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ABSTRACT

Diophantine 3-tuples with property Pk, fork an integer, are sets of n
positive integers such that product of any two of them by addingk is
a square. In the present paper, we consider some regular Pk- triples
and prove that they can not be extendible to Diophantine quadruple
when k = −2 by using fundamental solution of Pell equations. Also, we
determine several significant properties about such sets.
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1. Introduction

The mathematician Diophantus started the problem of extendibility and
characterization of Pk -sets. Many famous mathematicians obtained signif-
icant results on Diophantine m-tuples, but still some problems about Dio-
phantine properties remain unsolved. A set of n distinct positive integers n
{a1, a2, ..., an} is called a Pk -set for any k integer if ai.aj + k (1 ≤ i < j ≤ n)
is a perfect square when i is different from j.

Diophantine equations have central role in number theory and can be used
in coding theory and cryprography. For real life applcations, Diophantine Equa-
tions are useful to solve problem of Business, network flow and so on. Firstly,
{1, 3, 8, 120} quadruple problem was considered by Fermat (1891) but Baker
and Davenport (1969) proved that {1, 3, 8, 120} quadruple is P1 and can not
be extended. Cenberci and Peke (2017) have given some P2 triples sets which
they can be nonextended. In the paper of Brown (1985), some unsecify results
of Diophantine m-tuples were determined. Dujella and Jurasic (2011) gave the
definition of regular triple, regular quadrule as well as other interesting prob-
lems in Diophantine m-tuples. Mohanty and Ramasamy (1984) and Kedlaya
(1998) worked on P−1- triples by using different methods. Tzanakis (2002) ,
considered elliptic curves method for solving Diophantine m-tuples problems.

The author Özer (2016a), Özer (2016b) and Özer (2017) worked on dif-
ferent types of Diophantine 3-tuples and got significant properties on such
sets. Besides, some authors such as Gopalan et al. (2014), Grinstead Grin-
stead (1978), Kanagasabapathy and Ponnudurai (1975), Katayama (2000),
Masser and Rickert (1996) considered the different methods for extendibil-
ity and characterization of simultaneous Diophantine equations. For further
knowledge/information about Diophantine properties, we may refer to Dickson
(2005), Mollin (2008) and Roberts (1992).

The aim of this paper is to prove that some regular P−2- triples can not be
extended P−2 - quadruples by using the fundamental solutions of x2−dy2 = +1
or x2 − dy2 = +4 Pell Equations. Also, we demonstrate that P−2 - triples
do not contain the primes satisfy p ≡ 5(mod8) or p ≡ 7(mod8) with other
properties by considering quadratic reciprocity theorem and Legendre-Jacobi
symbols. In the case k is equal −2, there does not exist any similar paper of
us for Diophantine triples.
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2. Preliminaries

Definition 2.1. [5] A D(n)- triple{a, b, c} is called regular if it satisfies the
condition

(c− b− a)2 = 4(ab+ n) (1)

Equation (1) is symmetric under permutations of a, b, c.

Definition 2.2. [14] If n ∈ N and α ∈ Z with gcd(α, n) = 1, then α is to be
a quadratic residue modulo n if there exists an integer x such that

x2 ≡ α(modn) (2)

and if equivalence has no such solution, then α is a quadratic nonresidue modulo
n.

Definition 2.3. [14]) If a ∈ Z and p > 2 is prime, then

a

p
=


0 if (p|a)
1 if a is quadratic residue mod p
−1 otherwise

(3)

and (ap ) is called the Legendre Symbol of a with respect to p.

Theorem 2.1. [14] If p 6= q are odd primes, then

(
p

q
)(
q

p
) = (−1)

p−1
2 . q−1

2 (4)

where (pq ) and ( qp ) are Legendre symbol.

Theorem 2.2. [14] If u, v ∈ N are odd and relatively prime, then

(
u

v
)(
v

u
) = (−1)

u−1
2 . v−1

2 (5)

holds.
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Theorem 2.3. [14] For any odd prime p,

(
−1
p

) = (−1)
p−1
2 , (

2

p
) = (−1)

(p2−1)
8 (6)

Definition 2.4. [14]) If a ∈ Z and n = ps11 p
s2
2 . . . psmm > 1 is odd positive

integer with p1, p2, . . . , pm primes, then

(
a

n
) = (

a

p1
)s1(

a

p2
)s2 . . . (

a

pm
)sm (7)

3. Main Theorem and Results

Theorem 3.1. A set P−2 = {2, 3, 9} with size three is regular and can not be
extended to further.

Proof. By use of Definition 2.1, it is clear that P−2 = {2, 3, 9} triple set is
regular. Assume that P−2 = {2, 3, 9} can be extended P−2 quadruple. Let
consider the set {2, 3, 9, d} as a P−2 set for any positive integer d. Then there
exist x, y, z integers such that

2d− 2 = x2 (8)

3d− 2 = y2 (9)

9d− 2 = z2 (10)

By dropping d between (8) and (9), we get

2y2 − 3x2 = 2 (11)

and from this, we obtain
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2(y2 − 1) = 3x2 (12)

It is clear that the left side of (12) is even integer. So, the right side of equation
(12) must be even too. This means, there is a x1 ∈ Z such that x = 2x1. If we
put x = 2x1 into the (12), we have

6x21 + 1 = y2 (13)

(13) gives that y is odd integer and can be written as y = 2y1 + 1 for y1 ∈ Z.
Then, (13) becomes

3x21 = 2(y21 + y1) (14)

this gives x1 is even and written by x1 = 2x2 (x2 ∈ Z).

If we consider x = 2x1 and x1 = 2x2 for x1 , x2 ∈ Z, then we obtain x = 4x2.
If we write x = 4x2 in the equation (12), then we have Pell equation as follows:

y2 − 24x22 = 1 (15)

We determine fundamental solution of (15) demonstrated as (y, x2) = (5, 1)
and other all positive solutions are generated by fundamental solution as yn +√
24(x2)n = (5+

√
24)n. From the last equation, we obtain recurrence relation

yn = 10yn−1 − yn−2 (16)

for the values of (yn) when n ≥ 3. Considering (9) and (16), we get some values
of d for any n ∈ Z+. It is easily seen that any of these d values don’t give any
perfect square of integer for equation (10). i.e. There isn’t any integer solution
z satisfies (10).

So, P−2 = {2, 3, 9} can not be extended.

Theorem 3.2. A P−2 = {3, 9, 22} set is regular and can not be extended.
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Proof. If we consider Definition 2.1, it is easily seen that P−2 = {3, 9, 22} set is
regular and shares the property of P−2. We will determine whether or not this
set can be extendable. Let d be any other positive integer such that {3, 9, 22, d}.
Then following equations hold for some x, y, z integers.

3d− 2 = x2 (17)

9d− 2 = y2 (18)

22d− 2 = z2 (19)

Eliminating d between (17) and (18), we have

y2 − 3x2 = 4 (20)

and (20) is a Pell equation. Besides, fundamental solution of this (20) equation
is found as (y, x) = (4, 2). Some other solutions of (20) are given as follows:

Table 1: Some positive solutions of y2 − 3x2 = 4

Solutions Solution 1 Solution 2 Solution 3 Solution 4 Solution . . .
(y, x) (4, 2) (14, 8) (52, 30) (194, 112) . . .

Using the solutions of y2−3x2 = 4 in the Table 1, we obtain general recurrence
relation for solution of yas follows:

yn = 4yn−1 − yn−2 (21)

for n > 2. From (18) and (21), we have some values of d for any n ∈ Z+We
can easily see that such d values give no perfect square of integer for equation
(19). It means that there is no integer solution z satisfies (19).

So, P−2 = {3, 9, 22} is non-extendable.

Theorem 3.3. A P−2 = {18, 27, 89} triple set is regular and non-extendible.

Proof. Using (1) from Definition 2.1, we can easily see that P−2 = {18, 27, 89}
is regular triple set. Now, Suppose that {18, 27, 89, d} is a P−2 set for any other
positive integer d. Then, there are x, y, z integers satisfy following equations.
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18d− 2 = x2 (22)

27d− 2 = y2 (23)

89d− 2 = z2 (24)

From (22) and (23), we have 2y2− 3x2 = 2 equation which is the same of (11).
Using the direction of the Proof of Theorem 3.1 and following same steps from
(11) to (15), we get y2 − 24x22 = 1 Pell Equation numbered as (15) above. As
we mentioned above, we have yn = 10yn−1 − yn−2 (i.e.(16)) as the recurrence
relation for the values of (yn) and fundamental solution of (15) determine as
(y, x2) = (5, 1).

Using (23) and (16), we obtain some values of d for any n ∈ Z+. So, none
of these d values give any perfect square of integer for equation (24) and this
gives that there is no integer solution z satisfies (24).

That’s why, a P−2 = {18, 27, 89} can not be extended.

Theorem 3.4. A P−2 = {6, 11, 33} is regular but it can not be extendable.

Proof. It is clear that P−2 = {6, 11, 33} set is regular triple set from Definition
2.1. We assume that P−2 = {6, 11, 33} can be extended for any d ∈ Z+. So,
we can find x, y, z integers such that

6d− 2 = x2 (25)

11d− 2 = y2 (26)

33d− 2 = z2 (27)

Eliminating d between (26) and (27), we have Pell equation as follows:

z2 − 3y2 = 4 (28)

The fundamental solution of (28) Pell Equation is (z, y) = (4, 2) and other
positive solutions generated by fundamental solution are as follows:

By use of the Table 2 and the fundamental solution of (28), we obtain general
recurrence relation for (zn) as following equation:
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Table 2: Positive Solutions of z2 − 3y2 = 4

Solutions Solution 1 Solution 2 Solution 3 Solution 4 Solution . . .
z 4 14 52 194 . . .
y 2 8 30 112 . . .

zn = 4zn−1 − zn−2, (n ≥ 3.) (29)

Using (29), we have some values of d from (27). If we put these d in the (25),
then any of these values don’t give any perfect square of an integer x for the
equation (25). This proves that a P−2 = {6, 11, 33} can not be extended for
any d ∈ Z+.

Theorem 3.5. A P−2 = {11, 33, 82} triple set is both regular and non-extendible.

Proof. P−2 = {11, 33, 82} set proves the condition of Definition 2.1. So, it is
clear that P−2 = {11, 33, 82} is regular set. Suppose that {11, 33, 82, d} is a
P−2 set. Then, x, y, z integers can be found as follows:

11d− 2 = x2 (30)

33d− 2 = y2 (31)

82d− 2 = z2 (32)

Eliminating d from (30) and (31), then

y2 − 3x2 = 4 (33)

Pell equation is obtained. In a similar way of Proof of Theorem 3.3, we deter-
mine fundamental unit (33) as (y, x) = (4, 2) and general recurrence relation
for (yn) as

yn = 4yn−1 − yn−2, (n ≥ 3) (34)
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We get some values of d from (31) by use of (34). For these values of d, there
isn’t any perfect square of an integer z in (32). Therefore, a P−2 = {11, 33, 82}
is non-extendable for any d ∈ Z+.

Theorem 3.6. There isn’t any P−2 set contains primes provided p ≡ 5 (mod 8).

Proof. It is sufficient to prove this theorem for p primes such that p ≡ 5
(mod 8). We assume that k is an element of set P−2 . If pk, (k ∈ Z) is an
element of set P−2, then following equation

pk − 2 = L2 (35)

has to satisfy for some integer L. We obtain following equivalent

L2 ≡ −2 (mod p) (36)

if we deduce in (modp). By evaluating the Legendre symbol and its properties,
we obtain

(
−2
p

) = (
−1
p

)(
2

p
) (37)

From (6) in Theorem 2.3, we have following equivalents;

(
−1
p

) = (−1)
p−1
2 and (

2

p
) = (−1) 1

8 (p
2−1)

If we consider and apply p ≡ 5(mod8) in the (6) equivalents, we obtain

(
−1
p

) = (−1)
p−1
2 = +1 and (

2

p
) ≡ (−1) 1

8 (p
2−1) = −1 (38)

So, we get
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(
−2
p

) = −1 (39)

This means, the equation (35) isn’t solvable. Hence, primes p ≡ 5 (mod 8) can
not be an element of P−2.

Remark 3.1. There isn’t any P−2 set includes n positive integers satisfy n ≡ 5
(mod 8). Since it is easily seen from the Theorem 3.5 that n (positive integer
satisfies n ≡ 5 (mod 8)) can not be an element of P−2.

Theorem 3.7. There is no P−2 set includes primes ensured q ≡ 7 (mod 8).

Proof. Suppose that u is an element of set P−2 . If qu, is an element of set P−2

for any integer, then we obtain

qu− 2 = R2 (40)

for some integer R. Applying (modq) on the both side of equation (40), we get

R2 ≡ −2 (mod q) (41)

By use of the Legendre symbol and its properties on the equivalent (41), fol-
lowings are found.

(
−2
q
) = (

−1
q

)(
2

q
) (42)

Applying similar method of the proof of Theorem 3.5 ( i.e. (6) in Theorem 2.3
and q ≡ 7 (mod 8)), then we obtain

(
−2
q
) = −1 (43)

This is a contradiction and shows that the congruence (41) has no solution
(From (3) in Definition 2.3). So, primes q ≡ 7 (mod 8) can not be an element
of P−2.

Remark 3.2. There is no P−2 set includes m positive integers satisfied m ≡ 7
(mod 8). In a similar way, one can easily proves that any m positive integer
such that m≡ 7 (mod 8) can not be an element of P−2, using the Definition
2.3, Definition 2.4, Theorem 2.1 and Theorem 2.2 as well as the proof of the
Theorem 3.7.
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