Malaysian Journal of Mathematical Sciences 13(S) April: 41–50 (2019) Special Issue: 3rd International Conference on Mathematical Sciences and Statistics (ICMSS2018)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

On the Diophantine Equation $5^x + p^m n^y = z^2$

Bakar, H. S.¹, Sapar, S. H.^{1,2}, and Johari, M. A. M.^{1,2}

¹Institute for Mathematical Research, Universiti Putra Malaysia, Malaysia ²Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, Malaysia

> *E-mail: sitihas@upm.edu.my* **Corresponding author*

ABSTRACT

Diophantine equation is a polynomial equation with two or more unknowns for which only integral solutions are sought. This paper concentrates on finding the integral solutions to the Diophantine equation $5^x + p^m n^y = z^2$ where p > 5 a prime number and y = 1, 2. The positive integral solutions to the equation are $(x, m, n, y, z) = (2r, t, p^t k^2 \pm 2k5^r, 1, p^t k \pm 5^r)$ and $\left(2r, 2t, \frac{5^{2r-\alpha} - 5^{\alpha}}{2p^t}, 2, \frac{5^{2r-\alpha} + 5^{\alpha}}{2}\right)$ for $k, r, t \in \mathbb{N}$ where $0 \le \alpha < r$.

Bakar, H. S., Sapar, S. H. & Johari, M. A. M.

1. Introduction

Diophantine equation has been studied by many authors with different type of equations. Sroysang (2012) showed that the Diophantine equation $3^x + 5^y = z^2$ has a unique non-negative integer solution (x, y, z) = (1, 0, 2).

Meanwhile, Liu (2013) proved that if n > 3 and $p \equiv 3 \pmod{4}$, then the equation $x^4 - q^4 = py^n$ has no positive integer solution (x, y) satisfying gcd (x, y) = 1 and $2 \nmid y$ for n, p and q be odd primes. Chotchaisthit (2013) studied on the Diophantine equation $p^x + (p+1)^y = z^2$ where p is a Mersenne prime and found that (p, x, y, z) = (7, 0, 1, 3), (3, 2, 2, 5) are the only solutions for the equation.

Sroysang (2013b) and Sroysang (2013a) proved that the Diophantine equations $5^x + 7^y = z^2$ and $5^x + 23^y = z^2$ have no non-negative integer solution where x, y and z are non-negative integer.

Tatong and Suvarnamani (2015) found that the Diophantine equation $(p + 1)^{2x} + q^y = z^2$ has no non-negative integer solution where p is a Mersenne prime number which q - p = 2 and x, y, z are non-negative integers. In the same year, Bacani and Rabago (2015) showed that the Diophantine equation $p^x + q^y = z^2$ has infinitely many solutions in positive integer (p, q, x, y, z) where p and q are twin primes. They also found that if the sum of p and q is a square, then the equation has unique solution $(x, y, z) = (1, 1, \sqrt{p+q})$.

The Diophantine equation of the form $p^a + (p+1)^b = z^2$ also studied by Trojovský (2015) and proved that if p > 3 then the Diophantine equation $p^a + (p+1)^b = z^2$ does not have integer solution with $b \ge 2$ and z even, and also proved for Diophantine equation $p^a + (p+1)^b = z^4$. If p > 2 then the Diophantine equation does not have integer solution for $b \ge 7$.

This paper concentrates on finding the integral solutions to the Diophantine equation $5^x + p^m n^y = z^2$ where p > 5 a prime number and y = 1, 2. In order to solve the equation, we will consider the following definition and theorem that can be found in Mollin (2008) and Nagell (1964):

Definition 1.1. : If u and v are integers, we say that u divides v (denoted as u|v) if there exists an integer w such that v = uw. If no such w exists, then u does not divide v (denoted by $u \nmid v$). If u divides v, we say that u is a divisor of v, and v is divisible by u.

Malaysian Journal of Mathematical Sciences

Theorem 1.1. : The bound for the fundamental solution (u, v) for the equation $u^2 - Dv^2 = N$ is

$$0 \le v \le \frac{y_1}{\sqrt{2(x_1+1)}}\sqrt{N},$$

$$0 < |u| \le \sqrt{\frac{1}{2}(x_1+1)N},$$

where N is positive integer with (x_1, y_1) is the fundamental solution of equation $x^2 - Dy^2 = 1$ and D is natural number which is not a perfect square.

2. Results and Discussion

In this section, we will discuss on finding the integral solutions to the Diophantine equation $5^x + p^m n^y = z^2$. Firstly, we let y = 1 follow by y = 2 as in Theorems 2.1 and 2.2 respectively.

Theorem 2.1.: Let x, m, n, y, z be positive integers and p > 5 a prime number. If x is an even number and y = 1, then the Diophantine equation $5^x + p^m n^y = z^2$ has positive integral solutions in form of:

$$(x, m, n, y, z) = (2r, t, p^t k^2 \pm 2k5^r, 1, p^t k \pm 5^r)$$

where $r, t, k \in \mathbb{N}$.

Proof. Given the Diophantine equation $5^x + p^m n^y = z^2$. We let y = 1. Suppose x is an even number, such that x = 2r where $r \in \mathbb{N}$, we have

$$5^{2r} + p^m n = z^2. (1)$$

From (1), we have

$$(z+5^r)(z-5^r) = p^{m-\beta}p^{\beta}n$$
 (2)

where $0 \leq \beta \leq m$.

Since the LHS must be equal to RHS, we will consider all possible combinations of (2), as follows:

From (i) and (iii), we have

$$z \pm 5^r = p^{m-\beta}n \tag{3}$$
$$z \mp 5^r = p^{\beta}.$$

By solving the above equations simultaneously, we obtain

$$z = \frac{p^{m-\beta}n + p^{\beta}}{2}.$$
(4)

Malaysian Journal of Mathematical Sciences 43

Bakar, H. S., Sapar, S. H. & Johari, M. A. M.

Table 1: Possible combinations of (2).

i	$z + 5^r = p^{m-\beta}n,$	$z - 5^r = p^\beta$
ii	$z + 5^r = p^{m-\beta},$	$z - 5^r = p^\beta n$
iii	$z + 5^r = p^\beta,$	$z - 5^r = p^{m - \beta} n$
iv	$z + 5^r = p^\beta n,$	$z - 5^r = p^{m - \beta}$
v	$z + 5^r = p^m,$	$z - 5^r = n$
vi	$z + 5^r = n,$	$z-5^r=p^m$
vii	$z + 5^r = p^m n,$	$z - 5^r = 1$
viii	$z + 5^r = 1,$	$z - 5^r = p^m n$

Substitute (4) into (3), we obtain

$$n = p^{2\beta - m} \pm 2p^{\beta - m} 5^r.$$
 (5)

where $\beta \geq m$. This is contradicts since $0 \leq \beta \leq m$.

From (ii) and (iv), we have

$$z \pm 5^r = p^{m-\beta}$$

$$z \mp 5^r = p^{\beta} n.$$
(6)

By solving the above equations simultaneously, we obtain

$$z = \frac{p^{m-\beta} + p^{\beta}n}{2}.$$
(7)

Substitute (7) into (6), we obtain

$$n = \frac{p^{m-\beta} \pm 2(5^r)}{p^{\beta}}.$$
(8)

Substitute (8) into (7), we obtain

$$z = p^{m-\beta} \pm 5^r \tag{9}$$

where $m > \beta$.

From (v) and (vi), we have

$$z \pm 5^r = p^m \tag{10}$$
$$z \mp 5^r = n.$$

Malaysian Journal of Mathematical Sciences

From (10), we have

$$z = p^m \mp 5^r. \tag{11}$$

By the equations (9) and (11), we obtain

$$z = p^m \pm 5^r \tag{12}$$

where $\beta = 0$ and m > 0 since $m > \beta$.

From (vii) and (viii), we have

$$z \pm 5^r = p^m n$$

$$z \mp 5^r = 1.$$
(13)

From (13), we have

$$z = 1 \pm 5^r. \tag{14}$$

From (12) and (14), we have

$$z = p^m \pm 5^r$$

where $m \ge 0$. This is contradicts since m > 0.

Therefore, from (12), clearly that

 $p^m \mid z \mp 5^r$

By applying the concept of divisibility (Definition 1.1), there exist k such that $z \mp 5^r = p^m k$ where $k \in \mathbb{N}$. Therefore

$$z = p^m k \pm 5^r$$

Let $m = t \in \mathbb{N}$, we obtain

$$z = p^t k \pm 5^r \tag{15}$$

Substitute (15) into (1), we obtain

$$n = p^t k^2 \pm 2k5^r$$

where $k, r, t \in \mathbb{N}$.

Theorem 2.2. : Let x, m, n, y, z be positive integers and p > 5 a prime number. If x is an even number and y = 2, then the positive integral solutions to the Diophantine equation $5^x + p^m n^y = z^2$ are in the form of

$$(x, m, n, y, z) = \left(2r, 2t, \frac{5^{2r-\alpha} - 5^{\alpha}}{2p^t}, 2, \frac{5^{2r-\alpha} + 5^{\alpha}}{2}\right)$$

where $0 \leq \alpha < r$ for r > 2 and $t \in \mathbb{N}$.

Malaysian Journal of Mathematical Sciences

45

Proof. Given the Diophantine equation $5^x + p^m n^y = z^2$. We let y = 2. Suppose x is an even number, such that x = 2r where $r \in \mathbb{N}$, we have

$$5^{2r} + p^m n^2 = z^2. (16)$$

From (16), we consider two cases depend on the possibility of the parity of m. Firstly, we let m be an even number such that m = 2t where $t \in \mathbb{N}$. We have

$$5^{2r} + p^{2t}n^2 = z^2 \tag{17}$$

$$(z + p^t n)(z - p^t n) = 5^{2r - \alpha} 5^{\alpha}.$$
(18)

where $0 \leq \alpha \leq 2r$.

Since the LHS must be equal to RHS, we will consider all possible combinations of (18), as follows:

Table 2: Possible combinations of (18).

i	$z + p^t n = 5^r,$	$z - p^t n = 5^r$
ii	$z + p^t n = 5^{2r},$	$z - p^t n = 1$
iii	$z + p^t n = 1,$	$z - p^t n = 5^{2r}$
iv	$z + p^t n = 5^{2r - \alpha},$	$z - p^t n = 5^{\alpha}$
v	$z + p^t n = 5^{\alpha},$	$z - p^t n = 5^{2r - \alpha}$

By solving (i) simultaneously, we obtain

$$n = 0.$$

This is contradicts since n must be positive integer.

By solving (ii) simultaneously, we obtain

$$z = \frac{5^{2r} + 1}{2}.$$
 (19)

From (iii), we have

$$z + p^t n = 1$$
 (20)
 $z - p^t n = 5^{2r}.$

By solving the above equation simultaneously, we obtain

$$z = \frac{1+5^{2r}}{2}$$

Malaysian Journal of Mathematical Sciences

which is similar to (19). Substitute (19) into (20), we obtain

$$n = \frac{1 - 5^{2r}}{2p^t}.$$

This is contradicts since n must be positive integer.

By solving (iv) simultaneously, we obtain

$$z = \frac{5^{2r-\alpha} + 5^{\alpha}}{2}.$$
 (21)

By solving (v) simultaneously, we obtain

$$z=\frac{5^{\alpha}+5^{2r-\alpha}}{2}$$

which is similar to (21).

By equations (19) and (21), we obtain

$$z = \frac{5^{2r-\alpha} + 5^{\alpha}}{2} \tag{22}$$

where $\alpha \geq 0$.

Substitute (22) into (17), we obtain

$$n = \frac{5^{2r-\alpha} - 5^{\alpha}}{2p^t}.$$

Since n must be positive integer, then $0 \le \alpha < r$ for r > 2 and $t \in \mathbb{N}$.

Now, from (16), we let m be an odd number. To solve this Diophantine equation, we consider the following corollary.

Corollary 2.1. : Let x, m, n, y, z be positive integers and p > 5 a prime number. If x is an even number, m is an odd number and y = 2, then the fundamental solution for n and z in the Diophantine equation $5^x + p^m n^y = z^2$ must satisfy the following inequalities

$$0 < n \le \frac{5^r b_1}{\sqrt{2(a_1 + 1)}},$$
$$0 < |z| \le \sqrt{\frac{5^{2r}(a_1 + 1)}{2}}$$

Malaysian Journal of Mathematical Sciences

with

$$(x,m) = (2r, 2t - 1)$$

for $r,t \in \mathbb{N}$ where (a_1,b_1) is a fundamental solution of $z^2 - Dn^2 = 1$ and $D = p^{2t-1}$.

Proof. Given the Diophantine equation $5^x + p^m n^y = z^2$, we let y = 2, suppose x is an even number and m is an odd number such that x = 2r and m = 2t - 1 where $r, t \in \mathbb{N}$, we have

$$z^2 - p^{2t-1}n^2 = 5^{2r}.$$

Since p^{2t-1} is not a perfect square, let $p^{2t-1} = D$. We obtain

$$z^2 - Dn^2 = 5^{2r}. (23)$$

Refer to Theorem 1.1, the fundamental solution for n and z in (23) must satisfy the following inequalities

$$0 < n \le \frac{5^r b_1}{\sqrt{2(a_1 + 1)}},$$
$$0 < |z| \le \sqrt{\frac{5^{2r}(a_1 + 1)}{2}}$$

for $r \in \mathbb{N}$ where (a_1, b_1) is a fundamental solution of $z^2 - Dn^2 = 1$.

3. Conclusion

The integral solutions to the Diophantine equation $5^x + p^m n^y = z^2$ are as follow:

1. For y = 1, we obtain

$$(x, m, n, y, z) = (2r, t, p^t k^2 \pm 2k5^r, 1, p^t k \pm 5^r)$$

where $k, r, t \in \mathbb{N}$.

2. For y = 2 and m is even number, we obtain

$$(x, m, n, y, z) = \left(2r, 2t, \frac{5^{2r-\alpha} - 5^{\alpha}}{2p^t}, 2, \frac{5^{2r-\alpha} + 5^{\alpha}}{2}\right)$$

Malaysian Journal of Mathematical Sciences

where $0 \leq \alpha < r$ for r > 2 and $t \in \mathbb{N}$.

3. For y = 2 and m is odd number, we obtain

$$(x,m) = (2r, 2t - 1)$$

with

$$0 < n \le \frac{5^r b_1}{\sqrt{2(a_1 + 1)}},$$
$$0 < |z| \le \sqrt{\frac{5^{2r}(a_1 + 1)}{2}}$$

where $r, t \in \mathbb{N}$ and (a_1, b_1) is a fundamental solution of $z^2 - Dn^2 = 1$ where $D = p^{2t-1}$.

References

- Bacani, J. B. and Rabago, J. F. T. (2015). The complete set of solutions of the diophantine equation $p^x + q^y = z^2$ for twin primes p and q. International Journal of Pure and Applied Mathematics, 104:517–521.
- Chotchaisthit, S. (2013). On the diophantine equation $p^x + (p+1)^y = z^2$ where p is a mersenne prime. International Journal of Pure and Applied Mathematics, 88:169–172.
- Liu, Y. (2013). On the diophantine equation $x^4 q^4 = py^n$. Expositiones Mathematicae, 31:196–203.
- Mollin, R. A. (2008). Fundamental number theory with applications. Boca Raton: Chapman and Hall/CRC.
- Nagell, T. (1964). Diophantine Equation of the Second Degree. In Introduction to Number Theory, pages 188–226, Chelsea, New York. Chelsea Publishing Company. Chapter 6.
- Sroysang, B. (2012). On the diophantine equation $3^x + 5^y = z^2$. International Journal of Pure and Applied Mathematics, 81:605–608.
- Sroysang, B. (2013a). On the diophantine equation $5^x + 23^y = z^2$. International Journal of Pure and Applied Mathematics, 89:119–122.
- Sroysang, B. (2013b). On the diophantine equation $5^x + 7^y = z^2$. International Journal of Pure and Applied Mathematics, 89:115–118.

Bakar, H. S., Sapar, S. H. & Johari, M. A. M.

- Tatong, M. and Suvarnamani, A. (2015). On the diophantine equation $(p + 1)^{2x} + q^y = z^2$. International Journal of Pure and Applied Mathematics, 103:155–158.
- Trojovský, P. (2015). On the diophantine equation $p^a + (p+1)^b = z^2$. International Journal of Pure and Applied Mathematics, 105:745–749.