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ABSTRACT

This paper is an attempt to study various structural and spectral prop-
erties of the class of slant Toeplitz operators on the Lebesgue space of
the torus. The paper discusses hyponormality and isometric behaviour of
these operators along with the study of their adjoint. Spectral radius for-
mula for these operators is derived and it is proved that the spectrum of
slant Toeplitz operators induced by invertible symbols contains a closed
disk.
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1. Motivation

There are a few classes of operators on Hilbert spaces, other than normal
operators and compact operators, which have been studied extensively and pos-
sess detailed information. An exceptional class regarding which vast literature
is available is the class of Toeplitz operators. The study of these operators
was initiated near the beginning of the twentieth century by Toeplitz (1911).
Not only the theory of Toeplitz operators is itself interesting, but in addition
has connections with C∗-algebras, function theory and many other areas of
operator theory.

Let L2(= L2(T)) denote the Hilbert space of all complex-valued measurable
functions on unit circle T such that

∫
T
|f |2dµ <∞ , where dµ is the normalized

Lebesgue measure on T. This space has a canonical orthonormal basis {en}
given by en(z) = zn, for each n ∈ Z, where Z denotes the set of integers. The
Hardy-Hilbert space H2(= H2(T)) is the closed linear span of {en : n ≥ 0} and
is a subspace of L2. Toeplitz operators on H2 are the compressions of Laurent
operators on L2 and their representing matrices possess a constancy along the
diagonals parallel to the main one. Even though the difference in definitions of
these two classes of operators may seem trivial, their theories are profoundly
different. The spectral, algebraic and C*-algebraic aspects of Toeplitz operators
have culminated into a deep and substantial theory. For these operators have
such appeal and wide range of applications, many mathematicians over the
years have come up with different generalizations of Toeplitz operators (see
Power (1980) and the references therein).

The operators whose matrices are derived by eliminating every alternate row
from the matrices of Laurent operators constitute the class of slant Toeplitz
operators. These were brought into attention by Ho (1996) in 1996. Ho studied
spectral as well as structural properties of these operators. More recently, the
adjoints of these operators were discussed in details (see Ho (1997, 2001)). The
similarity of the adjoint of a slant Toeplitz operator with a constant multiple of
shift of the same kind was established under some assumptions on the inducing
symbol.

Meanwhile, the study of Toeplitz operators was lifted to the Hardy space
of the bidisk by Gu and Zheng (1997). They obtained the condition(s) under
which the semi-commutator TfTg − Tfg on the bidisk is compact. Certain
results regarding semi-commutator of Toeplitz operators obtained on bidisk
were found to be false on the unit disk. In more recent times, commuting Hankel
and Toeplitz operators on the Hardy space of the bidisk are characterized by
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Lu and Zhang Lu and Zhang (2010), while commuting Toeplitz operators on
the bidisk are described in Ding et al. (2012).

The function theory on bidisk is quite different than on the unit disk and
much less understood. However, we put to use the existing literature regarding
the multiple Fourier series on the torus T2 (see Gu and Zheng (1997) and the
references therein) and motivated by the work of Ho (2001), study the nature
of slant Toeplitz operators on the Lebesgue space of the torus.

In Section 2, we collect some known facts and results. In Section 3, we
discuss some elementary properties like norm, isometric behaviour, normality
and hyponormality of slant Toeplitz operators on L2(T2). Section 4 investigates
the spectral structure of these operators. We conclude our paper with some
illustrations based on the findings of the paper.

2. Preliminaries

Let C denote complex plane. The torus T2 is the subset of C2 which is
Cartesian product of two copies of T. Let dν be the normalized Haar measure on
T2 and L2(T2)(= L2(T2, dν)) be the usual Lebesgue space of T2. As in Stein and
Weiss (1971), we consider multiple Fourier series on T2, which can be viewed
as the Fourier transformation on L1(T2). The Fourier transformation of f ∈
L1(T2) on Z× Z is given as fm1,m2 = ( 1

2π )
2
∫ 2π

0

∫ 2π

0
f(eiθ1 , eiθ2)e−i(m1θ1+m2θ2)

dθ1 dθ2, where (m1,m2) ∈ Z× Z.

If fm1,m2
= 0 for each (m1,m2) ∈ Z × Z, then f ≡ 0. We also recall that

L2(T2) = {f =
∑

(m1,m2)∈Z×Z
fm1,m2

zm1
1 zm2

2 : ‖f‖2 =
∑

(m1,m2)∈Z×Z
|fm1,m2

|2 <

∞} using multiple Fourier series and the set {en1,n2
(z1, z2) = zn1

1 zn2
2 }(n1,n2)∈Z×Z

is an orthonormal basis of L2(T2).

L∞(T2) denotes the Banach space of all essentially bounded measurable func-
tions on T2 with ‖ · ‖∞.

Let Mφ denote the Laurent operator on L2(T2) induced by φ ∈ L∞(T2).
The notion of a slant Toeplitz operator Aφ on L2(T2), induced by the symbol
φ ∈ L∞(T2) and defined as Aφf = EMφf for each f ∈ L2(T2), was introduced
in Datt and Ohri. Here, the operator E on L2(T2) is defined as Ezm1

1 zm2
2 =

z
m1
2

1 z
m2
2

2 if both m1 and m2 are even integers and zero otherwise.
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If φ(z1, z2) =
∑

(m1,m2)∈Z×Z
φm1,m2

zm1
1 zm2

2 , then for each (n1, n2) ∈ Z ×

Z, the action of Aφ and its adjoint A∗φ on the basis elements of L2(T2) is
given by Aφ(zn1

1 zn2
2 ) =

∑
(m1,m2)∈Z×Z

φ2m1−n1,2m2−n2z
m1
1 zm2

2 and A∗φ(z
n1
1 zn2

2 ) =∑
(m1,m2)∈Z×Z

φ2n1−m1,2n2−m2
zm1
1 zm2

2 .

The operator equation Mz1z2A = AMz21z
2
2
characterizes slant Toeplitz op-

erators on L2(T2). We refer to Datt and Ohri for the structure and some
elementary properties of slant Toeplitz operators on L2(T2). The symbols
σapp(T ), σp(T ), σ(T ) and ρ(T ) denote respectively the approximate point spec-
trum, the point spectrum, the spectrum and the resolvent set of an operator
T , while r(T ) denotes the spectral radius of T .

3. Basic properties

This section investigates the behaviour of a slant Toeplitz operator on
L2(T2) and that of its adjoint. For a symbol φ ∈ L∞(T2) given by φ(z1, z2) =∑
(m1,m2)∈Z×Z

φm1,m2
zm1
1 zm2

2 , φ is defined as φ(z1, z2) =
∑

(m1,m2)∈Z×Z
φm1,m2

z−m1
1 z−m2

2 . Clearly φ ∈ L∞(T2) and has same norm as that of φ. In the initial
attempt, we decompose a multiplication operator on L2(T2) into slant Toeplitz
operators.

Lemma 3.1. Let φ ∈ L∞(T2). Then, ψ = Eφ ∈ L∞(T2) and EA∗φ =Mψ.

Proof. Using the definition of A∗φ and E, we obtain that for each (n1, n2) ∈
Z× Z,

EA∗φ(z
n1
1 zn2

2 ) = E(
∑

(m1,m2)∈Z×Z

φ2n1−m1,2n2−m2
zm1
1 zm2

2 )

=
∑

(m1,m2)∈Z×Z

φ2n1−2m1,2n2−2m2
zm1
1 zm2

2

= (
∑

(m1,m2)∈Z×Z

φ−2m1,−2m2
zm1
1 zm2

2 ).(zn1
1 zn2

2 )

= ψ(z1, z2).(z
n1
1 zn2

2 ),

where ψ(z1, z2) =
∑

(m1,m2)∈Z×Z
φ−2m1,−2m2

zm1
1 zm2

2 = Eφ(z1, z2) ∈ L2(T2). Us-

ing the linearity of the operator EA∗φ, we find that EA∗φf = ψ.f for each
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f ∈ L2(T2). Now, utilizing Halmos (1982), we obtain that ψ ∈ L∞(T2). There-
fore, EA∗φ =Mψ, where ψ = Eφ. This completes the proof.

Next, we compute the product of a slant Toeplitz operator on L2(T2) and
its adjoint. We find that the product is a Laurent operator as is justified in the
following result.

Proposition 3.1. For φ, ψ ∈ L∞(T2), we have the following.

(1) M∗φ =Mφ.

(2) MφMψ =Mφψ

(3) AφA∗φ =ME|φ|2 .

Proof. (1) and (2) follow immediately using the definition of a Laurent opera-
tor. We prove only (3). Using the definition of a slant Toeplitz operator and
Lemma 3.1, we obtain AφAφ∗ = (EMφ)(EMφ)

∗ = EM|φ|2E
∗ = E(EM|φ|2)

∗ =
EA|φ|2

∗ =ME|φ|2 .

The above proposition leads us to the norm of a slant Toeplitz operator on
L2(T2).

Theorem 3.1. For φ ∈ L∞(T2), then ‖Aφ‖ =
√
‖E|φ|2‖∞.

With the help of Theorem 3.1, we obtain that a slant Toeplitz operator on
L2(T2) can never be an isometry.

Theorem 3.2. No slant Toeplitz operator on L2(T2) is isometric.

Proof. Let Aφ on L2(T2) be an isometry, where φ ∈ L∞(T2) is given as
φ(z1, z2) =

∑
(m1,m2)∈Z×Z

φm1,m2
zm1
1 zm2

2 . Then, ‖Aφ1‖ = ‖Aφz1‖ = ‖Aφz2‖ =

‖Aφz1z2‖ = 1 and ‖Aφφ‖ = ‖E|φ|2‖ = ‖φ‖. This yields that for each i, j ∈
{0, 1}, ∑

(m1,m2)∈Z×Z

|φ2m1−i,2m2−j |2 = 1.

As a consequence,
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‖E|φ|2‖2 = ‖φ‖2 =
∑

(m1,m2)∈Z×Z
|φm1,m2

|2 =
∑
|φ2m1,2m2

|2+
∑
|φ2m1−1,2m2

|2

+
∑
|φ2m1,2m2−1|2 +

∑
|φ2m1−1,2m2−1|2 = 4.

However, Theorem 3.1 provides ‖Aφ‖ =
√
‖E|φ|2‖∞. Also, ‖Aφ‖ = 1 since Aφ

is assumed to be an isometry. Putting together all this information, we arrive
at the following.

‖E|φ|2‖ = 2 and ‖E|φ|2‖∞ = 1,

which is a contradiction since ‖ψ‖ ≤ ‖ψ‖∞ for any ψ ∈ L∞(T2). This completes
the proof.

We now proceed to investigate the existence of a hyponormal slant Toeplitz
operator in our next theorem.

Theorem 3.3. The only hyponormal slant Toeplitz operator on L2(T2) is the
zero operator.

Proof. Suppose that Aφ, where φ(z1, z2) =
∑

(m1,m2)∈Z×Z
φm1,m2

zm1
1 zm2

2 , be a

hyponormal operator. This implies that for each f ∈ L2(T2),

‖Aφf‖ ≥ ‖A∗φf‖. (1)

In particular, for f(z1, z2) = 1, inequality (1) provides that ‖Aφ1‖2 ≥ ‖A∗φ1‖2.
Hence,

∑
(m1,m2)∈Z×Z

|φ2m1,2m2 |2 ≥
∑

(m1,m2)∈Z×Z
|φ−m1,−m2

|2. Consequently,

φ2m1−i,2m2−j = 0, (2)

for all (m1,m2) ∈ Z× Z and for (0, 0) 6= (i, j) ∈ {0, 1} × {0, 1}.

Again, substituting f(z1, z2) = z1z2 in (1) and using the structure of Aφ,
we get that

∑
(m1,m2)∈Z×Z

|φ2m1−1,2m2−1|2 ≥
∑

(m1,m2)∈Z×Z
|φ2−m1,2−m2

|2.

This, together with the condition (2) helps us to obtain that φ2m1,2m2
= 0

for all (m1,m2) ∈ Z× Z. Therefore, φ = 0 and hence Aφ = 0.

Since every normal operator is hyponormal, so the following observation is
immediate.

Corollary 3.1. A slant Toeplitz operator on L2(T2) is normal if and only if
φ = 0.
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It is easy to observe that every isometry is a hyponormal operator, for if A
is an isometry, then ‖A∗f‖ ≤ ‖A∗‖ ‖f‖ = ‖f‖ = ‖Af‖, for each f in domain of
A. So, a quick observation from Theorem 3.3 is that a slant Toeplitz operator
on L2(T2) can’t be an isometry. This was proved independently in Theorem
3.2 as well.

The fact that Aφ is non-isometric brings us to our next question. We try to
determine whether some Aφ is a partial isometry or a co-isometry. A positive
answer to this question can be seen with the help of the operator A1(= E)
which satisfies E = EE∗E and EE∗ = I.

In the results that follow, we obtain the condition(s) on the inducing symbol
φ so that Aφ is a partial isometry or a co-isometry.

Theorem 3.4. A slant Toeplitz operator Aφ on L2(T2) is a partial isometry if
and only if φ = φE∗E|φ|2. Particularly, if φ is invertible, then Aφ is a partial
isometry if and only if E∗E|φ|2 = 1.

Proof. Aφ is a partial isometry if and only if Aφ = AφA
∗
φAφ = ME|φ|2Aφ

= AφE∗E|φ|2 . Now, due to the injectivity of the map φ → Aφ in (Datt and
Ohri), the result is immediate.

Theorem 3.5. A necessary and sufficient condition for a slant Toeplitz oper-
ator Aφ on L2(T2) to be a co-isometry is that |φ( θ12 ,

θ2
2 )|

2 + |φ( θ1+2π
2 , θ2)2 |

2 +

|φ( θ12 ,
θ2+2π

2 )|2 + |φ( θ1+2π
2 , θ2+2π

2 )|2 = 4 for almost everywhere (a.e.) θ1, θ2 ∈
[0, 2π).

Proof. We arrive at the result using simple computations. For, consider any
f ∈ L2(T2), then we have
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‖A∗φf‖2 = ‖MφE
∗f‖2

= (
1

2π
)2

2π∫
0

2π∫
0

|φ(θ1, θ2)|2 |f(2θ1, 2θ2)|2dθ1dθ2

= (
1

2π
)2

4π∫
0

4π∫
0

|φ(θ1
2
,
θ2
2
)|2 |f(θ1, θ2)|2

dθ1
2

dθ2
2

= (
1

2π
)2(

1

4
)

2π∫
0

2π∫
0

[∣∣∣∣φ(θ12 , θ22 )

∣∣∣∣2 + ∣∣∣∣φ(θ1 + 2π

2
,
θ2)

2

∣∣∣∣2

+

∣∣∣∣φ(θ12 , θ2 + 2π

2
)

∣∣∣∣2 + ∣∣∣∣φ(θ1 + 2π

2
,
θ2 + 2π

2
)

∣∣∣∣2]
|f(θ1, θ2)|2 dθ1 dθ2

= ‖Mψf‖2,

with ψ(θ1, θ2) =

√∣∣φ( θ12 , θ22 )
∣∣2+∣∣φ( θ1+2π

2 ,
θ2
2 )
∣∣2+∣∣φ( θ12 , θ2+2π

2 )
∣∣2+∣∣φ( θ1+2π

2 ,
θ2+2π

2 )
∣∣2

4 .
The result is now immediate since ‖Mψf‖ = ‖f‖ if and and only if |ψ| = 1
almost everywhere on T2.

The above theorem can also be restated in the following manner.

Theorem 3.6. Aφ on L2(T2) is a co-isometry if and only if |φ(z1, z2)|2 +|φ(z1,
−z2)|2 + |φ(−z1, z2)|2 + |φ(−z1,−z2)|2 = 4 for a.e. z1, z2 ∈ T.

Using the above theorem, the following is obtained without any extra efforts.

Corollary 3.2. If φ ∈ L∞(T2) is unimodular, then Aφ is always a co-isometry.

With our next theorem, we establish a connection between a slant Toeplitz
operator and a composition operator on L2(T2). If we consider the mapping
H : T2 → T2 given by H(z1, z2) = (z21 , z

2
2), then H induces the composition

operator (see Singh and Manhas (1993)) CH on L2(T2) given by CHf = f ◦H
for each f ∈ L2(T2). Further, if ψ ∈ L∞(T2), then the weighted composition
operator Cψ,H (= MψCH) is a bounded operator on L2(T2), where Cψ,Hf =

ψ.(f ◦ H) for each f ∈ L2(T2). It is interesting to obtain that the adjoint
of a slant Toeplitz operator on L2(T2) is a weighted composition operator on
L2(T2).

Theorem 3.7. For φ ∈ L∞(T2), A∗φ = Cφ,H .
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Proof. Let (n1, n2) ∈ Z× Z. Consider en1,n2
(z1, z2) = zn1

1 zn2
2 ∈ L2(T2). Then

by definition of A∗φ, we have

A∗φen1,n2(z1, z2) =
∑

(m1,m2)∈Z×Z

φ2n1−m1,2n2−m2
zm1
1 zm2

2

=
∑

(m1,m2)∈Z×Z

φm1,m2
z−m1+2n1
1 z−m2+2n2

2

=
(
φ(z1, z2)

)
.(z2n1

1 z2n2
2 )

=
(
φ(z1, z2)

)
.
(
en1,n2 ◦H(z1, z2)

)
.

Since the above relation holds true for each (n1, n2) ∈ Z × Z and the set
{en1,n2 : (n1, n2) ∈ Z× Z} forms an orthonormal basis of L2(T2), the linearity
of the operator A∗φ helps to obtain that A∗φf = φ.(f ◦H), for each f ∈ L2(T2).
This provides the desired result.

In the results that follow, we discuss the structure of the C∗-algebra gener-
ated by the set of all slant Toeplitz operators on L2(T2). Lemma 3.1 provides
that any Laurent operator Mφ can be written as product of A1(= E) and A∗ψ,
for ψ = E∗φ. Therefore, if T and M denote respectively the C∗-algebras gen-
erated by all slant Toeplitz operators on L2(T2) and all Laurent operators on
L2(T2), then M ⊆ T.

This observation, together with the fact that for φ ∈ L∞(T2), EMφ =MφE
if and only if φ is constant (Datt and Ohri), helps us to obtain the following
lemma.

Lemma 3.2. T
′′
= B(L2(T2)), where T

′′
denotes the double commutant of T

and B(L2(T2)) denotes the set of all bounded linear operators on L2(T2).

Proof. Since M ⊆ T, therefore T
′ ⊆ M

′
= M, where T

′
and M

′
denote re-

spectively the commutants of the sets T and M. Let T ∈ T
′
. Then, T = Mψ

for some ψ ∈ L∞(T2). Also since E = A1 ∈ T, so the C∗-algebra generated
by E, (E) ⊆ T and thus T

′ ⊆ (E)
′
. Hence, we obtain that MψE = EMψ

and therefore that ψ is constant and T is a constant multiple of the identity
operator I. Thus (I) ⊆ T

′ ⊆ (I), where (I) denotes the C∗-algebra generated
by I. That is, T

′
= (I) and T

′′
= B(L2(T2)).

Using Lemma 3.2 and Von-Neumann double commutant theorem, we arrive at
the following.
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Theorem 3.8. T = B(L2(T2)), that is the C∗-algebra generated by all slant
Toeplitz operators on L2(T2) is the set of all bounded linear operators on L2(T2).

4. Spectral properties

This section is aimed at the study of some spectral properties of slant
Toeplitz operators on L2(T2). We follow the methods and techniques of Ho
(1996) and provide only the outlines of the proofs. Let us begin with the
calculation of the spectral radius of a slant Toeplitz operator Aφ on L2(T2).

Theorem 4.1. r(Aφ) = lim
n→∞

‖ψn‖
1
2n∞ , where ψn = An|φ|2(1).

Proof. Using the principle of mathematical induction, it is easy to see that
AnφA

∗n
φ =Mψn for each positive integer n. In fact, for n = 1, AφA∗φ =ME|φ|2 =

Mψ1
follows directly from Proposition 3.1 (1). Further, if we assume that this

equation holds for integer k (≥ 1), then making use of the fact that ψk.(E|φ|2) =
ψk+1, we arrive at our claim. Finally, using Gelfand formula for spectral radius,
r(Aφ) = lim

n→∞
‖Anφ‖

1
n = lim

n→∞
‖ψn‖

1
2n∞ .

Corollary 4.1. The spectral radius of Aφ induced by φ, with φ being an inner
function, is 1.

Lemma 4.1. If φ ∈ L∞(T2) is such that φ−1 ∈ L∞(T2), then σp(Aφ) =
σp(Aφ(z21 ,z22)).

Proof. Let α ∈ σp(Aφ). Then, there exists a non-zero f ∈ L2(T2) such that
Aφf = αf . Let F = φf . Then, since φ 6= 0 a.e., F 6= 0 and simple compu-
tations provide that (Aφ(z21 ,z22))F = αF . Therefore, σp(Aφ) ⊆ σp(Aφ(z21 ,z22)).
Converse follows on similar lines.

The above lemma helps us to establish the following.

Theorem 4.2. For any φ ∈ L∞(T2), σ(Aφ) = σ(Aφ(z21 ,z22)).

Proof. Firstly, we prove that σ(Aφ) ∪ {0} = σ(Aφ(z21 ,z22)) ∪ {0}. Using the
definition of A∗φ, we have σ(A∗φ) ∪ {0} = σ(MφE

∗) ∪ {0} = σ(E∗Mφ) ∪ {0} =
σ(A∗

φ(z21 ,z
2
2)
)∪{0}. Therefore, σ(Aφ)∪{0} = σ(A∗φ)∪{0} = σ(A∗

φ(z21 ,z
2
2)
)∪{0} =

σ(Aφ(z21 ,z22)) ∪ {0}.
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Next, we observe that 0 always belongs to the point spectrum of (Aφ(z21 ,z22)).
Now, if φ is invertible, then by Lemma 4.1, we obtain that 0 ∈ σp(Aφ). In case,
φ is not invertible, we obtain that 0 ∈ σapp(Aφ) ⊆ σp(Aφ). Therefore, in either
case 0 ∈ σ(Aφ). This completes the proof.

Theorem 4.3. Let φ ∈ L∞(T2) be invertible. Then, σ(Aφ) contains a closed
disk.

Proof. Let 0 6= α ∈ C and Pee be the projection of L2(T2) onto the closed
subspace generated by {z2m1

1 z2m2
2 : m1 and m2 are integers}.

Let (A∗
φ
−1

(z21 ,z
2
2)
− αI) be onto. Choose 0 6= f0 ∈ (I − Pee)L2(T2). Then, there

exists 0 6= f ∈ L2(T2) such that f0 = (A∗
φ
−1

(z21 ,z
2
2)
− αI)f = αE∗Mφ−1(α−1 −

MφE)f⊕ (−α(I − Pee)f). However, since f0 ∈ (I − Pee)L
2(T2), E∗ is an

isometry and Mφ−1 is invertible, we obtain that (α−1 − MφE)f = (α−1 −
Aφ(z21 ,z22))f = 0 and thus α−1 ∈ σp(Aφ(z21 ,z22)). Now, for each α ∈ ρ(A

∗
φ
−1

(z21 ,z
2
2)
),

(A∗
φ
−1

(z21 ,z
2
2)
− αI) is invertible and thus onto. Therefore, we conclude that

{α−1|α ∈ ρ(A∗
φ
−1

(z21 ,z
2
2)
)} ⊆ σp(Aφ(z21 ,z22)) = σp(Aφ) ⊆ σ(Aφ). The compact-

ness of spectrum helps to yield the desired result.

Some immediate consequences of Theorem 4.3 are the ones listed below.

Corollary 4.2. The radius of the closed disk contained in the spectrum of Aφ
is 1

r(A
φ−1 )

.

Corollary 4.3. 1
r(A

φ−1 )
≤ r(Aφ).

Corollary 4.4. For a unimodular φ, σ(Aφ) is the closed unit disk.

Examples: The following are some examples based on the results obtained in
the paper:

(a) Let α be a non-zero complex number. Then, the slant Toeplitz oper-
ator Aφ, where φ(z1, z2) = 1√

(1+|α|2)
(z1z2 + α), is a co-isometry. For,

Proposition 3.1 (3) provides that AφA∗φ =ME|φ|2 =M1 = I.

(b) Let φ(z1, z2) = 1
2z1z2 +

√
3
2 z

2
1z

2
2 ∈ L∞(T2). Then, φE∗E|φ|2 = φ and

hence using Theorem 3.4, Aφ is a partial isometry. Indeed, AφA∗φAφ =
ME|φ|2Aφ =M1Aφ = Aφ and hence Aφ is a partial isometry.

Malaysian Journal of Mathematical Sciences 207



Datt, G. and Ohri, N.

(c) Let α, β ∈ C. Then, the operator 1
|α|2+|β|2A

∗
αz1z2+β

is an isometry.

(d) Let φ(z1, z2) = z21z
2
2 + 1 ∈ L∞(T2). Then, φφ = |φ|2 = 2 + z21z

2
2 +

z1
2z2

2 and hence ψ1 = E(|φ|2) = 2 + z1z2 + z1 z2. Similarly, ψ2 =
E(E(|φ|2)|φ|2) = 2(2 + z1z2 + z1 z2). Moving on in a similar fashion, we
obtain that ψn = E(E(· · · (E(|φ|2)|φ|2) · · · |φ|2)) = 2n−1(2+z1z2+z1 z2).
This provides that ‖ψn‖∞ = 2n+1 and thus Theorem 4.1 provides that
r(Aφ) = lim

n→∞
2
n+1
2n =

√
2. Also, using Theorem 3.1, we have ‖Aφ‖ =√

‖E|φ|2‖∞ =
√
4 = 2. Therefore, r(Aφ) 6= ‖Aφ‖.

(e) Let φ(z1, z2) = z1z2 + α. Then, r(Aφ) =
√

1 + |α|2.

5. Conclusion

In our pursuit to lift the study of slant Toeplitz operators defined on L2(T)
to higher dimensional spaces, we describe the structure of these operators on
L2(T2). We obtain that a slant Toeplitz operators on L2(T2) can not be an
isometry, while the only hyponormal slant Toeplitz operator is the zero opera-
tor. Symbols inducing co-isometric and partial isometric operators are identi-
fied and a connecting bridge is established between the classes of slant Toeplitz
operators and weighted composition operators on L2(T2). Certain spectral
properties of these operators are also discussed, in addition to obtaining that
the C∗-algebra generated by all slant Toeplitz operators is the set of all bounded
linear operators on L2(T2).
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