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ABSTRACT

Periodic control systems are of interest in many engineering and me-

chanical research. Many important analysis of periodic control systems

directly links to the periodic matrix equations, i.e., periodic Lyapunov

equations or periodic Riccati equations. This paper represents the itera-

tive methods for solving a class of periodic Lyapunov equation, known as

periodic projected discrete-time Lyapunov equation. A remarkable con-

tribution of these types of equations are seen in control problems with

periodic setting, and also in dimension reduction of periodic systems in

descriptor forms. We explore the Smith iterations for the iterative solu-

tion of the projected discrete-time algebraic Lyapunov equation and an-

alyze the cyclic and repeated structure of the periodic matrices to ensure

the recursive computation of the periodic solutions. We also introduce an

algorithm for computing the low-rank approximations of those iterative

solutions. Computational results are illustrated at the end to report the

e�ciency of the suggested methods.

Keywords: Periodic systems, periodic projected Lyapunov equations,

re�exive inverses, Smith iterations.
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1. Introduction

In the last few decades much attention has been given to the study of pe-
riodic control systems and the problems that arise in the context of periodic
control problems. Such problems are, for example, the periodic feedback con-
trol, periodic model reduction, robust control, periodic stabilization problems,
analyzing circuit models with periodic inputs, multirate data sampling control
systems, orbital motion modelling of spacecrafts, periodic attitude control of
helicopter rotors, etc., see e.g. Bittanti and Colaneri (2000), Kuo et al. (2004),
Nakhla and Gad (2005), Varga (2007). The mathematical representations of
these problems generally have huge memory and computational complexity.
These complexities may generate from di�erent resources, for example, struc-
tures of the models, discretization schemes used to linearize the partial di�er-
ential equations that describe the models, and many more.

However, a huge number of applications addressing these problems demands
the solution of the periodic matrix equations associated to the mathematical
models. Periodic matrix equations such as periodic Sylvester equations which
are closely related to the analysis and design of discrete-time periodic control
systems have been widely studies in Hajarian (2018a,b,c) using the biconjugate
residual method and the conjugate direction method. The periodic discrete-
time Lypunov equation, an another well known matrix equation in the study
of discrete-time periodic control systems and is mainly used in discrete-time
periodic model reduction and periodic feedback control problems, has been
studies very detail in Benner et al. (2011), Chu et al. (2007), Kressner (2003),
Varga (1997). Our study is focused on the discrete-time linear periodic time-
varying (LPTV) systems in their descriptor form.

In the study of model reduction for the periodic discrete-time descriptor
system the system matrices are very large and sparse, and the system can be a
multi-input-multi-output (MIMO) model. Therefore, the dense computation of
the solution of the associated Lyapunov equation is computationally expensive
and sometime unrealistic. As a result, huge attention has been devoted to �nd
iterative solutions of large scale periodic Lyapunov equations for LPTV systems
in the discrete-time setting Benner et al. (2014). In this paper, we describe one
such iterative technique, known as Smith iterations, for the iterative solutions
of the projected discrete-time algebraic Lyapunov equations and ensure the
recursive computation of the periodic solutions.

We consider here the LPTV system in the discrete-time case having dimen-
sion n = (n0, n1, . . . , nK−1) as

Ekxk+1 = Akxk +Bkuk, yk = Ckxk, k ∈ Z, (1)
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where Ek ∈ Rnk+1×nk+1 , Ak ∈ Rnk+1×nk , Bk ∈ Rnk+1×mk , Ck ∈ Rpk×nk are
the system matrices, xk ∈ Rnk is the state, uk ∈ Rmk is the control input, and
yk ∈ Rpk is output. In (1) all system matrices are K-periodic, and K ≥ 1.

Also,
∑K−1
k=0 nk = n̄. Here Ek can be singular for all k.

Many important analysis of (1) are accomplished by performing a causal
and noncausal separation of system (1). Those analysis are connected with the
periodic matrix equations, known as projected periodic discrete-time algebraic
Lyapunov equations (PPDALEs) Chu et al. (2007)

AkXkA
T
k − EkXk+1E

T
k = −Pl(k)BkB

T
k Pl(k)T ,

Xk = Pr(k)XkPr(k)T ,
(2)

where Xk are the periodic reachability Gramians, XK = X0, and Pl(k), Pr(k),
for k = 0, 1, . . . ,K− 1, are the left and right spectral projectors of the periodic
matrix pairs {(Ek, Ak)}K−1k=0 corresponding to the �nite eigenvalues Chu et al.
(2007), Stykel (2008). In the study of control theory, we know (2) as causal
reachability Lyapunov equation. This type of equation appears in many appli-
cations, for example, in periodic state feedback problems, in model reduction
of periodic descriptor systems, robust control and stabilization of periodic dy-
namical systems Benner et al. (2011), Chu et al. (2007), Kuo et al. (2004). For
the causal observability Gramians, we inherit a similar type equation.

The computation the periodic projectors is one of the crucial task in �nding
solutions of (2). Consider the pairs {(Ek, Ak)}K−1k=0 is periodic stable (pd-stable)
Benner et al. (2014), Chu et al. (2007). Then one can �nd the periodic canonical
decomposed form Sreedhar and Van Dooren (1994), Van Dooren (1979) of
{(Ek, Ak)}K−1k=0 for k = 0, 1, . . . ,K − 1, as

UkEkVk+1 =

[
Inf

k+1
0

0 Ebk

]
, UkAkVk =

[
Afk 0
0 In∞k

]
, (3)

where Uk, Vk are nonsingular and periodic. One can then de�ne the left and
right spectral projectors Pl(k) and Pr(k) Benner et al. (2011), Chu et al. (2007),
Stykel (2008) de�ned as

Pl(k) = U−1k

[
Inf

k+1
0

0 0

]
Uk, Pr(k) = Vk

[
Inf

k
0

0 0

]
V −1k , (4)

onto the de�ating subspaces of {(Ek, Ak)}K−1k=0 , for k = 0, 1, . . . ,K − 1.
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Numerical solution of (2) is very demanding in many applications where
periodic control is sought. Many research have been devoted to this direction
in last few decades. Direct method for the numerical solution of (2) has been
considered in Benner et al. (2011), Chu et al. (2007) for time-varying system.
This proposed method is based on the decomposition of {(Ek, Ak)}K−1k=0 using
generalized periodic Schur form Kressner (2001), Varga (2004b) and solves the
resulting periodic Sylvester and Lyapunov equations. Hence, it is expensive in
terms of computations and one should avoid this for large scale problems.

Therefor, huge attention has been given to iterative solutions of (2). A very
challenging task in the iterative computation for solutions of (2) is to restore
the cyclic structure of the solution at each iteration step Benner et al. (2014).
This structure preservation may demand the inversion the system matrices. For
descriptor systems where the matrices Ek can be singular, direct inversion of
matrices may not be possible. In this paper, we introduce the re�exive inverses
of periodic matrix pairs that are de�ned via the canonical decomposition of
the periodic matrix pairs. The left and right de�ating projectors are used for
this computation. Those periodic inverses are then used for solutions of (3)
using Smith iteration Gugercin et al. (2003), Penzl (2000). The main idea
is to reformulate the Smith method using those periodic inverses and then
solve the periodic projected Lyapunov equation. It is worth mentioning that
the generalized ADI method and the Smith method have been exploited in
Benner et al. (2014) to �nd the approximate solutions of (3). But, the methods
discussed in Benner et al. (2014) fail to preserve the demanding block diagonal
structure of the solution during the iteration process.

2. Analysis of Numerical Solutions of

PPDALEs

Direct solution of (2) using the corresponding lifted forms of (1) and (2) has
been proposed in Benner et al. (2011). Using the lifted representation, one can
show that the periodic Lyapunov equations (2) is equivalent to the following
projected lifted discrete-time algebraic Lyapunov equation (PLDALE)

AXAT − EX ET = −PlBBTPTl , X = PrXPTr , (5)

where

E = diag(E0, E1, . . . , EK−1), B = diag(B0, B1, . . . , BK−1),
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A =


0 · · · 0 A0

A1 0
. . .

...
0 AK−1 0

 , (6)

and
X = diag(X1, . . . , XK−1, X0),
Pl = diag(Pl(0), Pl(1), . . . , Pl(K − 1)), Ql = I − Pl,
Pr = diag(Pr(1), . . . , Pr(K − 1), Pr(0)),Qr = I − Pr.

(7)

In general, the direct method is not a wise choice for large-scale problems
due to their computational complexity (O(Kn3max), where nmax=max(nk)) and
extensive use of memory. As a result, research has been developed to iterative
solutions of (2). Iterative approach using the corresponding lifted structures
of the PPDALEs, i.e., (5) has been considered in Benner et al. (2014), Hossain
(2011). A brief discussion of implementing the generalized ADI and the Smith
method can be found in Benner et al. (2014), Hossain (2011) for the solutions
of (5).

However, the generalized ADI method proposed in Benner et al. (2014)
fails to preserve the block diagonal structure at each iteration step of the
approximate solution due to the singularity of the periodic matrices Ek, for
k = 0, 1, . . . ,K − 1. Therefore, the concept of generalized inverses of Ek has
been raised. A class of generalized inverse, known as re�exive generalized in-
verse of periodic matrix pairs can resolve the issue by preserving the block
diagonal structure in the iterative computation.

3. Re�exive inverses of periodic matrix pairs

For periodic systems with non-singular Ek, the inversion problem has ex-
ploited in Kono (1981), Perdon et al. (1992) to analyse the important properties
of periodic systems. A generalization version of that inversion problem has been
considered in Varga (2004b) using the lifted representation. For the general-
ized LTI case, the re�exive generalized inverse has been proposed in Stykel and
Simoncini (2012) to �nd the inverses of singular system pencil. In Benner and
Sokolov (2006), a similar concept of re�exive inverses has been proposed to com-
pute the partial realization for descriptor systems. Similar inverses have also
been proposed in Varga (2004a) with the name (1,2)-inverse. Brief description
of these de�nitions can be found in Campbell and Meyer (2009). Analogous to
Stykel and Simoncini (2012), we reformulate the re�exive generalized inverses
for the periodic matrices Ek with respect to Pl(k) and Pr(k + 1) as
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Ēk = Vk+1

[
Inf

k+1
0

0 0

]
Uk, (8)

for k = 0, 1, . . . ,K − 1. For nonsingular Ak, there is no need to construct such
inversion. Because, the exact inverse of Ak is equal to its re�exive generalized
inverse for each k = 0, 1, . . . ,K − 1. The main advantage of this approach
is that the resulting system preserves the block sparsity of the lifted system
matrices. Moreover, the re�exive generalized inverses satisfy

ĒkEkĒk = Ēk, EkĒk = Pl(k), ĒkEk = Pr(k + 1), (9)

for k = 0, 1, . . . ,K − 1.

4. Smith iterations for causal PLDALEs

The generalized Smith method for computing the solution of the causal
PLDALEs can be exploited by multiplying the PLDALE (5) by Ē and its
inverse. Multiplying (5) from left and right by Ē , and (Ē)T , we get

PrXPTr − ĒAXAT (Ē)T = ĒPlBBTPTl (Ē)T ,
X = PrXPTr ,

(10)

where ĒE=Pr, and Ē = diag(Ē0, Ē1, · · · , ĒK−1). Equation (10) can be rewrit-
ten as

X − (ĒA)X (ĒA)T = PrĒB (PrĒB)T , X = PrXPTr , (11)

where X = PrXPTr , and PrĒ = ĒPl. Then (11) can be solved using the Smith
method Penzl (2000), Stykel (2008) given by

X1 = PrĒB (PrĒB)T ,

X` = PrĒB (PrĒB)T + (ĒA)X`−1(ĒA)T .
(12)

The unique solution X of (11) is approximated as

Xi =

i−1∑
`=0

(ĒA)`PrĒB BT ĒTPTr ((ĒA)T )`. (13)

Hence, the Cholesky factor Ri, de�ned as Xi = RiRTi , is given by

Ri = [ PrĒB, (ĒA)PrĒB, . . . , (ĒA)i−1 PrĒB ]. (14)
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Remark 4.1. At each iteration step i, (14) fails to generate the block di-
agonal structure as in (7) due to the presence of di�erent block cyclic ma-
trices at di�erent iterative steps of (14). It is worth mentioning that X =
diag(X1, . . . , XK−1, X0), and Xk = RkR

T
k for k = 0, 1, . . . ,K − 1. Therefore,

the main challenging task remains to compute the block diagonal Cholesky
factor as Ri = diag(Rb1,i, . . . , R

b
K−1,i, R

b
0,i) at each iteration step i of (14),

where Rbk,i collects all the iterative counterparts of Rk at the i-th steps for

k = 0, 1, . . . ,K − 1, and Xk = RkR
T
k ≈ Rbk,i(Rbk,i)T . .

Remark 4.2. For Observability type periodic Lyapunov equations one gets a
similar type lifted Lyapunov equation as in (10). This Lifted equation also fails
to preserve the block diagonal structure in its iterative approximation. .

4.1 Structure Preserving Cyclic Computation of PLDALEs

Preserving the appropriate structure of the solution in the iterative com-
putations is one of the most challenging tasks in periodic computation. The
structure problem in (14) can be resolved by introducing a new permutation
matrix in each iteration step i of (14). The permutation matrices introduced
at di�erent iteration steps also have nice cyclic structures. First, consider the
trivial case

Π =



Sm0
0 · · · 0 0

... Sm1
0 0
. . .

...
0 SmK−2

0
0 0 · · · SmK−1

 , (15)

where Smi
denotes a square identity matrix of size mi and mi is the number

of columns of Bi. The permutation matrix has the following two properties:

• σiΠ indicates a forward i block-column shift of Π.

• σKΠ = σ0Π = Π.

We can consider few sample calculations like the following. Assume K =
3 (k = 0, 1, 2), Then for i = 1, σ0Π = Π is given by

Π =

 Sm0
0 0

0 Sm1
0

0 0 Sm2

 . (16)
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For i = 2, we compute

σ1Π = σΠ = σ(Π) =

 0 Sm0 0
0 0 Sm1

Sm2
0 0

 , (17)

which is a forward shift of the last block-column of Π in (16). Clearly for i = 3,
we have

σ2Π = σ(σΠ) = σ(σ(Π)) =

 0 0 Sm0

Sm1
0 0

0 Sm2
0

 , (18)

which is simply a forward shift of the last block-column of σΠ. For iterative
solutions for periodic Laypunov equations a similar types permutations are also
seen in Kressner (2003).

Using the above permutation strategies, (13) takes the new form

Xi =

i−1∑
`=0

(ĒA)`PrĒB(σ`Π) (σ`Π)TBTĒTPT
r

((ĒA)T)`.

Hence, the Cholesky factor Ri has the form

Ri = [ PrĒBΠ, (ĒA)Pr ĒB(σΠ), . . . , (ĒA)i−1 Pr ĒB(σi−1Π) ]. (19)

In (19) we have PrĒBΠ = P
r
ĒB, and Ri = PrRi is satis�ed at each

iteration step i. One can stop the approximations in (19) by meeting the
criteria that the normalized residual norm de�ned as

η(Ri) =
‖ARiRTi AT − ERiRTi ET + PlBBTPTl ‖F

‖PlBBTPTl ‖F
(20)

satis�es the condition η(Ri) < tol. Here we de�ne the tolerance level, tol a
priori.

It is worth mentioning that each block in Ri has block diagonal struc-
ture, but Ri as a whole is not block diagonal. In fact, the diagonal blocks of
(19) enables us to construct the algorithm for the periodic computation of the
Cholesky factors directly from (14) for k ∈ [0,K − 1]. With algebraic manip-
ulation over (19), we �nd that the periodic matrices Ek, Ak, and Bk appear
in a cyclic manner in periodic computations Rk,i at the iteration step i for
di�erent k. Identifying and investigating these cyclic relations, we develop the
algorithm for computing the periodic Cholesky factors Rk,i, k = 0, 1, . . . ,K−1,
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i = 1, 2, . . ., from the periodic coe�cient matrices, directly. We represent few
steps of those computations below: For i = 1, we get

R0,1 = Pr(K)ĒK−1BK−1 = Pr(0)ĒK−1BK−1,

R1,1 = Pr(1)Ē0B0, % ĒK = Ē0, BK = B0

...

RK−1,1 = Pr(K − 1)ĒK−2BK−2.

For i = 2, we get

R0,2 = ĒK−1AK−1Pr(K − 1)ĒK−2BK−2,

R1,2 = Ē0A0Pr(0)ĒK−1BK−1,

...

RK−1,2 = ĒK−2AK−2Pr(K − 2)ĒK−3BK−3.

For i = 3, we get

R0,3 = ĒK−1AK−1ĒK−2AK−2Pr(K − 2)ĒK−3BK−3,

R1,3 = Ē0A0ĒK−1AK−1Pr(K − 1)ĒK−2BK−2,

...

RK−1,3 = ĒK−2AK−2ĒK−3AK−3Pr(K − 3)ĒK−4BK−4,

and so on. Clearly, R0,1 = RK,1, R0,2 = RK,2 and R0,3 = RK,3 in the above
computation. We summarized the computation in Algorithm 1. Note that the
periodicity of all the involved coe�cient matrices including the projectors are
considered in the above computation. That means, Pr(K) = Pr(0), Pr(K−1) =
Pr(−1), ĒK = Ē0, Ē−1 = ĒK−1, and the similar for others. Obviously, XK =
X0 = RKR

T
K = R0R

T
0 . In Algorithm 1, Rk,i means the approximated periodic

Cholesky factor Rk computed at the i-th iteration steps. Finally, Rbk,i collects
all these computed components for a speci�c k, where k = 0, 1, . . . ,K − 1.
For example, we compute Rb0,i = [R0,1, R0,2, . . . , R0,i] for k = 0. A similar
construction is followed for the other values of k.

We can set a stopping criteria for the above iterative computation by setting
the normalized periodic residual norm de�ned as

η(Rk) =
‖AkRkR

T
k A

T
k − EkRk+1R

T
k+1E

T
k + Pl(k)BkB

T
k Pl(k)

T ‖F
‖Pl(k)BkB

T
k Pl(k)T ‖F

, (21)

which satis�es the condition η(Rk) < tolc for k ∈ [0,K − 1], where tolc is the
tolerance de�ned by the user.
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Algorithm 1 Computing Periodic Cholesky factors using Smith method.

Input: (Ēk, Ak, Bk), Pr(k) for k = 0, . . . ,K − 1.
Output: Low-rank Rk, such that Xk = RkR

T
k .

1: for k = 0 : K − 1 do

2: Rk,1 = Pr(k)Ēk−1Bk−1 % Ē−1 = ĒK−1, B−1 = BK−1
3: Pk,1 = Ink

% initialization of a cyclic matrix
4: Rbk,1 = Rk,1
5: end for

6: for i = 2, 3, . . . do
7: m = mod(i− 2,K)
8: for k = 0 : K − 1 do

9: Pk,i = Pk,i−1Ēk−m−1Ak−m−1
10: Rk,i = Pk,i Pr(k −m− 1) Ēk−m−2Bk−m−2

11: Rbk,i = [Rbk,i−1 Rk,i]

12: Rk = RRQR(Rbk,i, τk)
13: end for

14: end for

Remark 4.3. We compute the causal periodic observability Gramians of sys-
tem (1) using a similar type computation strategy. In that case the permu-
tation matrix changes in every iteration step by a backward shift of the last
block-column. The corresponding cyclic computations of the periodic Cholesky
factors are performed analogously.

5. Results

Example 1:

To test our derived algorithm, we consider an arti�cial model which is discrete
and of index-1 (Benner et al., 2014, Example 1). The problem is reconstructed
from its original periodic descriptor model in (Chu et al., 2007, Example 1).
The periodic descriptor system has nk = 404, mk = 2 and pk = 3 and the peri-
odicity is K = 10, i.e., k = 0, 1, . . . , 9. We compute Pl(k) and Pr(k) using the
Kronecker-decomposition of periodic matrix pairs {(Ek, Ak)}K−1k=0 proposed in

Chu et al. (2007), Varga (1995). Each periodic matrix pairs of {(Ek, Ak)}K−1k=0 ,

for k = 0, 1, . . . , 9, has nfk = 400 causal eigenvalues and n∞k = 4 noncausal

eigenvalues. The set of periodic matrix pairs {(Ek, Ak)}K−1k=0 is periodic stable.
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The constructed lifted system has order n = 4040. Since Ek are singular, we
compute the Ēk using relation (8).

We illustrate the data structure plotting the sparsity of the periodic pair for
k = 0 in Figure 1. A similar type sparsity is also observed for other matrix
pairs.

0 50 100 150
nz = 324

0

50

100

150

0 50 100 150
nz = 400

0

50

100

150

Figure 1: Sparsity patterns of A0 (left) and E0 (right).

The causal eigen-spectrum of the lifted system is shown in Figure 2, which
shows that all the causal eigenvalues of the lifted system has magnitude less
than 1. Note that the eigenvalues of the lifted system are also eigenvalues of
the corresponding periodic system. This also represents the stability of the
original periodic system.

We �nd the approximate solution of the causal lifted Lyapunov equations using
Algorithm 1. Since, Algorithm 1 is the cyclic reformulation of the approxima-
tion stated in (19), we compute the normalized residual norms for the lifted
Lyapunov equations, both for the reachability and observability types. We use
relation (20) to compute these residual norms. To reduce the redundancy we
apply the rank-revealing QR (RRQR)Golub and Loan (1996) decomposition
at every �fth iteration step, since computing norms at each iteration steps is
computationally expensive. We repeat the iteration process 30 times to reach
the tolerance level close to 10−10. Figure 3 shows how the residual norms de-
crease at the Smith iterations during the computation of the reachability type
causal lifted Lyapunov equations.
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Figure 2: Finite eigen-spectrum of the pencil λE − A.

0 5 10 15 20 25 30
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

Iteration

N
o
rm

a
liz
e
d
 r
e
si
d
u
a
l n

o
rm

Convergence histories of causal PLDALEs   

 

 

LR-ADI (Reachability Gramian)

LR-Smith(Reachability Gramian)

Figure 3: Normalized residual norms for the lifted projected Lyapunov equations for causal reach-
ability type.

Figure 4 shows the similar results for the causal observability type lifted Lya-
punov equations. We observe that within 30 iterations the residual reaches to
a signi�cant low numeric scale. We terminate the iteration procedure while the
norms of the residual reaches the tolerance level tol = 10−10. We emphasize
that the computed results can be used further for model reduction of periodic
system (1), and for periodic feedback control problem associate with system
(1).
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Figure 4: Normalized residual norms for the lifted projected Lyapunov equations for causal ob-
servability type.

Example 2:

We take the second example form Section 4.3 of Uddin (2011), where a spring-
damper model is considered as an arti�cial model describing a piezo-mechanical
system. The original model is a continuous-time model. We discretize the
model to convert it into a discrete-time model and then impose periodic coe�-
cients into the damping matrix. As a result, we get a discrete-time descriptor
system of periodic dimensions nk = 1100, mk = 2 and pk = 3 and the periodic-
ity is K = 10. Details of the model formulation can be found in the Appendix
of Benner and Hossain (2017).

For this reformulated periodic model we have nfk = 1100 and n∞k = 100 for

each pair of {(Ek, Ak)}K−1k=0 , where k = 0, 1, . . . , 9. The model is periodic stable
and the constructed lifted system has order n = 11000. Similar to Example 1,
we compute the Ēk, for k = 0, 1, . . . , 9, using relation (8).

We plot the sparsity of the periodic pair for k = 0 in Figure 5. A similar type
sparsity is also observed for other matrix pairs.

Figure 6 shows how the residual norms decrease at the Smith iterations during
the computation of the reachability type causal lifted Lyapunov equations. We
consider 35 iterations to reach to the tolerance level close to tol = 10−5.
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Figure 5: Sparsity patterns of A0 (left) and E0 (right).
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Figure 6: Normalized residual norms for the lifted projected Lyapunov equations for causal reach-
ability type.

In Figure 7, we observe similar result for the causal observability type lifted
Lyapunov equations.
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Figure 7: Normalized residual norms for the lifted projected Lyapunov equations for causal ob-
servability type.

6. Conclusion

In this paper we present details of the recursive computations of periodic
Cholesky factors for the periodic Gramians which are the solutions of the gen-
eralized projected periodic discrete-time algebraic Lyapunov equations. The
present work gives details of the iterative computations presented in Benner
and Hossain (2017) to �nd model reduction of periodic descriptor system. The
paper deals with the re�exive inverses of the periodic matrix pairs and exploits
the low rank Smith method to compute the approximate Cholesky factors of the
periodic Gramians. These periodic Gramians are the solutions of the periodic
Lyapunov equations relating the concerned periodic system.
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