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ABSTRACT 

Conventional statistical data analysis techniques largely depend on assumptions like 

randomness, normality, independence and similarity of the data. But in reality we often 

observe that these assumptions do not hold. Among them the randomness is considered 

as the most important one because if the data are not random the entire inferential 

procedure breaks down. Faulty sampling technique is mostly responsible for 

nonrandom samples but in environmental studies often we observe data no matter how 

carefully we design the sampling technique the data become biased either in length or 

size. Normality is another very important issue in statistical inference because all 

conventional sampling distributions and test statistics heavily rely on normality of the 

data. If we knew the appropriate distribution of the data we can analyze those in 

different ways, but we often observe data which may not match with the well-known 

distributions and nonparametric statistics is the only alternative there. In this paper we 

develop a procedure of analyzing data sets which are length or size biased. For this 

type of data we have developed a biased correction technique first and then apply 

bootstrap method on corrected data for the inferential purpose. We present a very 

interesting example in this paper which clearly shows the merit of employing our 

proposed procedure in analyzing this type of data. 

 

Keywords: Transect sampling, Outlier, Weighted distributions, Robust statistics, 

Bootstrap.  

 

1. INTRODUCTION 

Every simple step in statistical inference is guided by some kind of 

assumptions whose existence are essential for a valid inferential statement. 
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For example, all four major test statistics z, t, 
2  and F are valid only when 

the sample observations come from a normal distribution. Now one question 

might come to our mind, what is wrong if the assumptions are violated? 

According to Tukey (1960) ‘A tacit hope in ignoring deviations from the 

ideal model was that they would not matter; that statistical procedures which 

were optimal under the strict model would still be approximately optimal 

under the approximate model. Unfortunately, it turned out that this hope is 

often drastically wrong; even mild deviations often have much larger effects 

than were anticipated by most statisticians.’ 
 

In classical setup when we collect and summarize data for any kind 

of inference, whether it is clearly stated or not, we assume that 
 

(i) Observations are random. 

(ii) They are independent and are identically distributed. 

(iii) They have come from a normal distribution. 

(iv) All observations are equally reliable i.e., there is no outlier in the 

data. 
 

Randomness is a key assumption for statistical inference because it 

forms the basis of the entire inferential procedure. Observing random samples 

may be difficult in practice and often the practitioners use convenient 

sampling techniques for collecting data. We can only use summary statistics 

if the data are not random in nature. But in environmental statistics we often 

observe data which have bias either in length or size or both. If we sample 

fish in a pond by catching them in a net, there will be encounter bias (more 

usually called size bias). This is because the mesh size will have the effect of 

lowering the incidence of the smaller fish in the catch- some will slip through 

the net. No matter how carefully we design the sample, the outcome will be 

biased and any randomness test will reject the hypothesis of randomness for 

this data. We have already mentioned the importance of normality 

assumption in inference. The violation of the normality assumption may lead 

to the use of suboptimal estimators, invalid inferential statements and 

inaccurate predictions. When we definitely know that the population of the 

data is not normal we may try with other parent distributions. But we often 

see that the data may not fit any of the well-known distributions. We have to 

use non-parametric method such as bootstrap in such a situation. Existence of 

outliers may often cause non-normality of the data. Its existence also violates 

the similarity assumption because when outliers occur we can no longer 

claim that observations are identically distributed. We often use robust 

statistics when outliers are present in the data. At first we briefly review the 

assumptions of normality and randomness and describe some commonly used 
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procedures for checking these assumptions. We also review detection 

techniques for outliers and introduce a popular nonparametric method, 

bootstrap. In the next section, we develop a new method for estimating 

variance and confidence interval when non randomness occurs due to length 

or size bias. Then we introduce an interesting data which is the length of peas 

plants. We apply all commonly used techniques for checking the major 

assumptions and observe that this data fail all the assumptions. Finally, we 

apply different alternative methods to analyze the data and observe that the 

bias corrected bootstrap method most adequately fits this data. 

 

2. DIAGNOSTIC CHECKS AND NONPARAMETRIC AND 

ROBUST METHODS 

In this section we examine basic three assumptions required for the 

application conventional statistical analysis which are normality, data 

screening and randomness. At first we check the normality assumption for 

the data. This is the most crucial diagnostic check as the entire classical 

statistics are based on the normality assumption of observations. At the time 

of the development of the classical statistics there was a general believe 

among the statisticians that the data set follow a normal distribution. It was 

observed that most of the classical data such as height, weight etc followed 

normal distribution. In the last hundred years, attitudes towards the 

assumption of a normal distribution in statistical models have varied from 

one extreme to another. To quote Pearson (1905), ‘Even towards the end of 

the nineteenth century not all were convinced of the need for curves other 

than normal.’ By the middle of this century Geary (1947) made this comment 

‘Normality is a myth; there never was and never will be a normal 

distribution.’ Now it is evident that nonnormal data are more prevalent in 

nature. A nice review of different tests for normality is available in Imon 

(2003).  

 

The simplest graphical display for checking normality is the normal 

probability plot. This method is based on the fact that if the ordered 

observations are plotted against their cumulative probabilities on normal 

probability paper, the resulting points should lie approximately on a straight 

line. A test based on the correlation of the observations and the expectation of 

normalized order statistics is known as the Shapiro–Wilk test. A test based on 

empirical distribution function is known as the Anderson–Darling test. A test 

based on the coefficients of skewness and kurtosis is known as Bowman–

Shenton test. This test is popularly known as the Jarque–Bera test. If we 
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denote the sample size by n, the sample skewness by S and the sample 

kurtosis by K, then the Jarque–Bera test statistic is defined as 
 

                              JB = [n / 6] [ 2 2( 3)S K  / 4]                                         (1) 

 

The standard theory tells us that a normal distribution has skewness 0 

and the value of the kurtosis is 3. So a departure from these two values will 

indicate non-normality and that is how this test statistic was developed. The 

JB statistic follows a chi-square distribution with 2 degrees of freedom.  
 

A well-known reason for normality may be the existence of outliers. 

Checking of outliers, which is also popularly known as data screening, has 

become an essential part of data analysis. According to Barnett and Lewis 

(1994), we shall define an outlier in a set of data to be an observation (or 

subset of observations) which appears to be inconsistent with the remainder 

of that set of data. Hampel et al. (1986) claim that a routine data set typically 

contains about 1-10% outliers, and even the highest quality data set cannot be 

guaranteed free of outliers. One immediate consequence of the presence of 

outliers is that they may cause apparent non-normality and the entire classical 

inferential procedure might breakdown in the presence of outliers. An 

excellent review for the detection of outliers is available in Hadi, Warner and 

Imon (2009). A very simple graphical display that can be used in detecting 

outliers is the box plot where an observation is declared as an outlier if it falls 

outside the range 
 

                                  (Q1 – 1.5 IQR, Q3 + 1.5 IQR)                                      (2) 
 

where Q1 and Q3 are the first and third quartiles of the data and IQR = Q3 – Q1 

is known as the interquartile range (IQR). 
 

A very simple and popular technique for the detection of outliers is 

the so-called ‘three-sigma’ rule. If we assume a normal distribution, a single 

value may be considered as an outlier if it falls outside a certain range of the 

standard deviation. A traditional measure of the ‘outlyingness’ of an 

observation ix  with respect to a sample is the ratio between its distance to the 

sample mean and the sample standard deviation (SD): 
 

                                               
s

xx
t i
i


                                                      (3) 

 

where x and s are respective mean and standard deviation of the data. Since 

the empirical rule of a normal distribution tells us that 99.7% of observations 



Analyzing Length or Size Biased Data: A Study on the Lengths of Peas Plants 

 

                                             Malaysian Journal of Mathematical Sciences 5 

 

will fall in the interval 3|| it , we declare an observation to be an outlier 

when it falls in the region 3|| it . Although the three-sigma rule has an 

extensive use in data analysis as an outlier detection technique, it is now 

evident [see Imon (2005)] that this rule often fails to identify outliers. The 

reason is simple. In the three-sigma rule we use sample mean and sample 

standard deviation both of which get highly affected in the presence of 

outliers. Hampel et al. (1986) revised the three-sigma rule by using the robust 

plug-in technique to obtain a robust t-like statistic by replacing mean by 

median and standard deviation by the normalized median absolute deviation 

(MADN). Thus the modified statistic becomes 
 

                                  
)(MADN

)(Median

x

xx
t i
i


                                                   (4) 

 

Here the median absolute deviation (MAD) is defined as MAD (x) = 

Med {|x – Med (x)|}. To make the MAD comparable to the SD in terms of 

efficiency, the normalized MAD defined as MADN (x) = MAD (x) / 0.6745 

is considered. Observations with | it | > 3 are identified as outliers. 

Chorminski and Tkacz (2010) made a comparative study on the effectiveness 

of a variety of outlier detection techniques and come up with the conclusion 

that Hample’s method performs best overall. 
 

Another very important consideration of data analysis is the test for 

randomness. The run test (see Hogg and Tanis (2010)) is the most popular 

test for checking randomness of data. If a data set contains n observations 

replace each observation by L if it falls below the median and by U if it falls 

above the median. Then we count the number of runs denoted by r. If n is 

even, the number of observations of each group will be the same, i.e., 

21 nn  . If n is odd, conventionally we put 112  nn . The critical region is 

of the form r ≤ c1 or r ≥ c2. When 1n  and 2n  are large (say, each is at least 

equal to 10), r can be approximated by a normal random variable with   
 

                1
2

21

21 



nn

nn
    and  

 
   1

22

21

2

21

2121212






nnnn

nnnnnn
                   (5) 

 

The test statistic is  
 

                                                 





r
z                                                     (6) 



A.H.M. Rahmatullah Imon  & Keya Rani Das 

 

6 Malaysian Journal of Mathematical Sciences 
 

The critical region for this test is 2/zz   or 2/zz  . If the 

calculated value of z falls in the critical region we reject the hypothesis that 

the data is random, otherwise we accept the hypothesis that the data is 

random.  
 

If the data is random, normal and free from outliers we are free to 

allow all kind of conventional analyses. But what we should do if the data 

does not pass the normality assumption? If the only reason for nononormality 

is the existence of outliers, we can use robust statistics. The term robustness 

signifies insensitivity to small deviations from the assumption. That means a 

robust procedure is nearly as efficient as the classical procedure when 

classical assumptions hold strictly but is considerably more efficient over all 

when there is a small departure from them. One objective of robust 

techniques is to cope with outliers by trying to keep small the effects of their 

presence. Consequently, we should require resistant estimators. To quote 

Ryan (1997), ‘A resistant estimator is one that is relatively unaffected by 

large changes in a small part of the data or small change in a much larger part 

of the data.’ An excellent review of different robust methods used in statistics 

is available in Maronna et al. (2006). Median, trimmed mean, Huber’s M are 

very popular robust measure of central tendency. Robust estimates of 

dispersion are normalized median absolute deviation, S estimator etc. We 

have robust estimates of skewness, kurtosis, correlation coefficient, 

regression coefficient to name a few. It is now generally believed that 

corresponding to every classical statistic there exists a robust alternative. 

 

If the data is not normal, but follows some other known distribution 

such as exponential, lognormal, gamma we can still find an alternative way 

of analyzing this data. But what happens if the data do not match any known 

distribution? We cannot apply any conventional method to analyze data and 

for this reason we apply nonparametric methods in this situation. The 

essential difference between classical and nonparametric statistics is this: in 

classical statistics we assume a known form (distribution) of data and then 

collect sample from there. But in nonparametric method we do not assume 

any distribution of the data, rather we explore the data to find out its most 

appropriate pattern, if at all. Otherwise, we calculate all measures in an 

empirical way. Among a variety of nonparametric methods, bootstrap has 

become very popular with the statisticians. Bootstrapping is a modern, 

computer intensive, general purpose approach to statistical inference, falling 

with a broader class of resampling methods.  
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Bootstrap was first introduced by Efron (1979) for assigning the 

measure of accuracy of the estimates using the idea of resampling from a 

sample. The key idea is to resample from original data to create replicate data 

sets from which variability of the quantities of interest can be assessed 

without long winded analytical calculation. In the real world, the unknown 

probability distribution F gives the data  nxxxS ,..., 21 by random 

sampling; from S we calculate the statistic of interest T̂  = t(S). In the 

bootstrap world, F̂ generates 
*

bS = {
*

1bx , 
*

2bx , …, 
*

bnx } by random sampling 

giving 
*ˆ

bT = t(
*

bS ). There is only one observed value of T̂ , but we can 

generate as many bootstrap replications 
*ˆ

bT as affordable. Next, we compute 

the statistic T for each of the bootstrap samples; that is 
*ˆ

bT = t(
*

bS ). Then the 

distribution of 
*ˆ

bT around the original estimate T̂ is analogous to the 

sampling distribution of the estimator T around the population parameter . 

For example the average of the bootstrapped statistics, 
 

                              
*T̂ =  ** ˆˆ TE =

B

T
B

b

b
1

*ˆ

                                                      (7)                          

 

is the estimate of the expectation of the bootstrap statistics; then 
*ŝBia =

*T̂ –  

T  is an estimate of the bias of T. Similarly, the estimated bootstrap variance 

of T is  
 

             ** ˆˆ TV   
2

1

** ˆˆ
1

1






B

b

b TT
B

                                   (8) 

 

that estimates the sampling variance of T. The random selection of bootstrap 

samples is not an essential aspect of the nonparametric bootstrap. At least in 

principle, we could enumerate all bootstrap samples of size n. Then we could 

calculate  ** T̂E  and  ** T̂V  exactly, rather than having to estimate them. 

The bootstrap confidence interval (BCI) is often used instead of the classical 

confidence interval especially when the distribution is not symmetric or the 

parent distribution is unknown. The percentile confidence interval is given as  
 

                                        / 2 1 / 2( , )k k           (9) 
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3. LENGTH OR SIZE BASED SAMPLING AND WEIGHTED 

DISTRIBUTIONS 

In statistics we often observe data which have bias either in length or 

size or both. If we sample fish in a pond by catching them in a net, there will 

be encounter bias (more usually called size bias). This is because the mesh 

size will have the effect of lowering the incidence of the smaller fish in the 

catch- some will slip through the net. If we were to sample harmful industrial 

fibers (in monitoring adverse health effects) by examining fibers on a plane 

sticky surface by line-intercept methods, the similar problem may arise. In 

this case our data would consist of the lengths of fibers crossed by the 

intercept line as shown below. 
 

 
 

Figure 1: An example of transect sampling 
 

Our interest will be in the distribution of sizes, but the sampling 

methods just described are clearly likely to produce seriously biased results. 

Here we are bound to obtain what are known as length-biased or size-biased 

samples, and statistical inference drawn from such samples will be seriously 

flawed because they relate to distribution of measured sizes, not to the 

population at large (as shown in Figure 2), which will our real interest. Thus 

we will typically overestimate the mean both in the fish and in the fiber 

examples, possibly to a serious extent.  
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Figure 2: An example of original and length or size biased distribution 

 

 

Here we introduce one kind of weighted distribution to remove or reduce the 

bias in the data. Suppose X is nonnegative random variable with mean   and 

variance 2 , but what we actually sample is a random variable X
*
. A special 

but popular case of the size-biased distribution (see Barnett (2004)) has the 

p.d.f. 
 

                                              /* xxfxf                                               (10) 
 

The variable actually sampled has expected value 
 

                                







  2

2
2* 1/




 dxxfxXE                          (11) 

 

So if we take a random sample of size n, then the sample mean of the 

observed data 
*x is biased upward by a factor 










2

2

1



. Here the problem is 

that we do not know the true values of   and 
2 .  However, the statistic  

 

                                         
n

xx

x

n

i

i
 1

** /1

                                                (12) 
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provides an intuitively appealing estimate (see Barnett (2004)) of the bias 

factor 
2

2
1





 
 

 
. But the estimator of the mean is not good enough to provide 

the basic properties of the data. Now we would propose an estimate of 
2  

for this distribution. From (11) and (12) we obtain 

                                                                                        

       

2
2

2
* *2 * 3

2
/ 1V X E X E X x f x dx


 



  
           

  
              (13) 

 

Now 
 

      *2 3 2 2 3

3

1
/ 3 3E X x f x dx E X     


           

 

 2 2 3

3

1
3 2    


    
 

 

2 3

3

1
3   


      

2 2 33


 


                                                                      (14) 

 

where  
3

3 .E X   Hence using (13) and (14) we obtain 

 

           *V X 2 2 33


 


    

2
2

2
1






  
   

  
 

2 2 33


 


  
4

2 2

2
2


 


    

2 3


 
4

2




                                                           (15) 

 

Since the expression (15) contains both 2  and 4  both it may not be 

possible to get a plausible estimator of 2  like (12), but we can rewrite (15) 

as 
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2 * 33 ( )V X





 

2
2

2

2
1 1






  
    
   

                          (16) 

 

Thus using liner approximations in (16) a reasonable estimator of 
2 is 

 

   22 2 * 231
ˆ ( ) 1

3

m
S X x bias factor

x


 
    

 
                       (17) 

 

where 2 *( )S X  is the estimated sample variance from the biased data 3m  is 

the estimated third central moment of the data. 

 

4. MODELING PEAS PLANT DATA ANALYSIS, RESULTS 

AND DISCUSSIONS 

In this section we first introduce a data that we use in our study. This 

primary data set which contains 1000 peas plants (pisum satiuvum) is 

collected from Bangabandhu Sheikh Mujibur Rahman Agricultural 

University using the transect sampling method as described in the previous 

section. This data is presented in Table A1 in the Appendix. We examine 

basic three assumptions required for the application conventional statistical 

analysis which are normality, data screening and randomness. 
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Figure 3: Histogram of the lengths of peas plants 
 

Figure 3 presents a histogram of the length of peas plants and apparently this 

data does not look like normal. Here we have employed three different 

normality tests here. The first one is the normal probability plot, the second 

one is the Anderson–Darling test and the third one is the Jarque–Bera 

(Bowman–Shenton) test. 
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Figure 4: Normal probability plot of the lengths of peas plants  
 

The normal probability plot of the data as shown in Figure 4 does not clearly 

show a normal pattern. We also observe from this table that the p-value of the 

Anderson-Darling statistic for this data is less than 0.005 which clearly 

rejects normality. We also employ the Jarque-Bera test for this data. The 

sample skewness and kurtosis for this data are 0.155719 and 2.19055 

respectively that yield the value of the statistic as 22.24 which is much higher 

than the cut-off value of this test which is 5.99 at the 5% level of 

significance. Thus we can conclude that there is enough evidence to believe 

that this data do not follow a normal distribution and conventional statistical 

analyses should not be appropriate for this data.  
 

12010080604020
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Figure 5: Box plot of the lengths of peas plants  

 

 

Now we do an outlier analysis to the length of peas plant data. Most of the 

popular detection methods including Hampel’s test do not identify any 

observations as outlier, however the rule based on the inter-quartile range 
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identify two observations (cases 39 and 74) as outliers. We observe exactly 

the same kind of picture from the box plot of the data as shown in Figure 5.  
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Figure 6: Histogram of the lengths of peas plants without outliers  
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Figure 7: Normal probability plot of the lengths of peas plants without outliers 

 

To understand the effect of outliers we remove observations 39 and 

74 and repeat all steps that we did before. Figure 6 presents the histogram of 

the length of peas plants without outliers. The plot looks very similar to 

Figure 1 and their normal probability plot as shown in Figure 7 shows that 

there is not much improvement in the results when outliers are omitted. The 

p-value of the Anderson-Darling statistic for this data is less than 0.005 

which clearly rejects normality. For the full data set the value of the Jarque-

Bera statistic was 22.24 and now after the omission of outliers is 23.71. This 

means that the omission of outliers did not improve the normality pattern of 

the data. If we look at the summary statistics we observe that the mean of the 

full data is 67.100 cm with a standard deviation of 18.943 cm.  
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After the omission of the outlier the values of the mean and standard 

deviation are 66.694 cm and 18.811 cm respectively. Since there exists 

outliers in the data we employ the robust estimation technique to estimate the 

mean and standard deviation of the lengths of peas plants and the resulting 

values are 65.803 and 18.559 respectively. These values are very close to one 

another and that tell us that we do not have unusually big outlier in the data.  
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Figure 8: Probability plot of the lengths of peas plants 

 

We are convinced at this point that the lengths of peas plants data is 

not normal and the omission of the outliers also cannot help. Hence we try to 

fit this data with some other well-known distributions. The box plot as given 

in Figure 5 shows that the data is a bit skewed to the right, we consider four 

different alternatives: lognormal, exponential, Weibull, and gamma. The 

normal probability plots and the Anderson-Darling tests as shown in Figure 8 

clearly indicate that neither of the distributions can adequately fit the data.  
 

Next we move to checking another important assumption, that is the 

assumption of the randomness. We employ the run test as mentioned in (5) 

and (6). Here the observed number of runs is 347 and the expected number of 

runs is 490.632.  
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Hence the p-value for the run test is 0.000 and thus the peas plant 

data clearly rejects the null hypothesis of randomness. One question 

immediately comes to our mind, what is wrong with the data? Was there 

anything wrong with the sampling design? We carefully monitored the entire 

procedure and observed that there was no flaws, but the data was collected by 

transect sampling method, which is susceptible to length bias and 

consequently the test for randomness may fail. Here we employ the bias 

correction techniques as they were described in (10) – (17). Using (12) we 

obtain the bias correction factor as 1.09210. Using this bias factor the 

corrected mean length of peas plant becomes 61.069 cm which is about 6.03 

cm less than the original mean. This difference is highly significant at any 

level of significance. The corrected standard deviation of the lengths is 16.98 

cm which is about 1.94 cm less than the original standard deviation, which is 

significantly different from the original value. The above results make much 

sense. Since the data was collected by the transect sampling method it is 

highly likely that taller plants were selected more than smaller ones and 

hence the corrected mean is significantly smaller than the original one. 
 

Finally we employ the bootstrap technique to estimate the mean, 

standard deviation and confidence interval of mean for the lengths of peas 

plants. Although we have a relatively large sample size of 1000 we fail to 

find its appropriate parent distribution. So for the computation of mean, 

standard deviation and especially for finding the confidence interval of the 

parameters it is better to use the bootstrap technique which does not require 

any assumption regarding the parent distribution of data. Here we work with 

the bias corrected data. We use the statistical package R for bootstrapping 

and the results are based on 10000 replications. It is intersting to note that  

the bootstrap mean is exacly equal to the bias corrected mean. The standard 

deviation is marginally smaller than the bias corrected one. But the most 

intersting feature of this method is the confidence interval of the mean. Here 

the 95% bootstrap confidence interval is (60.915, 61.224) with the confidence 

length 0.309 cm. This result clearly indicates that how precisely bootstrap 

estimates the mean length of peas plants. 
 

Table 1 offers a comparison of different estimation methods used to 

analyze the lengths of peas plants. Here we compute the mean, the standard 

deviation, 95% confidence interval of the mean and the confidence length. 

We compare six different sets of methods, the classical method, classical 

method without outliers, robust method based on Huber’s weight function, 

our newly proposed bias corrected method applied on classical, robust and 

bootstrap techniques. 
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TABLE 1: Summary statistics for lengths of peas plants using different estimation methods 

  

Estimation Method Mean 
Standard 
deviation 

95% Confidence 
interval 

95% 

Confidence 

length 

Classical 67.100 18.943 (65.926, 68.274) 2.348 

Classical without outliers 66.694 18.811 (65.524 ,67.864) 2.341 

Robust 65.803 18.559 (64.653, 66.953) 2.300 

Bias corrected classical 61.069 16.980 (60.018, 62.120) 2.105 

Bias corrected robust 60.152 16.960 (59.101, 61.203) 2.102 

Bias corrected bootstrap 61.069 16.960 (60.915, 61.224) 0.309 

 

When we compare the means we observe that the bias corrected 

means are about 5-6 cm smaller than the uncorrected means. The bias 

corrected standard deviations are about 2 cm smaller than uncorrected 

standard deviations. These differences are huge in a sample of size 1000 and 

it clearly reemphasizes our concern that when the data is length biased no 

matter how shophsticated method we use, unless we correct the bias we will 

not get the correct results. Among the six sets of results the standard 

deviations are the least for the bias corrected robust and the bias corrected 

bootstrap methods. But we get an astonishing result when we look at the 95% 

confidence lengths for the means. This is only 0.039 cm for the bootstrap 

method whereas they are more than 2 cm for all other five methods. Although 

these results look surprising, it makes much practical sense. We must not 

forget the fact the first five methods use normal assumption while 

constructing the confidence interval. But here there is clear evidence that the 

data do not follow a normal distribution. Bootstrap confidence interval is 

computed based on only the empirica values and does not require any 

assumption regarding the parent distribution of the data and hence it produces 

the shortest interval. Thus the bias corrected bootstrap method produces the 

best set of results for the lengths of peas plants data. 

 
 

5. CONCLUSION 

In this paper our main objective was to find an appropriate method 

for analyzing data when the data may appear as nonrandom because of length 

or size bias and at the same time may not follow a normal distribution. We 

develop a method for correcting bias in mean and standard deviation. Finally 

we applied these biased corrected methods to analyze the lengths of peas 

plants. Since there is enough evidence that the data do not follow a normal 

distribution, the bias corrected bootstrap method is proven as the most 

appropriate method for analyzing the data. 
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APPENDIX 
 

Table A1:  Lenghts of peas plants (in cm) 

 

40.10 45.60 75.30 98.30 89.00 71.20 60.50 44.50 64.20 91.20 

45.20 88.10 85.10 98.30 77.60 75.20 60.20 85.20 67.10 64.20 

40.10 102.10 65.20 98.20 79.80 76.30 64.30 87.20 83.20 65.30 

88.20 54.20 45.30 78.40 78.90 78.10 62.30 65.30 60.20 67.20 

77.30 60.10 65.20 56.20 99.80 79.40 61.30 110.20 94.50 55.60 

74.10 77.60 45.20 78.20 94.60 98.10 64.30 45.20 113.20 46.20 

71.10 84.50 45.10 89.20 94.50 95.20 64.30 56.20 64.50 88.20 

74.50 46.10 32.10 45.20 95.10 75.10 65.10 61.30 63.10 64.30 

31.40 31.20 65.40 56.20 95.30 74.20 62.30 71.20 73.20 61.30 

35.00 55.10 98.50 56.20 78.60 65.00 61.30 75.30 72.00 98.20 

35.20 46.50 78.50 78.50 95.10 54.20 61.50 79.20 94.50 79.10 

35.40 78.30 78.40 45.40 45.60 78.50 61.50 80.20 87.30 61.20 

66.20 89.10 32.10 65.20 98.30 45.20 77.30 40.20 64.20 46.30 

65.20 45.30 65.40 76.20 65.20 65.20 79.30 41.00 31.20 87.20 

54.20 56.20 98.60 86.20 45.30 98.20 65.40 63.20 64.30 62.20 

45.20 34.10 87.50 84.20 56.80 65.30 54.30 52.80 65.20 76.20 

45.20 36.50 98.30 95.20 89.50 45.20 65.20 89.60 93.20 76.20 

56.30 35.20 65.50 75.10 78.10 65.20 98.20 79.50 56.20 56.20 

98.00 30.20 78.20 78.30 56.20 78.10 54.20 64.10 45.10 46.20 

99.20 99.30 45.10 98.60 36.20 89.20 65.30 61.30 65.30 33.20 

98.20 98.60 56.20 98.60 34.60 56.20 65.40 56.50 61.30 34.20 

78.30 78.40 56.20 75.60 98.30 32.20 65.30 55.20 62.30 60.20 

62.20 45.10 45.30 85.30 97.20 65.20 89.50 49.30 82.30 84.60 

87.40 56.20 89.50 95.30 76.50 66.50 78.40 51.20 46.20 95.60 

98.10 78.20 78.40 74.30 73.10 98.20 56.10 76.50 42.30 76.20 

101.10 88.00 78.50 65.20 74.50 78.00 52.10 89.40 73.60 79.50 

102.10 83.10 65.20 63.20 54.20 65.50 56.20 51.30 56.10 46.20 

101.00 82.10 45.10 88.50 56.10 87.40 32.60 61.30 46.20 46.20 

45.50 45.60 56.20 78.50 78.20 44.60 36.00 36.20 95.30 41.20 

78.60 95.00 56.20 98.00 89.10 98.50 84.60 52.20 62.30 32.20 

91.30 77.00 45.20 65.00 45.00 78.60 87.20 71.23 70.20 55.20 

91.30 77.50 78.50 65.50 56.40 95.10 65.20 50.20 64.30 98.30 

94.30 74.20 89.50 45.30 89.20 65.40 32.20 63.20 68.30 64.30 

97.30 71.30 45.10 98.20 91.20 63.20 65.20 61.20 53.20 64.20 

98.60 34.50 45.00 75.20 94.30 56.10 45.30 45.20 36.10 56.10 

77.20 36.50 36.20 65.20 96.10 45.20 65.20 65.30 39.40 76.10 

77.10 98.20 45.30 54.30 85.20 98.50 98.30 56.20 60.50 46.20 

102.20 76.20 56.10 53.20 75.00 78.50 65.20 45.20 46.30 84.50 

120.40 75.30 46.20 56.50 86.20 45.90 45.20 62.30 59.10 95.60 

55.10 45.10 78.10 45.60 56.20 65.20 56.20 61.30 76.20 64.30 

54.20 75.20 88.20 98.30 45.30 87.20 78.20 95.30 46.20 61.30 

57.20 65.00 45.10 87.30 56.30 79.20 89.20 65.20 63.20 64.30 

78.10 64.20 66.20 65.30 96.20 89.20 56.20 45.20 83.20 65.20 

64.20 99.20 78.20 79.20 85.30 56.20 45.20 65.20 46.20 67.20 

87.70 98.60 45.00 54.60 96.30 45.20 65.30 87.20 69.20 77.50 

77.30 97.40 66.20 66.50 78.20 56.20 65.30 98.20 86.20 60.20 

55.20 78.50 55.00 85.30 56.30 32.20 65.20 81.20 46.30 43.10 

79.10 46.10 99.10 98.30 45.10 39.00 45.20 72.20 76.10 42.10 

74.10 46.20 95.20 65.30 63.10 38.50 65.30 64.20 31.20 61.30 

75.30 32.10 85.30 65.20 89.20 69.20 98.30 45.10 64.30 62.30 
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34.30 45.30 35.20 45.20 45.20 76.30 78.20 56.20 67.30 46.20 

36.10 65.20 54.20 45.30 56.20 74.50 89.20 75.10 65.30 94.00 

88.20 56.30 51.20 56.30 78.00 89.50 49.20 84.20 35.20 62.20 

87.70 78.10 56.40 55.20 56.20 75.60 50.20 40.20 64.30 73.50 

94.60 77.20 44.60 77.30 45.20 86.40 45.20 51.20 95.30 94.30 

35.10 89.30 77.30 66.30 56.20 86.10 31.20 65.20 75.10 96.10 

78.30 85.10 98.50 78.50 63.20 98.50 64.30 54.20 65.00 86.10 

75.30 45.30 65.20 98.50 56.20 75.40 61.20 53.20 76.20 45.60 

97.60 45.10 45.20 45.50 45.20 76.20 56.20 36.20 43.10 88.20 

75.20 65.20 56.20 65.20 56.20 56.40 89.20 37.50 46.00 81.20 

77.40 64.30 56.10 55.20 56.20 32.50 78.20 55.60 76.20 73.10 

65.20 66.30 45.10 78.50 56.30 65.00 56.20 59.40 50.20 64.20 

64.30 69.30 31.50 45.30 85.20 45.60 89.20 76.50 64.30 103.20 

98.20 77.20 65.40 66.20 85.90 56.80 56.20 84.60 61.20 84.50 

78.30 45.30 87.20 55.20 98.50 56.00 45.20 95.60 64.20 67.10 

55.10 45.10 99.20 45.30 78.20 81.20 31.00 84.30 95.30 92.40 

44.30 56.30 55.40 65.40 36.20 82.10 32.50 54.20 64.30 94.50 

56.20 58.30 65.00 56.90 45.30 75.60 65.30 65.10 61.30 57.50 

77.60 69.30 64.20 73.50 56.20 45.10 64.20 78.20 62.30 56.10 

84.30 87.30 55.20 87.30 89.20 56.20 62.30 45.20 64.30 50.00 

95.20 45.30 45.20 84.50 78.20 97.50 61.30 63.20 79.50 71.50 

97.30 45.10 78.50 79.20 56.20 84.50 64.30 56.20 46.10 64.30 

33.20 56.20 45.50 56.40 45.20 62.30 96.50 46.20 56.10 68.50 

120.00 50.10 66.20 78.30 35.20 61.30 97.50 56.20 30.00 39.50 

31.00 45.60 45.20 56.10 65.00 65.20 48.50 89.50 61.30 58.60 

35.10 78.60 33.20 45.20 64.10 45.20 64.20 78.40 46.30 47.60 

65.40 89.10 35.20 32.60 111.20 65.20 68.30 65.20 53.20 43.90 

65.20 45.10 94.70 61.20 110.20 89.50 67.50 79.50 89.10 72.50 

87.30 56.20 85.60 65.50 56.30 78.50 79.50 46.50 56.10 84.60 

95.20 77.00 86.10 64.30 78.50 78.40 45.20 41.20 54.30 99.50 

97.30 56.10 84.20 87.30 98.30 65.30 56.20 56.20 64.30 74.60 

95.50 45.00 89.20 91.20 65.30 45.90 78.50 45.10 62.30 53.40 

45.60 78.60 55.20 97.50 45.20 97.60 56.20 56.20 61.00 90.80 

45.20 89.10 56.00 78.50 56.20 87.60 46.20 78.20 33.20 109.40 

39.20 78.00 69.50 96.20 63.20 45.60 46.20 56.10 55.60 78.60 

38.50 45.60 56.20 78.50 56.20 35.60 32.20 43.50 64.30 42.90 

49.30 78.70 32.20 78.20 45.30 39.50 89.50 65.10 69.20 61.90 

50.40 89.90 87.50 105.60 56.20 40.90 78.10 46.20 85.20 83.50 

56.20 89.20 45.20 44.30 85.30 98.30 60.20 46.30 87.30 43.90 

45.60 56.10 65.30 68.20 96.20 65.40 64.20 56.20 65.30 68.50 

97.20 54.20 65.00 67.50 78.00 78.00 61.30 85.60 64.30 66.00 

54.20 44.30 79.20 99.50 56.20 95.20 95.20 73.20 79.90 43.70 

74.60 62.30 75.10 98.70 89.50 45.60 71.20 56.20 89.20 73.10 

85.30 61.30 45.20 66.20 78.50 56.00 80.40 46.20 65.30 94.50 

75.20 77.60 56.30 46.50 65.20 78.60 65.20 42.10 65.20 38.40 

73.50 88.30 85.30 55.20 115.50 98.50 62.30 60.20 61.30 52.90 

95.60 99.20 65.20 56.20 32.20 45.60 63.10 73.50 65.20 72.60 

98.10 99.40 45.30 45.20 65.20 56.20 64.20 91.20 46.20 84.90 

97.60 102.50 65.20 56.00 64.20 32.60 61.20 54.30 49.20 73.80 

95.60 103.40 65.30 89.20 61.30 55.60 43.10 52.10 50.20 39.50 

 


