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ABSTRACT

Diophantine 3-tuples with property Pj, fork an integer, are sets of n
positive integers such that product of any two of them by addingk is
a square. In the present paper, we consider some regular Pj- triples
and prove that they can not be extendible to Diophantine quadruple
when k = —2 by using fundamental solution of Pell equations. Also, we
determine several significant properties about such sets.
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1. Introduction

The mathematician Diophantus started the problem of extendibility and
characterization of Pj -sets. Many famous mathematicians obtained signif-
icant results on Diophantine m-tuples, but still some problems about Dio-
phantine properties remain unsolved. A set of n distinct positive integers n
{a1, a9, ...,a,} is called a Py -set for any k integer if a;.a; + k (1 <i < j <n)
is a perfect square when 1 is different from j.

Diophantine equations have central role in number theory and can be used
in coding theory and cryprography. For real life applcations, Diophantine Equa-
tions are useful to solve problem of Business, network flow and so on. Firstly,
{1,3,8,120} quadruple problem was considered by |[Fermat| (1891) but Baker]
[and Davenport| (1969) proved that {1,3,8,120} quadruple is P; and can not
be extended. |Cenberci and Peke| (2017) have given some P; triples sets which
they can be nonextended. In the paper of [Brown| (1985)), some unsecify results
of Diophantine m-tuples were determined. Dujella and Jurasic (2011) gave the
definition of regular triple, regular quadrule as well as other interesting prob-
lems in Diophantine m-tuples. [Mohanty and Ramasamy| (1984) and Kedlaya|
worked on P_i- triples by using different methods. [Tzanakis (2002) ,

considered elliptic curves method for solving Diophantine m-tuples problems.

The author [Ozer| (2016a)), |Ozer, (2016b) and |Ozer| (2017) worked on dif-
ferent types of Diophantine 3-tuples and got significant properties on such
sets. Besides, some authors such as |Gopalan et al| (2014]), Grinstead |Grin-
stead| (1978), [Kanagasabapathy and Ponnudurai (1975)), [Katayamal (2000)),
Masser and Rickert| (1996) considered the different methods for extendibil-
ity and characterization of simultaneous Diophantine equations. For further
knowledge/information about Diophantine properties, we may refer to
(2005)), Mollin| (2008) and Roberts (1992).

The aim of this paper is to prove that some regular P_s- triples can not be
extended P_, - quadruples by using the fundamental solutions of 22 —dy? = +1
or 22 — dy? = +4 Pell Equations. Also, we demonstrate that P_, - triples
do not contain the primes satisfy p = 5(mod8) or p = 7(mod8) with other
properties by considering quadratic reciprocity theorem and Legendre-Jacobi
symbols. In the case k is equal —2, there does not exist any similar paper of
us for Diophantine triples.
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2. Preliminaries

Definition 2.1. [5] A D(n)- triple{a,b,c} is called regular if it satisfies the
condition

(c—b—a)*=4(ab+n) (1)

Equation is symmetric under permutations of a, b, c.

Definition 2.2. [14] If n € N and o € Z with ged(o,n) = 1, then o is to be
a quadratic residue modulo n if there exists an integer x such that

z? = a(modn) (2)

and if equivalence has no such solution, then « is a quadratic nonresidue modulo
n.

Definition 2.3. [14]) If a € Z and p > 2 is prime, then

0 if (pla)
-=<1 if a is quadratic residue mod p (3)
-1 otherwise

and (%) 1s called the Legendre Symbol of a with respect to p.

Theorem 2.1. [14] If p # q are odd primes, then

P\ q b1 g1

(=)= (—1)"=2 "2 4

()G =1 (4)
where (2) and (1) are Legendre symbol.

Theorem 2.2. [1/] If u,v € N are odd and relatively prime, then

holds.
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Theorem 2.3. [14] For any odd prime p,

(T = ()=, () = (-1 (6)

p p

Definition 2.4. [14]) If a € Z and n = pi'p3?...p5m > 1 is odd positive

integer with py,pa, ..., pm primes, then
g = g S1 i S2 i Sm 7
&)= () () () g

3. Main Theorem and Results

Theorem 3.1. A set P_o = {2,3,9} with size three is reqular and can not be
extended to further.

Proof. By use of Definition it is clear that P_o = {2,3,9} triple set is
regular. Assume that P_o = {2,3,9} can be extended P_5 quadruple. Let
consider the set {2,3,9,d} as a P_s set for any positive integer d. Then there
exist x,y, z integers such that

2d — 2 = 2? (8)
3d —2 = y? (9)
9d —2 = 2* (10)

By dropping d between and @, we get

22 —32% =2 (11)
and from this, we obtain
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2(y? — 1) = 322 (12)

It is clear that the left side of is even integer. So, the right side of equation
(12) must be even too. This means, there is a 1 € Z such that x = 2z;. If we
put x = 2z into the , we have

623 +1 =y (13)

gives that y is odd integer and can be written as y = 2y; + 1 for y; € Z.
Then, becomes

33 =245 + 1) (14)

this gives x; is even and written by x1 = 2z5 (22 € Z).

If we consider x = 2xy and x1 = 2z5 for 1 , 9 € Z, then we obtain x = 4x,.
If we write x = 4x5 in the equation , then we have Pell equation as follows:

y* — 2423 =1 (15)

We determine fundamental solution of demonstrated as (y,z2) = (5,1)
and other all positive solutions are generated by fundamental solution as y,, +
V24(z2), = (5++v24)". From the last equation, we obtain recurrence relation

Yn = 10Ypn—1 — Yn—2 (16)

for the values of (y,,) when n > 3. Considering @ and 7 we get some values
of d for any n € Z+. It is easily seen that any of these d values don’t give any
perfect square of integer for equation . i.e. There isn’t any integer solution

z satisfies .

So, P_5 ={2,3,9} can not be extended. O

Theorem 3.2. A P_5 = {3,9,22} set is reqular and can not be extended.
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Proof. If we consider Definition it is easily seen that P_o = {3,9,22} set is
regular and shares the property of P_s. We will determine whether or not this
set can be extendable. Let d be any other positive integer such that {3,9,22, d}.
Then following equations hold for some z,y, z integers.

3d — 2 = x* (17)
9d -2 = y2 (18)
22d — 2 = 2* (19)

Eliminating d between and , we have

y?> — 3% =4 (20)

and is a Pell equation. Besides, fundamental solution of this equation
is found as (y,z) = (4,2). Some other solutions of are given as follows:

Table 1: Some positive solutions of y? — 3z% = 4

Solutions | Solution 1 | Solution 2 | Solution 3 | Solution 4 | Solution ...

(y, ) (4,2) (14,8) (52,30) (194,112)

Using the solutions of y? —3x2 = 4 in the Table|l] we obtain general recurrence
relation for solution of yas follows:

Yn = 4Yn—1 — Yn—2 (21)

for n > 2. From and , we have some values of d for any n € ZTWe
can easily see that such d values give no perfect square of integer for equation
(19). It means that there is no integer solution z satisfies (19).

So, P_y = {3,9,22} is non-extendable. O

Theorem 3.3. A P_o, = {18,27,89} triple set is regular and non-extendible.

Proof. Using ({1} from Definition we can easily see that P_y = {18,27,89}
is regular triple set. Now, Suppose that {18,27,89,d} is a P_5 set for any other
positive integer d. Then, there are x,y, z integers satisfy following equations.
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18d — 2 = 22 (22)
27d — 2 = > (23)
89d — 2 = 2* (24)

From and , we have 22 — 322 = 2 equation which is the same of .
Using the direction of the Proof of Theorem and following same steps from

to , we get y? — 2423 = 1 Pell Equation numbered as above. As
we mentioned above, we have y, = 10y,,_1 — yn—2 (i.e.(I6)) as the recurrence

relation for the values of (y,) and fundamental solution of determine as
(y,z2) = (5,1).

Using and , we obtain some values of d for any n € ZT. So, none
of these d values give any perfect square of integer for equation and this
gives that there is no integer solution z satisfies .

That’s why, a P_o = {18,27,89} can not be extended. O

Theorem 3.4. A P_, = {6,11,33} is regular but it can not be extendable.

Proof. Tt is clear that P_o = {6,11, 33} set is regular triple set from Definition
We assume that P_o = {6,11,33} can be extended for any d € Z+. So,
we can find x,y, z integers such that

6d — 2 = z* (25)
11d — 2 =y* (26)
33d — 2 = 2* (27)

Eliminating d between and , we have Pell equation as follows:

22— 3y? =4 (28)

The fundamental solution of Pell Equation is (z,y) = (4,2) and other
positive solutions generated by fundamental solution are as follows:

By use of the Table [2| and the fundamental solution of , we obtain general
recurrence relation for (z,) as following equation:

Malaysian Journal of Mathematical Sciences 261



Ozen OZER

Table 2: Positive Solutions of 22 — 3y? = 4

Solutions | Solution 1 | Solution 2 | Solution 3 | Solution 4 | Solution ...
z 4 14 52 194
y 2 8 30 112

Zn =42p—1 — Zpn—2,(n > 3.) (29)

Using , we have some values of d from . If we put these d in the ,
then any of these values don’t give any perfect square of an integer x for the
equation . This proves that a P_ = {6,11,33} can not be extended for
any d € Z+. O

Theorem 3.5. A P_y = {11, 33,82} triple set is both regular and non-extendible.

Proof. P_o = {11,33,82} set proves the condition of Definition So, it is
clear that P_o = {11,33,82} is regular set. Suppose that {11,33,82,d} is a
P_5 set. Then, x,y, z integers can be found as follows:

11d — 2 = 2? (30)
33d —2 =12 (31)
82d — 2 = 22 (32)

Eliminating d from and , then

y?> — 322 =4 (33)

Pell equation is obtained. In a similar way of Proof of Theorem [3.3] we deter-
mine fundamental unit as (y,x) = (4,2) and general recurrence relation
for (y,) as

Yn = 4yn—1 — Yn—2, (TL > 3) (34)
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We get some values of d from by use of . For these values of d, there
isn’t any perfect square of an integer z in . Therefore, a P_, = {11, 33,82}
is non-extendable for any d € Z+. O

Theorem 3.6. There isn’t any P_o set contains primes providedp = 5 (mod 8).

Proof. 1t is sufficient to prove this theorem for p primes such that p = 5
(mod 8). We assume that k is an element of set P_o . If pk, (k € Z) is an
element of set P_o, then following equation

pk —2 = L2 (35)

has to satisfy for some integer L. We obtain following equivalent

L?= -2 (mod p) (36)

if we deduce in (modp). By evaluating the Legendre symbol and its properties,
we obtain

From @ in Theorem we have following equivalents;

L5 and () = (210D
(p) (1) d(p) (1)

If we consider and apply p = 5(mod8) in the @ equivalents, we obtain

(—)=(1) +1and (0)

= (-1)"D = 1 (38)
p

So, we get
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(?) =-1 (39)

This means, the equation isn’t solvable. Hence, primes p =5 (mod 8) can
not be an element of P_s. O

Remark 3.1. There isn’t any P_o set includes n positive integers satisfy n = 5
(mod 8). Since it is easily seen from the Theorem [3.5 that n (positive integer
satisfies n =5 (mod 8)) can not be an element of P_s.

Theorem 3.7. There is no P_s set includes primes ensured ¢ =7 (mod 8).

Proof. Suppose that u is an element of set P_s . If qu, is an element of set P_o
for any integer, then we obtain

qu—2 = R? (40)

for some integer R. Applying (modgq) on the both side of equation , we get
R*= -2 (mod q) (41)

By use of the Legendre symbol and its properties on the equivalent , fol-
lowings are found.

-2 -1.,2
—)=(—)(=

(q qa q

) (42)

Applying similar method of the proof of Theorem (ie. @ in Theorem
and ¢ =7 (mod 8)), then we obtain

-2

( q

)= -1 (43)

This is a contradiction and shows that the congruence has no solution
(From in Definition [2.3). So, primes ¢ =7 (mod 8) can not be an element
of P_2. O

Remark 3.2. There is no P_y set includes m positive integers satisfied m =7
(mod 8). In a similar way, one can easily proves that any m positive integer
such that m= 7 (mod 8) can not be an element of P_s, using the Definition

Definition [24, Theorem and Theorem as well as the proof of the
Theorem [37.
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