |a|p = |b|p = 1 = |D|p,
√
D − ∃ and there exists either√

−a+
√
D

2 or
√
−a−

√
D

2 .

Let
(√

−a+
√
D

2 [
√
−a−

√
D

2

)
− ∃, i.e., there exist both

√
−a+

√
D

2 and
√
−a−

√
D

2 . The bi-quadratic equation (13) has the same number of solutions
as the total number of solutions of equations 2x2+a =

√
D and 2x2+a = −

√
D.

The total number of solutions of the last two equations is four because each
of them has two solutions. We can easily verify that these solutions are in Z∗p.

Therefore, if |a|p = |b|p = 1 = |D|, there exist
√
D and

√
−a±

√
D

2 then the
bi-quadratic equation (12) has for solutions in Z∗p.

Let
(√

−a+
√
D

2 Z
√
−a−

√
D

2

)
− ∃, i.e., there exists only one of

√
−a+

√
D

2

and
√
−a−

√
D

2 . The bi-quadratic equation (13) has the same number of so-
lutions as the total number of solutions of equations 2x2 + a =

√
D and

2x2 + a = −
√
D. The total number of solutions of the last two equations

is two because only one of them is solvable (each equation has two solutions if
it is solvable). It is also can be checked that these solutions are in Z∗p. There-
fore, if |a|p = |b|p = 1 = |D|, there exists

√
D and there exists only one of√

−a+
√
D

2 and
√
−a−

√
D

2 then the bi-quadratic equation (12) has two solutions
in Z∗p.

Let us turn to the case Zp \ Z∗p. Due to the Theorem 3.2, the bi-quadratic
equation (12) is solvable in Zp \ Z∗p if and only if one of conditions 1− 5 holds
true. We want to find the number of solutions in every case.

Condition 1 : |a|2p < |b|p < 1 and 4
√
b − ∃. The number of solutions of the

bi-quadratic equation (12) in Zp \Z∗p is the same as the number of solutions of
the following bi-quadratic equation in Z∗p,

y4 + a
√
|b|py2 = b∗.

It is clear that
∣∣∣a
√
|b|p
∣∣∣
p
< |b∗|p = 1 and there exists 4

√
b or equivalently

b
p−1

(4,p−1)

0 ≡ 1 (mod p). In this case, we have two distinct solutions in Z∗p if
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p ≡ 3 (mod 4) and four distinct solutions in Z∗p if p ≡ 1 (mod 4). Thus, if
|a|2p < |b|p < 1, there exists 4

√
b and p ≡ 3 (mod 4) then the bi-quadratic

equation (12) has two distinct solutions in Zp \ Z∗p and if |a|2p < |b|p < 1, there
exists 4

√
b and p ≡ 1 (mod 4) then the bi-quadratic equation (12) has four

distinct solutions in Zp \ Z∗p.

Conditions 2 − 3 : |b|p < |a|2p < 1,
√−a − ∃ and |a|2p > |b|p, |a|p > |b|p,√

ab− ∃. Now, let us define the following sets

A =
{

(a, b) ∈ Q2
p : |b|p < |a|2p < 1,

√
−a− ∃

}
,

B =
{

(a, b) ∈ Q2
p : |a|2p > |b|p, |a|p > |b|p,

√
ab− ∃

}
,

S = {(a, b) ∈ Q2
p : |b|p < |a|2p < 1,

(√
−a ∨

√
ab
)
− ∃},

B1 =
{

(a, b) ∈ Q2
p : |b|p < |a|2p < 1,

√
ab− ∃

}
,

B2 = {(a, b) ∈ Q2
p : |a|p > |b|p, |a|p ≥ 1,

√
ab− ∃},

S1 = {(a, b) ∈ Q2
p : |b|p < |a|2p < 1,

(√
−a [

√
ab
)
− ∃},

S2 = {(a, b) ∈ Q2
p : |b|p < |a|2p < 1,

(√
−a Z

√
ab
)
− ∃}.

One can easily checked that B = B1 ∪ B2, S = S1 ∪ S2 = A ∪ B1 and
A ∪B = S ∪B2

Firstly, let us consider the set S1. In this case, the number of solutions of
the bi-quadratic equation (12) in Zp \ Z∗p is the same as the total number of
solutions of the following bi-quadratic equations in Z∗p,

y4 + a∗y2 = |a|2pb (14)

z4 + a

∣∣∣∣
b

a

∣∣∣∣
p

z2 = b

∣∣∣∣
b

a

∣∣∣∣
2

p

(15)

It is clear that
∣∣|a|2pb

∣∣
p
< |a∗|p = 1,

∣∣∣a
∣∣ b
a

∣∣
p

∣∣∣
p

=
∣∣∣b
∣∣ b
a

∣∣2
p

∣∣∣
p
> 1,

(√−a [
√
ab
)
−∃.

We have already discussed that each bi-quadratic equation given above has two
solution in Z∗p. Thus, if |b|p < |a|2p < 1 and

(√−a [
√
ab
)
− ∃ then the bi-

quadratic equation (12) has four distinct solutions in Zp \ Z∗p.

Next, let us consider the set S2. In this case, the number of solutions of
the bi-quadratic equation (12) in Zp \ Z∗p is the same as the total number of
solutions of the bi-quadratic equation (14) and (15) in Z∗p. It is clear that
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∣∣|a|2pb
∣∣
p
< |a∗|p = 1,

∣∣∣a
∣∣ b
a

∣∣
p

∣∣∣
p

=
∣∣∣b
∣∣ b
a

∣∣2
p

∣∣∣
p
> 1 and

(√−a Z
√
ab
)
− ∃. In this

case, as we have already discussed, that only one of the equations (14) and
(15) is solvable. Therefore, if |b|p < |a|2p < 1 and

(√−a Z
√
ab
)
− ∃ then the

bi-quadratic equation (12) has two distinct solutions in Zp \ Z∗p.

Lastly, let us consider the set B2. In this case, the number of solutions of
the bi-quadratic equation (12) in Zp \Z∗p is the same as the number of solutions

of the bi-quadratic equation (15) Z∗p. It is clear that
∣∣∣a
∣∣ b
a

∣∣
p

∣∣∣
p

=
∣∣∣b
∣∣ b
a

∣∣2
p

∣∣∣
p
> 1

and
√
ab − ∃. We have already discussed that bi-quadratic (15) equation has

two solution in Z∗p. Therefore, if |a|p > |b|p, |a|p ≥ 1 and
√
ab − ∃ then the

bi-quadratic equation (12) has two distinct solutions in Zp \ Z∗p.

Condition 4 : D|p < |a|2p = |b|p < 1,
√
D − ∃ and

√
−2a− ∃. In this case,

the number of solutions of the bi-quadratic equation (12) in Zp \Z∗p is the same
as the number of solutions of the following bi-quadratic equation in Z∗p,

y4 + a∗y2 = b∗.

We can see that |D|p < |a∗|p = |b∗|p = 1,
√
D−∃ and

√
−2a−∃. Then, the last

equation has four solutions in Z∗p.Therefore, if |D|p < |a|2p = |b|p < 1,
√
D−∃

and
√
−2a−∃ then the bi-quadratic equation (12) has four solutions in Zp \Z∗p.

It is worth of mentioning that if D = 0 then bi-quadratic equations has two
solutions of multiplicity-2 in Zp \ Z∗p.

Condition 5 : |D|p = |a|2p = |b|p < 1,
√
D−∃,

(√
−a+

√
D

2 ∨
√
−a−

√
D

2

)
−∃.

In this case, the number of solutions of the bi-quadratic equation (12) in Zp\Z∗p
is the same as the number of solutions of the following bi-quadratic equation
in Z∗p,

y2 + a∗y = b∗.

We can see clearly that |D|p = |a∗|p = |b∗|p = 1 and
√
D − ∃.

Let
(√

−a+
√
D

2 [
√
−a−

√
D

2

)
−∃. In this case, the last equation has four

solutions in Z∗p. Let
(√

−a+
√
D

2 Z
√
−a−

√
D

2

)
− ∃. In this case, the last

equation has two solutions in Z∗p.

Similarly, one can prove in the cases Qp \ Zp and Qp. This completes the
proof.
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