Malaysian Journal of Mathematical Sciences 13(S) April: 41-50 (2019)
Special Issue: 3rd International Conference on Mathematical Sciences and Statistics (ICMSS2018)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

On the Diophantine Equation $5^{x}+p^{m} n^{y}=z^{2}$

Bakar, H. S. ${ }^{1}$, Sapar, S. H. ${ }^{1,2}$, and Johari, M. A. M. ${ }^{1,2}$
${ }^{1}$ Institute for Mathematical Research, Universiti Putra Malaysia, Malaysia
${ }^{2}$ Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, Malaysia

> E-mail: sitihas@upm.edu.my
> ${ }^{*}$ Corresponding author

Abstract

Diophantine equation is a polynomial equation with two or more unknowns for which only integral solutions are sought. This paper concentrates on finding the integral solutions to the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$ where $p>5$ a prime number and $y=1,2$. The positive integral solutions to the equation are $(x, m, n, y, z)=\left(2 r, t, p^{t} k^{2} \pm\right.$ $\left.2 k 5^{r}, 1, p^{t} k \pm 5^{r}\right)$ and $\left(2 r, 2 t, \frac{5^{2 r-\alpha}-5^{\alpha}}{2 p^{t}}, 2, \frac{5^{2 r-\alpha}+5^{\alpha}}{2}\right)$ for $k, r, t \in \mathbb{N}$ where $0 \leq \alpha<r$.

Bakar, H. S., Sapar, S. H. \& Johari, M. A. M.

1. Introduction

Diophantine equation has been studied by many authors with different type of equations. Sroysang (2012) showed that the Diophantine equation $3^{x}+5^{y}=z^{2}$ has a unique non-negative integer solution $(x, y, z)=(1,0,2)$.

Meanwhile, Liu (2013) proved that if $n>3$ and $p \equiv 3(\bmod 4)$, then the equation $x^{4}-q^{4}=p y^{n}$ has no positive integer solution (x, y) satisfying gcd $(x, y)=1$ and $2 \nmid y$ for n, p and q be odd primes. Chotchaisthit (2013) studied on the Diophantine equation $p^{x}+(p+1)^{y}=z^{2}$ where p is a Mersenne prime and found that $(p, x, y, z)=(7,0,1,3),(3,2,2,5)$ are the only solutions for the equation.

Sroysang (2013b) and Sroysang (2013a) proved that the Diophantine equations $5^{x}+7^{y}=z^{2}$ and $5^{x}+23^{y}=z^{2}$ have no non-negative integer solution where x, y and z are non-negative integer.

Tatong and Suvarnamani (2015) found that the Diophantine equation ($p+$ 1) ${ }^{2 x}+q^{y}=z^{2}$ has no non-negative integer solution where p is a Mersenne prime number which $q-p=2$ and x, y, z are non-negative integers. In the same year, Bacani and Rabago (2015) showed that the Diophantine equation $p^{x}+q^{y}=z^{2}$ has infinitely many solutions in positive integer (p, q, x, y, z) where p and q are twin primes. They also found that if the sum of p and q is a square, then the equation has unique solution $(x, y, z)=(1,1, \sqrt{p+q})$.

The Diophantine equation of the form $p^{a}+(p+1)^{b}=z^{2}$ also studied by Trojovsky (2015) and proved that if $p>3$ then the Diophantine equation $p^{a}+(p+1)^{b}=z^{2}$ does not have integer solution with $b \geq 2$ and z even, and also proved for Diophantine equaton $p^{a}+(p+1)^{b}=z^{4}$. If $p>2$ then the Diophantine equation does not have integer solution for $b \geq 7$.

This paper concentrates on finding the integral solutions to the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$ where $p>5$ a prime number and $y=1,2$. In order to solve the equation, we will consider the following definition and theorem that can be found in Mollin (2008) and Nagell (1964):

Definition 1.1. : If u and v are integers, we say that u divides v (denoted as $u \mid v)$ if there exists an integer w such that $v=u w$. If no such w exists, then u does not divide v (denoted by $u \nmid v$). If u divides v, we say that u is a divisor of v, and v is divisible by u.

On the Diophantine Equation $5^{x}+p^{m} n^{y}=z^{2}$
Theorem 1.1. : The bound for the fundamental solution (u, v) for the equation $u^{2}-D v^{2}=N$ is

$$
\begin{aligned}
& 0 \leq v \leq \frac{y_{1}}{\sqrt{2\left(x_{1}+1\right)}} \sqrt{N}, \\
& 0<|u| \leq \sqrt{\frac{1}{2}\left(x_{1}+1\right) N}
\end{aligned}
$$

where N is positive integer with $\left(x_{1}, y_{1}\right)$ is the fundamental solution of equation $x^{2}-D y^{2}=1$ and D is natural number which is not a perfect square.

2. Results and Discussion

In this section, we will discuss on finding the integral solutions to the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$. Firstly, we let $y=1$ follow by $y=2$ as in Theorems 2.1 and 2.2 respectively.

Theorem 2.1. : Let x, m, n, y, z be positive integers and $p>5$ a prime number. If x is an even number and $y=1$, then the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$ has positive integral solutions in form of:

$$
(x, m, n, y, z)=\left(2 r, t, p^{t} k^{2} \pm 2 k 5^{r}, 1, p^{t} k \pm 5^{r}\right)
$$

where $r, t, k \in \mathbb{N}$.

Proof. Given the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$. We let $y=1$. Suppose x is an even number, such that $x=2 r$ where $r \in \mathbb{N}$, we have

$$
\begin{equation*}
5^{2 r}+p^{m} n=z^{2} \tag{1}
\end{equation*}
$$

From (1), we have

$$
\begin{equation*}
\left(z+5^{r}\right)\left(z-5^{r}\right)=p^{m-\beta} p^{\beta} n \tag{2}
\end{equation*}
$$

where $0 \leq \beta \leq m$.
Since the LHS must be equal to RHS, we will consider all possible combinations of 22, as follows:
From (i) and (iii), we have

$$
\begin{align*}
& z \pm 5^{r}=p^{m-\beta} n \tag{3}\\
& z \mp 5^{r}=p^{\beta} .
\end{align*}
$$

By solving the above equations simultaneously, we obtain

$$
\begin{equation*}
z=\frac{p^{m-\beta} n+p^{\beta}}{2} \tag{4}
\end{equation*}
$$

Bakar, H. S., Sapar, S. H. \& Johari, M. A. M.
Table 1: Possible combinations of 2 .

i	$z+5^{r}=p^{m-\beta} n$,	$z-5^{r}=p^{\beta}$
ii	$z+5^{r}=p^{m-\beta}$,	$z-5^{r}=p^{\beta} n$
iii	$z+5^{r}=p^{\beta}$,	$z-5^{r}=p^{m-\beta} n$
iv	$z+5^{r}=p^{\beta} n$,	$z-5^{r}=p^{m-\beta}$
v	$z+5^{r}=p^{m}$,	$z-5^{r}=n$
vi	$z+5^{r}=n$,	$z-5^{r}=p^{m}$
vii	$z+5^{r}=p^{m} n$,	$z-5^{r}=1$
viii	$z+5^{r}=1$,	$z-5^{r}=p^{m} n$

Substitute (4) into (3), we obtain

$$
\begin{equation*}
n=p^{2 \beta-m} \pm 2 p^{\beta-m} 5^{r} . \tag{5}
\end{equation*}
$$

where $\beta \geq m$. This is contradicts since $0 \leq \beta \leq m$.
From (ii) and (iv), we have

$$
\begin{align*}
& z \pm 5^{r}=p^{m-\beta} \tag{6}\\
& z \mp 5^{r}=p^{\beta} n .
\end{align*}
$$

By solving the above equations simultaneously, we obtain

$$
\begin{equation*}
z=\frac{p^{m-\beta}+p^{\beta} n}{2} \tag{7}
\end{equation*}
$$

Substitute (7) into (6), we obtain

$$
\begin{equation*}
n=\frac{p^{m-\beta} \pm 2\left(5^{r}\right)}{p^{\beta}} \tag{8}
\end{equation*}
$$

Substitute (8) into (7), we obtain

$$
\begin{equation*}
z=p^{m-\beta} \pm 5^{r} \tag{9}
\end{equation*}
$$

where $m>\beta$.
From (v) and (vi), we have

$$
\begin{align*}
& z \pm 5^{r}=p^{m} \tag{10}\\
& z \mp 5^{r}=n .
\end{align*}
$$

$$
\text { On the Diophantine Equation } 5^{x}+p^{m} n^{y}=z^{2}
$$

From (10), we have

$$
\begin{equation*}
z=p^{m} \mp 5^{r} . \tag{11}
\end{equation*}
$$

By the equations (9) and (11), we obtain

$$
\begin{equation*}
z=p^{m} \pm 5^{r} \tag{12}
\end{equation*}
$$

where $\beta=0$ and $m>0$ since $m>\beta$.
From (vii) and (viii), we have

$$
\begin{align*}
& z \pm 5^{r}=p^{m} n \\
& z \mp 5^{r}=1 . \tag{13}
\end{align*}
$$

From (13), we have

$$
\begin{equation*}
z=1 \pm 5^{r} . \tag{14}
\end{equation*}
$$

From (12) and (14), we have

$$
z=p^{m} \pm 5^{r}
$$

where $m \geq 0$. This is contradicts since $m>0$.
Therefore, from (12), clearly that

$$
p^{m} \mid z \mp 5^{r}
$$

By applying the concept of divisibility (Definition 1.1), there exist k such that $z \mp 5^{r}=p^{m} k$ where $k \in \mathbb{N}$. Therefore

$$
z=p^{m} k \pm 5^{r}
$$

Let $m=t \in \mathbb{N}$, we obtain

$$
\begin{equation*}
z=p^{t} k \pm 5^{r} \tag{15}
\end{equation*}
$$

Substitute (15) into (1), we obtain

$$
n=p^{t} k^{2} \pm 2 k 5^{r}
$$

where $k, r, t \in \mathbb{N}$.
Theorem 2.2. : Let x, m, n, y, z be positive integers and $p>5$ a prime number. If x is an even number and $y=2$, then the positive integral solutions to the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$ are in the form of

$$
(x, m, n, y, z)=\left(2 r, 2 t, \frac{5^{2 r-\alpha}-5^{\alpha}}{2 p^{t}}, 2, \frac{5^{2 r-\alpha}+5^{\alpha}}{2}\right)
$$

where $0 \leq \alpha<r$ for $r>2$ and $t \in \mathbb{N}$.

Bakar, H. S., Sapar, S. H. \& Johari, M. A. M.
Proof. Given the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$. We let $y=2$. Suppose x is an even number, such that $x=2 r$ where $r \in \mathbb{N}$, we have

$$
\begin{equation*}
5^{2 r}+p^{m} n^{2}=z^{2} \tag{16}
\end{equation*}
$$

From (16), we consider two cases depend on the possibility of the parity of m. Firstly, we let m be an even number such that $m=2 t$ where $t \in \mathbb{N}$. We have

$$
\begin{align*}
5^{2 r}+p^{2 t} n^{2} & =z^{2} \tag{17}\\
\left(z+p^{t} n\right)\left(z-p^{t} n\right) & =5^{2 r-\alpha} 5^{\alpha} . \tag{18}
\end{align*}
$$

where $0 \leq \alpha \leq 2 r$.
Since the LHS must be equal to RHS, we will consider all possible combinations of (18), as follows:

Table 2: Possible combinations of 18 .

i	$z+p^{t} n=5^{r}$,	$z-p^{t} n=5^{r}$
ii	$z+p^{t} n=5^{2 r}$,	$z-p^{t} n=1$
iii	$z+p^{t} n=1$,	$z-p^{t} n=5^{2 r}$
iv	$z+p^{t} n=5^{2 r-\alpha}$,	$z-p^{t} n=5^{\alpha}$
v	$z+p^{t} n=5^{\alpha}$,	$z-p^{t} n=5^{2 r-\alpha}$

By solving (i) simultaneously, we obtain

$$
n=0 .
$$

This is contradicts since n must be positive integer.
By solving (ii) simultaneously, we obtain

$$
\begin{equation*}
z=\frac{5^{2 r}+1}{2} . \tag{19}
\end{equation*}
$$

From (iii), we have

$$
\begin{align*}
& z+p^{t} n=1 \tag{20}\\
& z-p^{t} n=5^{2 r}
\end{align*}
$$

By solving the above equation simultaneously, we obtain

$$
z=\frac{1+5^{2 r}}{2}
$$

which is similar to 19 . Substitute 19 into 20 , we obtain

$$
n=\frac{1-5^{2 r}}{2 p^{t}}
$$

This is contradicts since n must be positive integer.
By solving (iv) simultaneously, we obtain

$$
\begin{equation*}
z=\frac{5^{2 r-\alpha}+5^{\alpha}}{2} \tag{21}
\end{equation*}
$$

By solving (v) simultaneously, we obtain

$$
z=\frac{5^{\alpha}+5^{2 r-\alpha}}{2}
$$

which is similar to 21 .
By equations 21 and , we obtain

$$
\begin{equation*}
z=\frac{5^{2 r-\alpha}+5^{\alpha}}{2} \tag{22}
\end{equation*}
$$

where $\alpha \geq 0$.
Substitute 22 into 17 , we obtain

$$
n=\frac{5^{2 r-\alpha}-5^{\alpha}}{2 p^{t}}
$$

Since n must be positive integer, then $0 \leq \alpha<r$ for $r>2$ and $t \in \mathbb{N}$.

Now, from (16), we let m be an odd number. To solve this Diophantine equation, we consider the following corollary.

Corollary 2.1. : Let x, m, n, y, z be positive integers and $p>5$ a prime number. If x is an even number, m is an odd number and $y=2$, then the fundamental solution for n and z in the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$ must satisfy the following inequalities

$$
\begin{gathered}
0<n \leq \frac{5^{r} b_{1}}{\sqrt{2\left(a_{1}+1\right)}} \\
0<|z| \leq \sqrt{\frac{5^{2 r}\left(a_{1}+1\right)}{2}}
\end{gathered}
$$

Bakar, H. S., Sapar, S. H. \& Johari, M. A. M.
with

$$
(x, m)=(2 r, 2 t-1)
$$

for $r, t \in \mathbb{N}$ where $\left(a_{1}, b_{1}\right)$ is a fundamental solution of $z^{2}-D n^{2}=1$ and $D=p^{2 t-1}$.

Proof. Given the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$, we let $y=2$, suppose x is an even number and m is an odd number such that $x=2 r$ and $m=2 t-1$ where $r, t \in \mathbb{N}$, we have

$$
z^{2}-p^{2 t-1} n^{2}=5^{2 r}
$$

Since $p^{2 t-1}$ is not a perfect square, let $p^{2 t-1}=D$. We obtain

$$
\begin{equation*}
z^{2}-D n^{2}=5^{2 r} \tag{23}
\end{equation*}
$$

Refer to Theorem 1.1 , the fundamental solution for n and z in 23 must satisfy the following inequalities

$$
\begin{gathered}
0<n \leq \frac{5^{r} b_{1}}{\sqrt{2\left(a_{1}+1\right)}}, \\
0<|z| \leq \sqrt{\frac{5^{2 r}\left(a_{1}+1\right)}{2}}
\end{gathered}
$$

for $r \in \mathbb{N}$ where $\left(a_{1}, b_{1}\right)$ is a fundamental solution of $z^{2}-D n^{2}=1$.

3. Conclusion

The integral solutions to the Diophantine equation $5^{x}+p^{m} n^{y}=z^{2}$ are as follow:

1. For $y=1$, we obtain

$$
(x, m, n, y, z)=\left(2 r, t, p^{t} k^{2} \pm 2 k 5^{r}, 1, p^{t} k \pm 5^{r}\right)
$$

where $k, r, t \in \mathbb{N}$.
2. For $y=2$ and m is even number, we obtain

$$
(x, m, n, y, z)=\left(2 r, 2 t, \frac{5^{2 r-\alpha}-5^{\alpha}}{2 p^{t}}, 2, \frac{5^{2 r-\alpha}+5^{\alpha}}{2}\right)
$$

$$
\text { On the Diophantine Equation } 5^{x}+p^{m} n^{y}=z^{2}
$$

where $0 \leq \alpha<r$ for $r>2$ and $t \in \mathbb{N}$.
3. For $y=2$ and m is odd number, we obtain

$$
(x, m)=(2 r, 2 t-1)
$$

with

$$
\begin{gathered}
0<n \leq \frac{5^{r} b_{1}}{\sqrt{2\left(a_{1}+1\right)}}, \\
0<|z| \leq \sqrt{\frac{5^{2 r}\left(a_{1}+1\right)}{2}}
\end{gathered}
$$

where $r, t \in \mathbb{N}$ and $\left(a_{1}, b_{1}\right)$ is a fundamental solution of $z^{2}-D n^{2}=1$ where $D=p^{2 t-1}$.

References

Bacani, J. B. and Rabago, J. F. T. (2015). The complete set of solutions of the diophantine equation $p^{x}+q^{y}=z^{2}$ for twin primes p and q. International Journal of Pure and Applied Mathematics, 104:517-521.

Chotchaisthit, S. (2013). On the diophantine equation $p^{x}+(p+1)^{y}=z^{2}$ where p is a mersenne prime. International Journal of Pure and Applied Mathematics, 88:169-172.

Liu, Y. (2013). On the diophantine equation $x^{4}-q^{4}=p y^{n}$. Expositiones Mathematicae, 31:196-203.

Mollin, R. A. (2008). Fundamental number theory with applications. Boca Raton: Chapman and Hall/CRC.

Nagell, T. (1964). Diophantine Equation of the Second Degree. In Introduction to Number Theory, pages 188-226, Chelsea, New York. Chelsea Publishing Company. Chapter 6.

Sroysang, B. (2012). On the diophantine equation $3^{x}+5^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 81:605-608.

Sroysang, B. (2013a). On the diophantine equation $5^{x}+23^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 89:119-122.

Sroysang, B. (2013b). On the diophantine equation $5^{x}+7^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 89:115-118.

Bakar, H. S., Sapar, S. H. \& Johari, M. A. M.
Tatong, M. and Suvarnamani, A. (2015). On the diophantine equation ($p+$ $1)^{2 x}+q^{y}=z^{2}$. International Journal of Pure and Applied Mathematics, 103:155-158.

Trojovský, P. (2015). On the diophantine equation $p^{a}+(p+1)^{b}=z^{2}$. International Journal of Pure and Applied Mathematics, 105:745-749.

