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ABSTRACT 

Let ����� denote the number of representations of integer n as a sum of k squares 

and ����� denote the number of representations of integer n as a sum of k centered 

pentagonal numbers. We derive the relation �� ��	
��
� 
 � �������   where �� �

2� � 2�
� ��4
 for 1 � � � 7. We give a conjecture on the relation between ����� 

and ����� is given by ������� � �� ��	
��
� 
 for all integers n and � � ��� , … , ��� 

where �� � 2� � 2�
� �� �4
 � � �2
 � !1 
 � � �1
 � �1 
"  and 1 � � � 7.  A special 

case of this conjecture is proved in which � � 7 and  � � �3,2,1,1�. 

 

Keywords: number of representations, sum of squares, centered pentagonal numbers. 

 
 

1. INTRODUCTION  

Let ����� and %����  denote the number of representations of an 
integer n as a sum of k squares and as a sum of k triangular numbers, 

respectively. That is, ����� is the number of solutions in integers of the 

equation 
 &�! � &!!�. . . �&�! � � 
 

and %����  is the number of solutions in non-negative integers of the 

equation &��&� � 1�
2 � &!�&! � 1�

2 �. . . � &��&� � 1�
2 � �. 

 

Barrucand et al. (2002) give a relation between �����  and  %���� 

for any integer n as 
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���8� � �� � ��%���� where �� � 2� � 2�
� ��4
 

 

for 1 � � � 7.  They have proved by using generating function. Later, a 

combinatorial proof is given by Cooper and Hirschhorn (2004). It has been proved 

by Bateman et al. (2001) that this result does not hold for any value � ( 8. 

 

Let � � ���, … , ���  be a partition of k. That is, �� , … , �� are integers 

satisfying �� (. . . ( �� ( 1  and ���. . . ��� � �  . For any non-negative integer 

n, define ����� is the number of solutions in non-negative integers of the equation 

 ��&�!�. . . ���&�! � �                                 (1)        
 

and %���� is the number of solutions in non-negative integers of the equation  
�� )*�)*+��

! �. . . ��� ),�),+��
! � �.                            (2) 

 

A solution of Equation (1) and Equation (2) is called a representation of n 

as a sum of squares induced by � and representation of n as a sum of 

triangular numbers induced by � . For partition � � ���, … , ���  and 1 � � � 7, Adiga et al. (2005) give a relation   

 ���8� � �� � -�%���� 
 

where -� � 2� � 2�
� �� �4
 � � �2 
 � !1 
 � � �1
 � �1 
" and  .  denote the 

number of parts in � which are equal to j. 

 

Both of the relations have been proved using generating functions 

and combinatoric method. The above results prompt us to extend this idea 
to other polygonal numbers consisting of centered pentagonal numbers. 

This paper is devoted to this objective. 

 
 

2.  RELATION BETWEEN SQUARE AND CENTERED 

PENTAGONAL NUMBERS 

A centered pentagonal number is defined as a centered figurate 

number that represents a pentagon with a dot in the center and all other dots 

surrounding the center in successive pentagonal layers. The centered 
pentagonal number for n is given by the formula 
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 5�! � 5� � 2
2  

 

The first few centered pentagonal numbers are 1, 6, 16, 31, 51, 76, 

106, 141,... . 
 

Let ����� denote the number of representations of a positive integer 

n as a sum of k centered pentagonal numbers. In other words, ����� is the 

number of solutions in non-negative integers of the equation 
 

0 5&1! � 5&1 � 2
2

�

12�
� � 

 

For example, for n = 18 and k = 3 we have 18 � 6 � 6 � 6 � 16 � 1 �1 � 1 � 16 � 1 � 1 � 1 � 16 . Thus �&�, &! , &�� � �1,1,1� � �2,0,0� ��0,2,0� � �0,0,2�. Then ���18� � 4. 

 

Let q be an integer and 5�6� � ∑ 6	8 ,∞	2
∞ 9�6� �
∑ 6�	8+	�/!	;<  and =�6� � ∑ 6��	8+�	+!�/!	;< . As in Barrucand (2002),  �����  is defined  by the coefficients in the expansion of 5��6� �∑ �����6		;< . Also ����� is defined by those in the expansion of =��6� �∑ �����6		;< . In the following theorem, we give the main result of this 

paper, which gives the relation between �� ��	
��
� 
 and �����. 

 

Theorem 1. Let n be a positive integer. Then, for 1 � � � 7, 
 

������� � �� >8� ? 3�
5 @ 

 

where  �� � 2� � 2�
� ��4
. 

 
We will  prove  the  following  lemma first, which  is necessary in 

the  proof of Theorem 1. 
 

Lemma 1. Let  
 

5�6� � ∑ 6	8
∞	2
∞ , 9�6� � ∑ 6�	8+	�/!	;<  , =�6� � ∑ 6��	8+�	+!�/!	;<  
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where q is any number. Then, we have the following relations. 

 

(i)  5�6� � 26
�/�=�6�/�� � 5�6A� 

(ii) =�6� � 69�6��. 

 
Proof.   The proof will be given according to the sequence above. 

 

(i) 5�6� ? 5�?6� � 4 ∑ 6�!	+��8
∞	2<  

    � 4 0 6A	8+A	+�∞

	2<  

               � 4 0 6��>�	8+�	+!! @
��∞

	2<  

                                                    � 46
�� 0 6��>�	8+�	+!! @∞

	2<  

                                                    � 46
��=�6�/�� 

  

By adding this equation with 5�6� � 5�?6� � 25�6A�  from 

Berndt (1991), we have  
 5�6� � 26
�/�=�6�/�� � 5�6A� 

 

(ii) The proof for this part is almost immediate and straight 

forward. 

=�6� � 0 6�	8+�	+!!	;<  

           � 0 6��	8+	�! +�
	;<  

           � 69�6��                                                                         □ 

 
 

By using Lemma 1, we give the proof of Theorem 1 as follows. 

 

Proof of Theorem 1. Let ����� and ����� be defined  by 

 

0 �����6	
	;< �  5��6� , 0 �����6	 �  =��6�	;<  

 

Then, for  1 � � � 7 , we have   5�6� � 26
�/�=B6�/�C � 5�6A� from 

part (i) of Lemma 1. It follows that 
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5��6� � �26
�/�=�6�/�� � 5�6A�
�
 

          � 0 ��D
 2�
EB6
�/�C�
E=�
E�6�/��5E�6A�
�

E2<
 

           � 2�B6
�/�C�=�B6�/�C�. . . � ��4
 2�
AB6
�/�C�
A=�
AB6�/�C5A�6A��. ... 
 

By applying 5!�6� � 5!�6!� � 469!�6A�  from Barrucand (2002) to 5A�6A� , we have 

 

5��6� � 2�B6
�/�C�=�B6�/�C�. . . � ��4
 2�
AB6
�/�C�
A=�
AB6�/�C 

                �5!�6�� � 46A9!�6�F��!�. …       

            � 2�B6
�/�C�=�B6�/�C�. . . � ��4
 2�
AB6
�/�C�
A=�
AB6�/�C 

                  �5A�6�� � 86A5!�6��9!�6�F� � 166�9A�6�F���. … 

 

Applying 5�6�9�6!� � 9!�6� from Barrucand (2002) to  5!�6��9!�6�F�, 

we obtain 
 

5��6� � 2�B6
�/�C�=�B6�/�C�. . . � ��4
 2�
AB6
�/�C�
A=�
AB6�/�C 

                  �5A�6�� � 86A9A�6�� � 166�9A�6�F���. … 

 

Using part (ii) of Lemma 1, we have  9A�6�� � 6
�!/�=AB6�/�C . By 

applying this equation, 

 

5��6� � 2�B6
�/�C�=�B6�/�C�. . . � ��4
 2�
AB6
�/�C�
A=�
AB6�/�C 

                  �5A�6�� � 8B6
�/�CA=AB6�/�C � 166�9A�6�F�
 �. … 

 

Now, by extracting those terms in which the degrees of q are  8�?3�
5 ,  we 

have 

 

0 �� >8� ? 3�
5 @ 6�	
���	;< �  2�B6
�/�C�=�B6�/�C 

                                � ��4
 2�
AB6
�/�C�
A=�
AB6�/�C >8B6
�/�CA=AB6�/�C@. 
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Multiplying both sides of the equation by B6�/�C�
 and replacing 6�/� by q, 

it follows that 
 

0 �� >8� ? 3�
5 @ 6	

	;< �  2�=��6� � ��4
 2�
�=��6� 

                                       � G2� � ��4
 2�
�H =��6� 

 

By comparing coefficients of 6	 , for every n from both sides of the 

equation, we will obtain 

�� >8� ? 3�
5 @ � ������� 

where �� � 2� � 2�
� ��4
.                                                                          □                                                                                                            

 

As an illustration, let � � 19  and  � � 4. We have 

 

�A �8�19� ? 3�4�
5 " � �2A � 2A
� �44
" �A�19� 

                                                 �A�28� � 24�A�19�                                 192 � 24�8�. 
 

 

3. RELATION BETWEEN SQUARE AND CENTERED 

PENTAGONAL NUMBERS INDUCED BY PARTITIONS 

Let � � ���, … , ���  be a partition of k and ����� denote the 

number of representations of a positive integer n as a sum of centered 

pentagonal numbers induced by �. In other words, ����� is the number of 
solutions in non-negative integers of the equation 

 

�� �)*8+�)*+!
! �. . . ��� �),8 +�),+!

! � �. 

For example, for  � � 22  and � � �4,2,1� we have J � 3 , and 22 �4�1� � 2�6� � 1�6� � 4�1� � 2�1� � 1�16�.  
 

Thus �&�, &!, &�� � �0,1,1� � �0,0,2�. Then ��A,!,���22� � 2. 

 

Based on our observation on the relation between �� ��	
��
� 
 and 

����� for integer n and 1 � � � 7 , we have the following conjecture. 
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Conjecture . If  1 � � � 7 and � � ���, … , ���  is a partition of k, then 

 

������� � �� >8� ? 3�
5 @ 

 

for all integers n where �� � 2� � 2�
� �� �4
 � � �2
 � !1 
 � � �1
 � �1 
" 

and  . denotes the number of parts in � which are equal to j. 

 

Let p(n) represents the partition function of n. That is p(n) is the 

number of possible partitions of a natural number n. For 1 � � � 7 , ∑ K���L�2� � 1 � 2 � 3 � 5 � 7 � 11 � 15 � 44. Hence, in the conjecture, 

there are 44 cases to be considered. In the following theorem, we prove a 

special case of the conjecture in which � � 7 and � � �3,2,1,1�. 
 

Theorem 2. If  � � 7 and � � �3,2,1,1�  is a partition of k then 

������� � �� >8� ? 21
5 @ 

for all integers n where �� � 40. 
 

We prove Theorem 2 using generating function method. The 

generating functions for ����� and ����� are 

 

0 �����6	 � 5B6�*C5B6�8C
∞

	2<
… 5B6�,C 

0 �����6	 � =B6�*C=B6�8C
∞

	2<
… =B6�,C 

 

To prove Theorem 2 using generating function, we need some 
properties in Lemma 1 and additional properties in the following lemma. 

Lemma 2. 

 

(i) 5!�6� � 5!�6!� � 46
�/�=!B6A/�C 

(ii) 5�6��=�6�F/�� � =!B6�/�C 

(iii) 5�6A��=B6�!/�C � 6
!A/�5�6�F�=B6MF/�C �
=B6�/�C=B6!A/�C 
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Proof. 

 

(i) From Adiga et al. (2005), we have 

 5!�6� � 5!�6!� � 469!�6A� 

             � 5!�6!� � 46 �6
A/�=B6A/�C
!
 

             � 5!�6!� � 46
�/�=!B6A/�C 

 

(ii) 5�6��=B6�F/�C � 6�F/�5�6��9�6�F� 

                            � 6�F/�9!�6��   

                                             � =!B6�/�C 

 

(iii) 5�6A��=B6�!/�C � 6
!A/�5�6�F�=B6MF/�C 

                  � 6�!/�5�6A��9�6�!� � 6L!/�5�6�F�9�6MF�                   � 6�!/�N5�6A��9�6�!� � 6�5�6�F�9�6MF�O                                          � 6�!/�9�6��9�6!A�                                          � =B6�/�C=B6!A/�C                                                   □ 

 

Proof of Theorem 2.  
 

0 ���,!,�,�����6	
∞

	2<
 

       � 5�6��5�6!�5�6�!        � P26
M/�=�6!A/�� � 5�6�!�QP26
F/�=�6�F/�� � 5�6��Q 

            P26
�/�=�6�/�� � 5�6A�Q!
 

       � P26
M/�=B6!A/�C � 5�6A�� � 26
�F/�=�6MF/��QN26
F/�=�6�F/�� 

             �5�6��OP5!�6A� � 46
�/�5�6A�=�6�/�� � 46
F/�=!�6�/��Q 
 

By applying part (i) of Lemma 2 to  5!�6A�, and part (i) of Lemma 1 

to  5�64�, we have 

 

0 ���,!,�,�����6	
∞

	2<
 

  � P26
M/�=B6!A/�C � 5�6A�� � 26
�F/�=�6MF/��QN26
F/�=�6�F/�� 

      �5�6��ON5!�6�� � 46
�!/�=!�6�F/��  � 46
�/�        B5�6�F� � 26
�!/�=�6�!/��C=�6�/�� �  46
F/�=!�6�/��O . 
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Now, by extracting those terms in which the degrees of q are  �	
!�
� , we 

have 
 

0 ���,!,�,�� >8� ? 21
5  @ 6�	
!��  

∞

	2<
 

  � 166
!�/�5�6A��=B6�!/�C=B6�F/�C=B6�/�C 

      �166
A�/�5�6�F�=�6MF/��=B6�F/�C=B6�/�C 

      �86
!�/�5�6��=�6!A/��=!�6�F/��  
      �166
!�/�=�6!A/��=B6�F/�C=!B6�/�C 

  � 166
!�/�P5�6A��=B6�!/�C � 6
!A/�5�6�F�=�6MF/��Q=B6�F/�C 

      =B6�/�C � 86
!�/�=�6!A/��=�6�F/��P5�6��=�6�F/��Q  
      �166
!�/�=�6!A/��=B6�F/�C=!B6�/�C.  
   

 

By using part (ii) and (iii) in Lemma 2, we have 

 

0 ���,!,�,�� >8� ? 21
5  @ 6�	
!��  

∞

	2<
 

� 166
!�/�=B6!A/�C=B6�F/�C=!B6�/�C  
    �86
!�/�=�6!A/��=�6�F/��=!B6�/�C 

    �166
!�/�=�6!A/��=B6�F/�C=!B6�/�C. 
 

Multiplying both sides of the equation by  6!�/� and replacing 6�/�  by q, 

we have 

 

0 ���,!,�,�� >8� ? 21
5  @ 6	 

R

	2<
 

               � 16=�6��=�6!�=!�6� � 8=�6��=�6!�=!�6�                   �16=�6��=�6!�=!�6�                � 40=�6��=�6!�=!�6� 

               � 40 0 ���,!,�,�����6	 
R

	2<
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For � � �3,2,1,1�  we have m � 4, i� � 2, i! � 1, i� � 1, so                            ���,!,�,�� � 2A � 2�B0 � �1��1� � �2��1�C 

                                           � 16 � 24                                            � 40 
 

This proves Theorem 2 for the partition � � �3,2,1,1�.                                □ 

 

 

Remark. For any value of � ( 8 , the value of �� ��	
��
� 
 /����� is not 

consistent. For example, if � � 8 and � � 8 , then ���8�/���8� � 9328 . 

However, if � � 8 and � � 13, then ���16�/���13� � 9358. So �� is not 

constant at the value of � � 8. For � � 9 and � � 9 then �M�9�/�M�9� �34802 . However, if � � 9 and � � 19  then �M�25�/�M�19� � 34904.5 . 

So �M is not constant at the value of � � 9.  This pattern of inconsistency is 

repeated when � ( 8 for different value of n. Similar pattern  also exists for  

�� ��	
��
� 
 /����� Hence, the assertions of both of the relations do not hold 

for � ( 8.  

 

 

4. CONCLUSIONS 

In this paper, a general relation between the number of 

representations of non-negative integer n as a sum of k squares and as a sum 

of k centered pentagonal numbers is derived. It is given by �� ��	
��
� 
 �

������� where �� � 2� � 2�
� ��4
  for 1 � � � 7.  Conjecture on a 

relation between ����� and ����� is also given as ������� � �� ��	
��
� 
 for 

all integers n and � � ���, … , ��� where 
 

�� � 2� � 2�
� �� �4
 � � �2 
 � !1 
 � � �1
 � �1
" 

and 1 � � � 7. There are 44 cases of partition to be considered. We give a 

proof for a special case of a partition in which � � 7 and � � �3,2,1,1�.  
This is an extension of work by earlier authors on finding relationships 

between squares and triangles as shown by Barrucand et al.(2002) and 
Adiga et al. (2005)  for example. In our future work, we will examine the 

relationship between these representations for � ( 8.  
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