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ABSTRACT 

Warr and Erich (2013) compared a frequently recommended procedure in textbooks: the 

interquartile range divided by the sample standard deviation, against the Shapiro-Wilk’s 

test in assessing normality of data. They found the Shapiro-Wilk’s test to be far superior to 

the deficient interquartile range statistic. We look further into the issue of assessing non-

normality by investigating the Anderson-Darling goodness-of-fit statistic for its sensitivity 

to detect non-normal data in a multi-group problem where Type I error and power issues 

can be explored from perspectives not considered by Warr and Erich. In particular, we 

examined the sensitivity of this test for 23 non-normal distributions consisting of g- and h-

distributions, contaminated mixed-normal distributions and multinomial distributions. In 

addition, we used a sequentially-rejective Bonferroni procedure to limit the overall rate of 

Type I errors across the multi-groups assessed for normality and defined the power of the 

procedure according to whether there was at least one rejection from among the three group 

tests, whether all three non-normal groups of data were detected and the average of the per-

group power values. Our results indicate that the Anderson-Darling test was generally 

effective in detecting varied types of non-normal data. 

 

Keywords: Non-normal data, Anderson-Darling, goodness-of-fit statistics, Power, 

Familywise control over the multiple significance tests for normality. 
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1. INTRODUCTION 

Warr and Erich (2013) demonstrate how the interquartile range 

divided by the sample standard deviation is not a good method for assessing 

whether data is normal in form. Their finding is not surprising in that it is 

well known that the sample standard deviation can be inflated by outlying 

values from skewed non-normal distributions and accordingly the value of 

the interquartile range divided by such an inflated value would result in small 

values and thus accordingly underestimate the degree of non-normality (See 

Wilcox (2012)). Warr and Erich’s simulations confirm this lack in power to 

detect non-normality.  

 

Testing the normality assumption has been a matter of concern for 

quite some time since it is well known that classical test statistics such as 

Student’s two-independent sample t-test and the analysis of variance 

(ANOVA) F-test can produce too many false rejections (i.e., inflated rates of 

Type I error) and/or lack sensitivity to detect effects (i.e., low rates of power) 

when data do not conform to the normality derivational assumption. This 

anomaly can be exacerbated when other derivational assumptions are not also 

satisfied [e.g., homogeneity of variances (See Zimmerman (2004), (2010)). 

Accordingly, it is quite common for authors of textbooks and research 

articles to recommend that normality and/or variance homogeneity be 

assessed prior to performing the main test for say treatment group mean 

equality. 

 

Recently, Schoder et al. (2006) examined the Kolmogorov-Smirnov 

(K-S) goodness-of-fit statistic (See D’Agostino and Stephens, (1986)) for 

detecting various types of non-normal distributions in a one-sample pretest-

posttest design and found that it lacked sufficient power to detect non-normal 

distributions with sample sizes less than 100. Keselman et al. (2013) 

followed-up on the work of Schoder et al. but they included two additional 

goodness-of-fit statistics, namely the Cramer-von Mises (CvM) and 

Anderson-Darling (A-D) statistics (See Muller and Fetterman  (2002)) and 

found the tests to have sufficient power to detect many types of non-normal 

distributions with sample sizes less than 100. Keselman et al. (2013) 

recommended the A-D test with a significance level of .15 or .20.  Later 

Keselman et al. (2014) extended their investigation to the case of detecting 

non-normality in the multi-group problem. In particular, they examined a 

one-way design having three treatment groups in which the main statistical 

test would be the ANOVA F-test.  
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Again Keselman et al. (2014) found that the A-D goodness-of-fit test 

was most powerful of the fit statistics and once again recommended that 

applied researchers adopt a more liberal criterion for significance (i.e., 

.15 or= .20). However, in the multi-group problem they suggested 

that researchers set these more liberal significance levels over the family of 

fit-statistics with Hochberg’s (1988) sequentially-rejective Bonferroni 

procedure familywise critical values. Thus, as they claimed, researchers can 

detect many different forms of non-normality with the A-D goodness-of-fit 

statistic and control the overall rate of Type I error with a procedure that 

limits the multiplicity of testing problem. 

 

2. METHOD 

We will present some simulation results to extend the findings 

reported by Keselman et al. (2014) regarding the A-D goodness-of-fit 

statistic. In our study we investigated non-normal distributions that differed 

in degree of skew and kurtosis in a multi-group setting. We created three 

groups with the same distributions. One set of non-normal distributions was 

created by converting standardized unit normal variates to g and h-variates 

(See Headrick, Kowalchuk and Sheng (2008); Hoaglin (1985), (1988); 

Kowalchuk and Headrick (2010)). Thirteen g- and h- distributions were 

created (See Table 1). The reader can gauge whether a distribution is a 

symmetric short-tailed distribution, a symmetric long-tailed distribution, or 

asymmetric by comparing the skewness and kurtosis indices reported in 

Table 1 against 1. For example, the g = 0, h = k distributions with k ≥ 1 are all 

symmetric long-tailed distributions because all of their kurtosis values are 

greater than 2. As well, we examined six contaminated mixed-normal 

distributions displayed in Table 2 (See Zimmerman (2004)) and four Likert-

type data from multinomial distributions displayed in Table 3 (See Schoder et 

al. (2006)).  

 

We chose contaminated mixed-normal and Likert type data (i.e., 

multinomial) because these distributions were examined in previous 

investigations and because they typify psychological data collected by 

applied researchers. As for the contaminated mixed normal distributions, they 

are of course symmetric. The length of their tails depend upon the proportion 

of N(0,  2
),  2

 > 1 added to the N(0, 1). Together, a total of twenty three 

non-normal distributions were used in the investigation. All data were 

generated using the SAS (2013) system on a Sun Fire X4600 M2 x64 server: 

8 x AMD Opteron Model 8220 processor (2.8GHz-dual-core).  
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A program used to generate the three groups with g=.4 and h=0 data 

per group is presented as Program 1 in the Appendix. We set the sample size 

at 60 observations per group and adopted familywise significance levels of 

.15 and .20 adopting Hochberg’s (1988) sequentially-rejective Bonferroni 

procedure to assess the A-D goodness-of-fit test. We chose this sample size 

because Keselman et al. (2014) in their study had samples of size 80 per 

group and we wanted to see if equally good results could be obtained with a 

smaller sample size per group. Lastly, we defined power as (1) the 

probability of detecting at least one non-normal distribution, (2) the 

probability of detecting all three non-normal groups of data, and (3) the 

average probability of detecting non-normal data averaged across the three 

groups. 

 

Hochberg’s step-up Bonferroni procedure is another example of a 

stepwise Bonferroni method of Type I error control and hence can also be 

better than the usual Dunn-Bonferroni method. In this procedure, the p-values 

corresponding to the m statistics for testing the hypotheses H(1), …, H(m) are 

ordered from smallest to largest p(1) ≤ p(2) ≤ … ≤ p(m). Then, for any i = m, m – 

1, …, 1, if p(i) ≤ /(m – i + 1), the Hochberg procedure rejects all H(i’) (i’ ≤ i). 

According to this procedure one begins by assessing the largest p-value, p(m). 

If p(m) ≤  all hypotheses are rejected.  If p(i) > , then H(m) is accepted and 

one proceeds to compare p(m - 1) ≤ /2. If p(m - 1) ≤ /2, then all H(i) (i = m – 1, 

…, 1) are rejected; if not, then H(m - 1) is accepted and one proceeds to 

compare p(m - 2) with /3, and so on. The program enabling power to be 

defined as the probability of at least one group detected to be non-normal 

using the Hochberg procedure is available in the Appendix as Program 2. 

 

3. RESULTS 

Table 1 contains power (and Type I error) rates for the A-D test for 

numerous non-normal distributions which vary by degree of skewness and 

kurtosis. The proportion of empirical power values ≥ .80 was .64 when power 

was defined as the probability of detecting at least one non-normal set of data 

in the three groups. The proportion was .29 and .43 when power was defined 

as the probability of detecting all three non-normal data sets or the average 

probability of rejecting over the three groups, respectively.  The rates did not 

differ due to level of significance. Also notable from Table 1 was that the A-

D test was more sensitive to detect non-normality when data was both 

skewed and kurtotic. Keselman et al. (2014) found larger proportions to 

detect non-normal data based on group sizes of 80 per group. 
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TABLE 1: Power rates for the Anderson-Darling test adopting familywise  

Type I error control. 

 

Distribution Skewness Kurtosis  = .15   = .20 

At Least One Rejection 

Normal* 0.00 0.00 0.1436 0.1796 

g=0,h=.075 0.00 1.49 0.4692 0.5196 

g=0,h=.1 0.00 2.51 0.6084 0.6630 
g=0,h=.125 0.00 4.16 0.7402 0.7806 

g=0,h=.15 0.00 7.17 0.8414 0.8666 

g=0,h=.2 0.00 33.22 0.9468 0.9566 
g=.2, h=0 0.61 0.68 0.6450 0.6962 

g=.4,h=0 1.32 3.26 0.9918 0.9954 

g=.6,h=0 2.26 10.27 1.0000 1.0000 
g=1,h=0 6.19 110.94 1.0000 1.0000 

g=.2, h=.1 1.08 5.50 0.8674 0.8922 

g=.4,h=.1 2.45 20.30 0.9938 0.9952 
g=.6,h=.1 4.69 89.80 1.0000 1.0000 

g=.8,h=.1 9.27 603.61 1.0000 1.0000 

Rejecting all Three 

Normal* 0.00 0.00 0.1436 0.1796 

g=0,h=.075 0.00 1.49 0.0404 0.0670 
g=0,h=.1 0.00 2.51 0.0882 0.1194 

g=0,h=.125 0.00 4.16 0.1510 0.2002 

g=0,h=.15 0.00 7.17 0.2392 0.2894 
g=0,h=.2 0.00 33.22 0.4270 0.4814 

g=.2, h=0 0.61 0.68 0.1034 0.1464 
g=.4,h=0 1.32 3.26 0.7338 0.7820 

g=.6,h=0 2.26 10.27 0.9832 0.9880 

g=1,h=0 6.19 110.94 1.0000 1.0000 

g=.2, h=.1 1.08 5.50 0.2598 0.3112 

g=.4,h=.1 2.45 20.30 0.7360 0.7728 

g=.6,h=.1 4.69 89.80 0.9658 0.9748 
g=.8,h=.1 9.27 603.61 0.9978 0.9982 

Average Probability of Rejecting 

Normal* 0.00 0.00 0.0544 0.0741 

g=0,h=.075 0.00 1.49 0.2156 0.2619 

g=0,h=.1 0.00 2.51 0.3157 0.3677 
g=0,h=.125 0.00 4.16 0.4235 0.4797 

g=0,h=.15 0.00 7.17 0.5335 0.5837 

g=0,h=.2 0.00 33.22 0.7095 0.7462 
g=.2, h=0 0.61 0.68 0.3435 0.4025 

g=.4,h=0 1.32 3.26 0.8859 0.9100 

g=.6,h=0 2.26 10.27 0.9943 0.9959 
g=1,h=0 6.19 110.94 1.0000 1.0000 

g=.2, h=.1 1.08 5.50 0.5619 0.6137 

g=.4,h=.1 2.45 20.30 0.8916 0.9095 
g=.6,h=.1 4.69 89.80 0.9885 0.9916 

g=.8,h=.1 9.27 603.61 0.9993 0.9994 

 

Note: *Normal data (g = 0, h = 0); thus Type I error rates. 
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Table 2 presents the empirical rejection rates for the non-normal 

contaminated mixed-normal distributions examined in the study. The 

proportion of rejections for the three definitions of power (at least one, all 

three, and average power rates) were .83, .17, and .50, respectively. 

Proportion of rejections did not differ across levels of significance. 

 
TABLE 2: Power of the Anderson-Darling goodness-of-fit test with data that were 

obtained from contaminated mixed-normal distributions. 
 

At Least One Rejection 

Distribution Distance Number  = .15  = .20 

(.983)N(0,1) + (.017)N(0,25) 5 1 0.7228 0.7478 

(.967)N(0,1) + (.033)N(0,25) 5 2 0.9224 0.9348 

(.933)N(0,1) + (.067)N(0,25) 5 4 0.9930 0.9944 
(.983)N(0,1) + (.017)N(0,100) 10 1 0.9480 0.9552 

(.967)N(0,1) + (.033)N(0,100) 10 2 0.9972 0.9974 

(.933)N(0,1) + (.067)N(0,100) 10 4 1.0000 1.0000 

Rejecting All Three 

Distribution Distance Number  = .15  = .20 

(.983)N(0,1) + (.017)N(0,25) 5 1 0.1086 0.1368 
(.967)N(0,1) + (.033)N(0,25) 5 2 0.2980 0.3408 

(.933)N(0,1) + (.067)N(0,25) 5 4 0.6714 0.7066 

(.983)N(0,1) + (.017)N(0,100) 10 1 0.3448 0.3862 
(.967)N(0,1) + (.033)N(0,100) 10 2 0.7260 0.7480 

(.933)N(0,1) + (.067)N(0,100) 10 4 0.9648 0.9686 

Average Probability of Rejecting 

Distribution Distance Number  = .15  = .20 

(.983)N(0,1) + (.017)N(0,25) 5 1 0.3881 0.4230 

(.967)N(0,1) + (.033)N(0,25) 5 2 0.6229 0.6561 
(.933)N(0,1) + (.067)N(0,25) 5 4 0.8660 0.8827 

(.983)N(0,1) + (.017)N(0,100) 10 1 0.6691 0.6973 

(.967)N(0,1) + (.033)N(0,100) 10 2 0.8925 0.9023 
(.933)N(0,1) + (.067)N(0,100) 10 4 0.9879 0.9893 

 

Note: Distance is measured in standard deviations. Number represents the number of outliers present. 

 

We do not table our rejection rates for the five cases of Likert-type 

non-normal data that were investigated (See Table 3 for a description of these 

non-normal distributions) since all proportions equaled 1.00. 

 
TABLE 3: Multinomial distributions based upon Schoder, et al.’s (2006) probabilities simulated as 

Likert scales 

 

Description (p1, p2, p3, p4, p5)  

Even (.2, .2, .2, .2, .2) 

Symmetric (.1, .2, .4, .2, .1) 

Moderate skew (.5, .3, .15, .04, .01) 
Heavy skew (.7, .2, .06, .03, .01) 
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4. DISCUSSION 

Based on the results presented in this paper and those reported by 

Keselman et al. (2013, 2014) it appears that the Anderson-Darling goodness-

of-fit statistic is moderately effective in locating non-normal distributions. 

When power is defined as the probability of detecting at least one case of 

non-normality among the groups being examined, the A-D rejection rate is 

reasonably high (i.e., ≥ .80) in most cases examined in this study. 

Researchers only need to detect one normal group of data to conclude that 

this requirement is not satisfied. However, when a statistical procedure 

allows researchers to model different types of data shapes per group, e.g., 

SAS’s PROC GLIMMIX, then detecting all non-normal data sets would be 

important and the rejection rates for detecting all non-normal groups is not 

particularly good, though the average rejection rates were reasonable. 

Keselman et al.’s (2014) findings would lead one to believe that the 60 

observations per group that we examined should be increased to 80. 

However, another very beneficial aspect of these tests is that they can be used 

to test the fit of other distributions. The SAS system allows users to 

determine if the data is best fit by data modeled with responses distributed as 

exponential, gamma, inverse Gaussian, lognormal and tcentral (i.e., the non-

central t distribution). Thus users can use the Akaike (1974) statistic to 

determine which distribution best fits the data. Major statistical packages 

enable the applied research to compute these statistics (e.g., See Muller and 

Fetterman (2002)).  

 

As a postscript we believe it is important to enumerate choices 

researchers could or should not follow after concluding that their data do not 

conform to normality. Many researchers routinely adopt non-parametric 

methods when data are presumed to be non-normal to compare treatment 

groups. This is a strategy that is not supported by empirical research. That is, 

it is quite well known that non-parametric tests are also substantially affected 

when data are non-normal; furthermore, the deleterious effects of non-

normality are exacerbated when groups have unequal variances (Zimmerman 

(2004, 2010)). Another technique is to use a test statistic, and sample 

estimators, which are not negatively biased when data are non-normal (and 

when variances are unequal). A great deal of evidence has been published 

indicating the a Welch-type statistic that does not pool over heterogeneous 

variances and uses robust estimators such as trimmed means and Winsorized 

variances provides good protection against inflated rates of Type I error 

and/or decreases in power (See Keselman et al. (2008a, b)).  
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Indeed, according to many this approach is most reasonable (See 

Hampel et al. (1986); Huber (1981); Keselman et al. (2008a, b)).  That is, as 

Marazzi and Ruffieux (1999) note “the (usual) mean is a difficult parameter 

to estimate well: the sample mean, which is the natural estimate, is very 

nonrobust.” (p. 79). And another very reasonable approach to adopt is to use 

a statistical procedure that allows in its estimation process for data to assume 

other shapes from the normal. SAS’s (2012) GLIMMIX procedure is a 

generalized linear model approach to data analysis that does just this (See 

Breslow and Clayton (1993); McCullah and Nelder (1989); Nelder and 

Wedderburn (1972)). One really nice aspect to this method of analysis is that 

researchers can even specify different distributional shapes across treatment 

groups. However, to date, empirical findings are not positive regarding using 

preliminary analyses prior to adopting a generalized linear model statistic 

(See Keselman et al., (under review)). Consequently, faced with non-normal 

data these authors would choose to use the Welch-James statistic to test for 

treatment group mean equality. 
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Appendix 
 
PROGRAM 1: Generating 5000 g=.4, h=0 distributions in three groups. 

 
options nocenter nonumber nodate ps=60; 

 

*Creating 5000 datasets of (g=.4,h=0) random variates of size 60;  

data random; 

   call streaminit(439839383); 

   g = .4; 

   mu=(exp((g**2)/2)-1)/g; 

   sigmasq = exp(g**2)*(exp((g**2)/2)-1)/g**2;  

   do dataset=1 to 5000; 

      do group = 1 to 3; 

        do j = 1 to 60; 

           z=rand('normal'); 

           y=(exp(g*z)-1)/g; 

           x=(y-mu)/sqrt(sigmasq); *Standardizing the g distribution; 

           output;  

         end; 

      end; 

   end; 

   drop g mu sigmasq z y; 

run; 

 

*Running the goodness of fit tests on the 5000 data sets; 

ods select GoodnessOfFit; 

   proc univariate data=random; 

      var x; 

      class dataset group; 

      histogram / normal; 

   run; 
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PROGRAM 2: Extracting power of non-normality with at least one group being not normal 

using g=.4, h=0 distribution 

 

options center; 

 

data one; 

   infile 'E:\aro pjj PC\aro_from_c\research\canada2013\power\3- 

   groups\ss60\skewed\data\gof_norm_g.4h.1_5k_s60_3grp.lst'; 

   input test $ 1-18 pvalue $57-62; 

   if test not in ('Kolmogorov-Smirnov', 'Cramer-von Mises', 

   'Anderson-Darling') then delete; 

   if pvalue =: '<' then pvalue = substr(pvalue,2) - 0.001; 

   else if pvalue =: '>' then pvalue = substr(pvalue,2) + 0.001; 

run; 

 

data two; 

   set one; 

   if test ne 'Anderson-Darling' then delete; 

run; 

 

data three; 

   set two; 

   if mod(_n_, 3) = 1 then group = 1; 

   else if mod(_n_, 3) = 2 then group = 2; 

   else group = 3; 

run; 

 

data four; 

   set three; 

   if group ne 1 then delete; 

   pvalue1 = pvalue; 

   drop pvalue group; 

run; 

 

data five; 

   set three; 

   if group ne 2 then delete; 

   pvalue2 = pvalue; 

   drop pvalue group; 

run; 

 

data six; 

   set three; 

   if group ne 3 then delete; 

   pvalue3 = pvalue; 

   drop pvalue group; 

run; 

 

data seven; 

   merge four five six; 
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PROGRAM 2 (continued) : Extracting power of non-normality with at least one group being 

not normal using g=.4, h=0 distribution 

 

 p3 = max(pvalue1, pvalue2, pvalue3); 

   p1 = min(pvalue1, pvalue2, pvalue3); 

   if p1=p3 then p2=p3; 

   if pvalue1 ne p1 and pvalue1 ne p3 then p2 = pvalue1; 

   if pvalue2 ne p1 and pvalue2 ne p3 then p2 = pvalue2; 

   if pvalue3 ne p1 and pvalue3 ne p3 then p2 = pvalue3; 

   if pvalue1=p1 and pvalue2=p1 then p2=p1; 

   if pvalue1=p1 and pvalue3=p1 then p2=p1; 

   if pvalue2=p1 and pvalue3=p1 then p2=p1; 

   if pvalue1=p3 and pvalue2=p3 then p2=p3; 

   if pvalue1=p3 and pvalue3=p3 then p2=p3; 

   if pvalue2=p3 and pvalue3=p3 then p2=p3; 

run; 

 

data eight; 

   set seven; 

   if p3 <= 0.05 then cpval05 = 1; 

   else if p2 <= 0.025 then cpval05 = 1; 

   else if p1 <= 0.05/3 then cpval05 = 1; 

   else cpval05 = 0; 

   if p3 <= 0.10 then cpval10 = 1; 

   else if p2 <= 0.05 then cpval10 = 1; 

   else if p1 <= 0.10/3 then cpval10 = 1; 

   else cpval10 = 0; 

   if p3 <= 0.15 then cpval15 = 1; 

   else if p2 <= 0.075 then cpval15 = 1; 

   else if p1 <= 0.05 then cpval15 = 1; 

   else cpval15 = 0; 

   if p3 <= 0.20 then cpval20 = 1; 

   else if p2 <= 0.10 then cpval20 = 1; 

   else if p1 <= 0.20/3 then cpval20 = 1; 

   else cpval20 = 0; 

run; 

 

proc freq; 

   title 'Hocheberg Monte Carlo 1 minus pvalue of the Anderson-  

          Darling Test'; 

   title2 'H0: Groups 1 2 and 3 are normally distributed'; 

   title3 'H1: At least one group is not normally distributed'; 

   tables cpval05 cpval10 cpval15 cpval20; 

run; 

 

 


