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ABSTRACT 

In this article, a numerical approach for solving a class of nonlinear optimal 

control problems is presented. This approach is a combination of a spectral 

collocation method and the parametric iteration method. As will be shown, 

the proposed indirect strategy provides good approximations of all variables 

i.e. control, state and costate as opposed to the many direct methods. Several 

examples are considered to assess the accuracy and features of the presented 

method.  
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1. INTRODUCTION 

On March 3, 2007, by tracking an attitude trajectory developed with 

optimal control theory, the International Space Station completed a 180-

degree maneuver without using any propellant and saved more than 

$1,000,000.
*
 This is one of many valuable applications of optimal control 

problems (OCPs) that are an acceptable and appropriate tool for modeling 

real world problems like aerospace applications, chemical processes, batch 

reactor systems, stirred-tank chemical reactors, biological systems, etc. 

                                                 
*
 From SIAM News, September 2007, By Wei Kang and Naz Bedrossian 
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Analytic solutions can rarely be found for such systems especially with 

nonlinear dynamics. So, over the three last decades, numerical techniques 

have emerged as one of the leading methods for solving OCPs. Numerical 

methods for solving OCPs fall into two general categories: direct and 

indirect. In the direct methods, the original OCP is discretized to formulate 

a nonlinear programming problem (NLP). Herein, the direct pseudo-spectral 

methods differ from the other direct methods like multiple shooting method 

(Diehl et al., 2006), in their special discretization at the carefully selected 

nodes obtained from a Gaussian quadrature. The three most commonly used 

sets of collocation points are Legendre-Gauss (LG) (Benson et al., 2006)), 

Legendre-Gauss-Lobatto (LGL) (Herman and Conway, 1996) and 

Legendre-Gauss-Radau (LGR) points (Garg et al., 2010; 2011). Finally, the 

resulting NLP will be solved numerically by well-developed algorithms like 

DIRCOL (Stryk, 1993), SOCS (Betts, 1997), etc. 

 

On the other hand, indirect methods are based on the calculus of 

variations and Pontryagin’s minimum principle to determine the first-order 

optimality conditions (Kirk, 1970). This approaches lead to a two-point 

boundary value problem (TPBVP). 

 

Although the direct methods are more flexible than the indirect 

ones, they have their demerits, for example, many direct methods have the 

disadvantage of providing either an inaccurate costate or providing no 

costate information whatsoever (Huntington, 2007). The covector mapping 

theorem is one of the attempts (Benson et al., 2006); Garg et al., 2010); 

Garg et al., 2011) to overcome this challenge of direct methods. Moreover 

the convergence of the direct methods is an open problem (Huntington, 

2007). In fact, what is still missing is a proof that shows that a solution to 

the discrete NLP converges to the optimal solution of the original, 

continuous-time optimal control problem. 

 

On the opposite side, the indirect methods naturally include the 

costate in their problem formulation, so every obtained solution contains an 

approximation of costate. Also, they have the advantages of high accurate 

solutions and the assurance of the obtained solutions satisfy the optimality 

conditions. However, they have several disadvantages like small radii of 

convergence and typically difficulties to deal with bounded states or path 

constraints. Some of these problems could be solved, using the developed 

multiple shooting methods for the TPBVPs (Riley et al., 1962), for instance 

(Maurer and Gillessen, 1975) is an application of multiple shooting method 

for OCPs with bounded state variables.  
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A good proposal to enlarge the convergence radius is using the 

spectral collocation method instead of the multiple shooting method. Also, 

some authors combined the direct and indirect methods (Stryk and Bulirsch, 

1992) as used in the BNDSCO software (Oberle and Grimm, 1990). But 

still, such a boundary value problem remains difficult to solve, especially 

when the dynamic equations involve dissipative terms.  

 

To establish an effective indirect method, we introduce a numerical 

iterative procedure. First we apply the Pontryagin’s Minimum Principle to 

obtain a TPBVP which guarantees the first-order optimality conditions. 

Then we utilize an implicit spectral PIM to solve it. 

 

Consider the following unconstrained nonlinear optimal control 

problem: 

𝑚𝑖𝑛  𝐽 =
1

2
[
 
 𝑥
𝑇(𝑡𝑓)𝑄𝑓𝑥(𝑡𝑓) + ∫ (𝑥𝑇(𝑡)𝑄𝑥(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡))𝑑𝑡

 
 ] ,

𝑡𝑓

𝑡0

  (1)

s. to:      𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑓(𝑥),      𝑥(𝑡0) = 𝑥0 .                         (2)

 

 

where  𝑥(𝑡) ∈ ℝ𝑘, 𝑢(𝑡) ∈ ℝ𝑚  are the state and the control functions, 

respectively.  𝐴 ∈ ℝ𝑘×𝑘  , 𝐵 ∈ ℝ𝑘×𝑚  are real constant matrices and 

𝑓(𝑥): 𝐶1(ℝ𝑘) → ℝ𝑘  is a nonlinear term. The input 𝑢(𝑡)  is derived by 

minimizing the quadratic performance index  𝐽 , where 𝑄𝑓 , 𝑄  are positive 

semi-definite matrices and 𝑅 is positive definite matrix.  

 

In the optimal control theory (Kirk (1970)), using the Pontryagin’s 

minimum principle, 𝑢∗(𝑡) = −𝑅−1𝐵𝑇𝜆(𝑡) could be obtained as the optimal 

control law which minimizes the quadratic cost functional (1) subject to the 

constraints (2). But, finding 𝜆(𝑡)  known as the costate variable is not 

simple. In general, using the necessary condition of the optimality, we 

obtain the following TPBVP (Kirk, 1970) 

 

{

𝑥̇ = 𝐴𝑥(𝑡) − 𝐵𝑅−1𝐵𝑇𝜆(𝑡) + 𝑓(𝑥) ,                      𝑥(𝑡0) = 𝑥0  ,
 

𝜆̇(𝑡) = −𝑄𝑥(𝑡) − 𝐴𝑇𝜆(𝑡) − 𝑓𝑥
𝑇𝜆(𝑡) ,                  𝜆(𝑡𝑓) = 𝑄𝑓𝑥(𝑡𝑓) .

         (3) 

 

The analytical solution of this nonlinear TPBVP is not available. So, 

we are going to find approximate values of  𝑥∗(𝑡)  and  𝜆∗(𝑡)  and 

consequently 𝑢∗(𝑡).  
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2. PARAMETRIC ITERATION METHOD (PIM)  

PIM (Ghorbani, 2008) is an analytic approximate approach which 

is a modification of variational iteration method. To explain the basic idea 

of the PIM, we first rewrite (3) as below: 

 

𝑋̇ = 𝐴̂𝑋 + 𝐹(𝑋, 𝑡)  ,     𝐶𝑋(𝑡0) + 𝐷𝑋(𝑡𝑓) = 𝐸,                      (4) 

 

where  

 

𝑋(𝑡) = (
𝑥(𝑡)

𝜆(𝑡)
) ,   𝐴̂ = (𝐷̂ 0

0 −𝐷̂𝑇
)  ,                                             

  𝐹(𝑋, 𝑡) = (
𝐴 − 𝐷̂ −𝐵𝑅−1𝐵𝑇

−𝑄 𝐷̂𝑇 − 𝐴𝑇 − 𝑓𝑥
𝑇)𝑋 + (

𝑓(𝑥)
0
),             (5) 

Here 𝐷̂ is a 𝑘 × 𝑘 diagonal matrix of arbitrary constants and 

 

𝐶 = (
1 0
0 0

) ,     𝐷 = (
0 0
−𝑄𝑓 1) ,    𝐸 = (

𝑥0
0
) .                   (6) 

 

Now, we consider Eq. (4) as  

 
ℒ[𝑋(𝑡)] +𝒩[𝑋(𝑡)] = 𝑔(𝑡) ,                                     (7) 

 

where ℒ with the property ℒ𝑢 = 0 when 𝑢 ≡ 0, denotes the auxiliary linear 

operator (Ghorban, 2008; Liao, 2003) with respect to 𝑢, 𝒩 is a nonlinear 

continious operator with respect to 𝑢 and 𝑔(𝑡) is the source term. We then 

construct a family of explicit iterations as:  

 
ℒ[ 𝑋𝑛+1(𝑡) − 𝑋𝑛(𝑡) ] = ℎ𝐻(𝑡)𝒜[𝑋𝑛(𝑡)] ,       𝑛 = 0,1,2,…           (8) 

 
with the boundary condition 

 

𝐶𝑋𝑛+1(𝑡0) + 𝐷𝑋𝑛+1(𝑡𝑓) = 𝐸,       𝑛 = 0,1,2,…                  (9) 

where 

 

𝒜[𝑋𝑛] = 𝑋̇𝑛 − 𝐴̂𝑋𝑛 − 𝐹(𝑋𝑛, 𝑡).                                          (10) 

 

𝐻(𝑡) ≠ 0 is an auxiliary function (Ghorbani, 2008) which affects on the 

representation form of the solutions. In this paper for simplicity, we 

take 𝐻(𝑡) = 1. ℎ ≠ 0 is an auxiliary parameter called convergence-control 

parameter (Liao, 2003) which affects on the convergence rate and region. It 
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should be emphasized that the family of implicit iterations can be 

constructed as follows: 

 

ℒ[ 𝑋𝑛+1(𝑡) − 𝑋𝑛(𝑡) ] = ℎ𝐻(𝑡){ℒ[𝑋𝑛(𝑡)] +𝒩[𝑋𝑛+1(𝑡)] − 𝑔(𝑡)}.      (11) 

 

Accordingly, the successive approximations 𝑋𝑛(𝑡)  𝑛 ≥ 1, will be 

readily calculated by choosing the zero component 𝑋0(𝑡). Therefore, the 

exact solution can be obtained by using  

 

𝑋(𝑡) = lim𝑛→∞ 𝑋𝑛(𝑡)                                                    (12) 

 

The convergence of the sequence constructed by the PIM to the 

solution of the problem (4) is guaranteed by the following theorem (details 

can be found in Saberi-Nadjafi and Ghorbani, 2010).  

 

Theorem 1. Assume that for every   𝑛 , 𝑋𝑛 ∈ 𝐶[𝑡0, 𝑡𝑓 ]  and {𝑋̇𝑛(𝑡) }  is 

uniformly convergent. If the sequence (8) produced by the parametric 

iteration method  converges, then the limit is the exact solution of the 

problem (4). 

 

Proof:  If the sequence {𝑋𝑛(𝑡)} converges, let  

 

𝑌(𝑡) = lim𝑛→∞ 𝑋𝑛(𝑡) ,                                              (13) 

 

then we have 

 
𝑌(𝑡) = lim𝑛→∞ 𝑋𝑛+1(𝑡) ,                                         (14) 

 

ℒ  is linear, so using (13) and (14), we have 

 
 lim
𝑛→∞

 ℒ[ 𝑋𝑛+1(𝑡) − 𝑋𝑛(𝑡) ] = 0,                                 (15) 

 

From (15) and also the relation (8), we can obtain 

 

𝑙𝑖𝑚
𝑛→∞

ℒ[ 𝑋𝑛+1(𝑡) − 𝑋𝑛(𝑡) ] = ℎ𝐻(𝑡) 𝑙𝑖𝑚
𝑛→∞

𝒜[𝑋𝑛(𝑡)] = 0.              (16) 

 

Because ℎ ≠ 0 and 𝐻(𝑡) ≠ 0 for all 𝑡, (16) gives us that 

 

𝑙𝑖𝑚
𝑛→∞

𝒜[𝑋𝑛(𝑡)] = 0.                                                         (17) 
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From continuity of the operator 𝐹, it follows that 

 

 

𝑙𝑖𝑚
𝑛→∞

𝒜[𝑋𝑛(𝑡)] = 𝑙𝑖𝑚
𝑛→∞

(𝑋𝑛
′ − 𝐴̂𝑋𝑛 − 𝐹(𝑋𝑛, 𝑡))           

                           = ( 𝑙𝑖𝑚
𝑛→∞

𝑋𝑛)
′
− 𝐴̂ ( 𝑙𝑖𝑚

𝑛→∞
𝑋𝑛) − 𝐹 ( 𝑙𝑖𝑚

𝑛→∞
𝑋𝑛, 𝑡)                       (18) 

                           = 𝑌̇(𝑡) − 𝐴̂𝑌(𝑡) − 𝐹(𝑌(𝑡), 𝑡).                                                 
 

Now, from (17) and (18), we get 

 

𝑌̇(𝑡) − 𝐴̂𝑌(𝑡) − 𝐹(𝑌(𝑡), 𝑡) = 0.                                          (19) 

 

Furthermore, according to (9), 𝑌(𝑡) satisfies the boundary condition of (4): 

 

𝐶 𝑙𝑖𝑚
𝑛→∞

𝑋𝑛+1(𝑡0) + 𝐷 𝑙𝑖𝑚
𝑛→∞

𝑋𝑛+1(𝑡𝑓) = 𝐸  ⟹  𝐶𝑌(𝑡0) + 𝐷𝑌(𝑡𝑓) = 𝐸.     (20) 

 

Thus, (19) and (20) confirm that 𝑌(𝑡) i.e. the limit of the PIM sequence is 

the exact solution of the problem (4). ■ 

  

3. A SPECTRAL PIM 

In general, the successive iterations of the standard PIM for 

nonlinear problems may be complex, so that the resulting integrals may not 

be performed analytically. Moreover the convergence region of the 

solutions may be small. The spectral collocation method seems to be a good 

suggestion to improve the approximations. So, we apply it to discretize the 

sequence of the implicit PIM (11). The developed technique will transform 

the differential equations to algebraic equations which is solvable by usual 

methods like the Newton method.  

 

Briefly, we mention the main idea of the spectral collocation 

method (Trefethen, 2000). Consider the basis functions 𝜙𝑗(𝑡), 𝑗 =

1,2,… ,𝑁  that are polynomials of degree 𝑁 − 1  (more discussion about 

orthogonal basis can be found in Khellat and Vasegh, 2011). These 

functions satisfy the conditions  𝜙𝑗(𝜏𝑖) = 𝛿𝑗,𝑖 , where 𝛿𝑗,𝑖  is the usual 

Kronecker delta function. Here 𝜏𝑖 = 𝑐𝑜𝑠 (
(𝑖−1)𝜋

𝑁−1
) , 𝑖 = 1,… ,𝑁,  are the 

Chebyshev-Lobatto nodes. Note that 𝜏1 = 1  and 𝜏𝑁 = −1  and every 

interval [𝑎, 𝑏]  should be transformed to [−1,1] . Now, the polynomial 

𝑝(𝑡) = ∑ 𝑥𝑗𝜙𝑗(𝑡)
𝑁
𝑗=1  interpolates the data points (𝜏𝑗 , 𝑥𝑗) ,  𝑗 = 1,… ,𝑁 , of 
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unknown function  𝑥(𝑡) , i.e. 𝑝(𝐭) = 𝐱 where 𝐭 = (𝜏1, 𝜏2, … , 𝜏𝑁)  and 

𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑁).  
 

By introducing the 𝑟th
 order differentiation matrix 𝐷(𝑟) (Weideman 

and Reddy, 2000) (with  𝜙𝑗
(𝑟)(𝜏𝑖) as the 𝑖𝑗th

 element), the 𝑟th
 derivative of 

interpolating polynomial is represented as  𝑝(𝑟)(𝐭) = 𝐷(𝑟)𝐱  (for more 

details see Trefethen, 2000; Weideman and Reddy, 2000). Let 𝐼  be an 

identity matrix of order  𝑁 , then the interpolating polynomials and their 

derivatives at the interior nodes (𝑚1 = 1,… ,𝑁 − 1 or 𝑚2 = 2,… ,𝑁) are 

 

𝑝(𝜏𝑚1
) = 𝐱𝑚1

= I𝑚1,:𝐱 ,        𝑝(𝜏𝑚2
) = 𝐱𝑚2

= I𝑚2,:𝐱 

𝑝(𝑟)(𝜏𝑚1
) = 𝐷(𝑟)𝑚1,:𝐱  ,         𝑝

(𝑟)(𝜏𝑚2
) = 𝐷(𝑟)𝑚2,:𝐱 . 

 

As noted in MATLAB  A𝑚 ,  ∶ denotes the 𝑚th
 row of matrix 𝐴. The 

boundary conditions that involve the values of the interpolating 

polynomials can be handled by using the formulas 𝑝 ( 𝜏1 )= 𝐼1,:𝐱  and 

𝑝(𝜏𝑁)= 𝐼N,:𝐱. To illustrate the method, we first consider (4) as below 

 

ℒ[𝑋(𝑡)] = 𝑋̇ − 𝐴̂𝑋,     𝒩[𝑋(𝑡)] = −𝐹(𝑋, 𝑡),      𝑔(𝑡) ≡ 0,               (21) 

ℒ𝑏𝑐[𝑋(𝑡0), 𝑋(𝑡𝑓)] = 𝐶𝑋(𝑡0) + 𝐷𝑋(𝑡𝑓),    

𝒩𝑏𝑐[𝑋(𝑡0), 𝑋(𝑡𝑓)] ≡ 0,  

 𝑔𝑏𝑐 = 𝐸.                                                                                   (22) 

 

The implicit PIM equation (11) and the linear boundary conditions 

are transformed into the following matrix equations: 
 

ℒ[𝑋𝑛+1
𝑚 ] = (1 + ℎ)ℒ[𝑋𝑛

𝑚] + ℎ{𝒩[𝑋𝑛+1
𝑚 ] − 𝑔(𝑡𝑚)},                 (23) 

ℒ𝑏𝑐[𝑋𝑛+1
𝑚̅ ] = (1 + ℎ)ℒ𝑏𝑐[𝑋𝑛

𝑚̅] − ℎ𝑔𝑏𝑐 ,                                      (24) 

 

where 𝑚 = {𝑚1, … ,𝑚1⏟      
𝑘

, 𝑚2, … ,𝑚2⏟      
𝑘

}  and 𝑚̅ = {𝑁,… ,𝑁⏟    
𝑘

, 1, … ,1⏟  
𝑘

} . Now the 

equations (23) and (24) can be collected into the following single nonlinear 

matrix equation 

. 
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(
ℒ
ℒ𝑏𝑐

)𝑋𝑛+1 = (1 + ℎ)(
ℒ
ℒ𝑏𝑐

)𝑋𝑛 + ℎ [(
𝒩𝑋𝑛+1
0

) − (
𝑔(𝑡𝑚)
𝑔𝑏𝑐

)],      (25) 

 
which is called the Implicit Spectral Parametric Iteration Method (ISPIM). 

Here 𝑋𝑛+1 is defined as 

 

𝑋𝑛+1 = {𝑋𝑛+1(𝜏1),… , 𝑋𝑛+1(𝜏𝑁)}.                                   (26) 

 

The approximate solution 𝑋𝑛+1 can be found easily by solving the 

following nonlinear system using the Newton iterative method. 

 

𝑭(𝑋𝑛+1) = [
ℒ[𝑋𝑛+1

𝑚 ] − (1 + ℎ)ℒ[𝑋𝑛
𝑚] − ℎ{𝒩[𝑋𝑛+1

𝑚 ] − 𝑔(𝑡𝑚
 )}

ℒ𝑏𝑐[𝑋𝑛+1
𝑚̅ ] − (1 + ℎ)ℒ𝑏𝑐[𝑋𝑛

𝑚̅] + ℎ𝑔𝑏𝑐
] 

= 0,                                                                                      (27) 

Here the Jacobian is 

𝜕𝑭/𝜕𝑋𝑛+1 = [
ℒ − ℎ𝐼𝑚,:diag(𝒩𝑋𝑛+1)

ℒ𝑏𝑐
],                             (28) 

where 𝑑𝑖𝑎𝑔  denotes the diagonal matrix of size 𝑁 × 𝑁, respectively and 

𝒩𝑋𝑛+1 denotes the partial derivative of 𝒩(𝑋𝑛+1, 𝑡) with respect to 𝑋𝑛+1.  

 

The above iterative procedure will start by choosing the initial 

approximation  𝑋0  that satisfies the boundary condition (9). The initial 

approximation we use here, is determined by solving the linear system 

ℒ[𝑋0]  =  𝑔  where 𝑔 = [𝑔(𝑡), 𝑔𝑏𝑐  ]
𝑇  (the superscript 𝑇  denotes the 

transpose). Thus, the successive approximations 𝑋𝑛+1(𝑡) for 𝑛 ≥  0 can be 

obtained by starting from 𝑋0. 

 

In the case of weakness of the approximate solutions of the ISPIM 

(for instance see the last example), the augmented parameter ℎ can play an 

important role in the frame of the method. A valid region of ℎ for every 

physical problem can be found by plotting the solution or its derivatives 

versus the parameter ℎ in some points (Saberi-Nadjafi and Ghorbani, 2010; 

Liao, 2003)). Mathematical properties of such curves have been discussed 

by Abbasbandy et al. 2011. An optimal value of the parameter ℎ can be 

determined at the order of approximation by considering the residual error 

as 
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𝑅𝑒𝑠(ℎ) = ∫ (ℒ[𝑋𝑛(𝑡; ℎ)] +𝒩[𝑋𝑛(𝑡; ℎ)] − 𝑔(𝑡) )
2d𝑡

𝑡𝑓
𝑡0

.              (29) 

and minimizing it by imposing the requirement  
d𝑅𝑒𝑠(ℎ)

dℎ
 =  0 . For a useful 

context on this subject see Liao, 2010. 

 

4. ILLUSTRATIVE EXAMPLES 

In this section, to demonstrate the efficiency and advantages of the 

proposed ISPIM, in several examples we compare our results with those of 

the direct methods. We mention that all the tests here are started from the 

initial approximation 𝑋0  =  ℒ
−1 𝑔, performed in MATLAB with machine 

precision 10−16 . All computations will be terminated when the current 

approximation satisfies ∥ 𝑋𝑛+1 − 𝑋𝑛 ∥∞ ≤ 10
−16, where 𝑋𝑛 is the solution 

of the 𝑛th
 iteration. 

 

Example 4.1. First consider the following nonlinear problem which is 

known in the literature likes Zhang and He-ping, 2009; Sirisenb, 1973.  

 

𝑀𝑖𝑛   𝐽 =  ∫ (𝑥1
2 + 𝑢2)𝑑𝑡

2.5 

0
                                            

(30) 

 

𝑠. 𝑡𝑜:   {
𝑥̇1 = 𝑥2                                                           ,   𝑥1(0) = −5 

 
𝑥̇2 = −𝑥1 + 1.4𝑥2 −  0.14𝑥2

3 + 4𝑢          ,    𝑥2(0) = −5.
       (31) 

 

The resulting TPBVP, in view of (3), becomes 

 

{
 
 

 
 𝑥̇1 = 𝑥2                                                                                 𝑥1

(0) = −5,

𝑥̇2 = −𝑥1 + 1.4𝑥2 −  0.14𝑥2
3 − 8𝜆2                             𝑥2(0) = −5,

𝜆̇1 = −2𝑥1 + 𝜆2                                                                  𝜆1(2.5) = 0,

𝜆̇2 = −𝜆1 − 1.4𝜆2 + 0.42 𝑥2
2 𝜆2                                     𝜆2(2.5) = 0.

     (32) 

 

In order to solve (32) using the above ISPIM, according to (5), (6), 

(21) and (22), we choose 𝑔(𝑡) ≡ 0 and 

 

𝐴̂ = (

1 0
0 1

 0    0
 0    0

0 0
0 0

−1 0
  0 −1

) , 𝐹(𝑋, 𝑡) = (

−𝑥1+𝑥2
−𝑥2 − 𝑥1 + 1.4𝑥2 −  0.14𝑥2

3 − 8𝜆2
𝜆1 − 2𝑥1 + 𝜆2

𝜆2 − 𝜆1 − 1.4𝜆2 + 0.42 𝑥2
2 𝜆2

)   
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𝐶 = (

1     0     0     0
0     1     0     0
0     0     0     0
0     0     0     0

) ,     𝐷 = (

0     0     0     0
0     0     0     0
0     0     1     0
0     0     0     1

) ,    𝐸 = (

−5
−5
0
0

) .                 (33)  

 

The states and control obtained by ISPIM and the MATLAB bvp4c 

solver are plotted in Figure 1 which confirm the validity of our solutions. 

This problem has been solved in Zhang and He-ping, 2009 by Chebychev-

Legendre direct pseudospectral method and the best reported cost is 29.381. 

Also an older solution by Sirisenb, 1973 reported the optimal cost as 

29.451. The optimal cost functional of ISPIM by 𝑁 = 30 and ℎ = −1 is 

29.3760 which is better than both of the above mentioned solutions. 

 

Figure 1: Comparison of the States and control of bvp4c and ISPIM for Example 4.1 

 

Example 4.2. Consider the following nonlinear optimal control problem 

from Garg et al., 2010 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝐽 =  −𝑦(𝑡𝑓)                                                 (34) 

 

subject to the dynamic constraints 

 

𝑦̇ =
5

2
[ − 𝑦 + 𝑦𝑢 − 𝑢2 

 
 ],            𝑦(0) = 1.                    (35) 

 

where 𝑡𝑓 = 2. The analytic solution of this problem is (Garg et al., 2010) 



Numerical Solution of a Class of Nonlinear Optimal Control Problems 

 

 Malaysian Journal of Mathematical Sciences 269 

 

𝑦∗(𝑡) =
4

𝑎(𝑡)
,       𝑢∗(𝑡) = 1

2
 𝑦∗(𝑡),        𝜆∗(𝑡) = −1

𝑏
 𝑒(2 ln(𝑎

(𝑡))−
5𝑡

2
)     (36) 

 

where 𝑎(𝑡) = 1 + 3𝑒5𝑡 2⁄  and  𝑏 = 9𝑒5 + 𝑒−5 + 6.  

 

According to (3), the TPBVP arising from Pontryagin's minimum 

principle is: 

 

{
𝑦̇ = −5

2
 𝑦 + 5

8
𝑦2 ,                      𝑦(0) = 1,   

𝜆̇ = 5

2
𝜆 − 5

4
𝜆𝑦 ,                          𝜆(2) = −1.

                        (37) 

 

The obtained results applying the ISPIM can be seen in Figure 2. In 

this figure we plot the log10  of the 𝐿∞-norm errors for the state, costate, 

control and cost functional i.e. 𝐸𝑦 = log10‖𝑦(𝑡) − 𝑦
∗(𝑡)‖∞ ,  𝐸𝑢 =

log10‖𝑢(𝑡) − 𝑢
∗(𝑡)‖∞ ,  𝐸𝜆 = log10‖𝜆(𝑡) − 𝜆

∗(𝑡)‖∞  and 𝐸𝐽 =

log10‖𝐽 − 𝐽
∗‖∞ . The high accuracy of the ISPIM for all variables and cost 

is shown in Figure 2. 

 

 
Figure 2: The log10  of the infinity norm error of the state, costate, control and cost for Example 4.2 
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This example has been solved utilizing the LGL pseudospectral 

method using the NLP solver SNOPT in Garg et al., 2010 where for 

𝑁 ≤ 15 the minimum error of the state, costate and control is  10−6, 10−2 

and 10−3 respectively, and these values for the ISPIM are 10−8, 10−11 and 

10−8. Also same reference emphasizes that the approximated costate by the 

LGL pseudospectral method for this problem does not converge at all. As 

mentioned in section 1 many of direct methods have difficulties in 

computing an accurate costate. The ISPIM has not this drawback. 

 

Example 4.3.   Consider the following nonlinear system (Tang, 2005) 

 

𝑚𝑖𝑛  𝐽 =
1

2
∫ (𝑥1

2 + 𝑥2
2 + 𝑢2)𝑑𝑡

10

0
.                                          (38) 

s. to      (
𝑥1̇
𝑥2̇
) = (

0 1
−1 1

) (
𝑥1
𝑥2
) + (

𝑥1𝑥2
𝑥2
2 ) + (

0
1
)𝑢,                (39) 

 

where the initial states are 𝑥1(0) = −0.8 and 𝑥2(0) = 0 . The resulting 

TPBVP in view of (3), becomes 

 

{
 
 

 
 𝑥̇1 = 𝑥2 + 𝑥1𝑥2,                                                  𝑥1(0) = −0.8 ,

𝑥̇2 = 𝑥2 − 𝑥1 + 𝑥2
2 − 𝜆2 ,                                   𝑥2(0) = 0,       

𝜆̇1 = −𝑥1 − 𝑥2𝜆1 + 𝜆2 ,                                     𝜆1(10) = 0,     

𝜆̇2 = −𝑥2 − 𝜆1 − 2𝑥2𝜆2 − 𝑥1𝜆1 − 𝜆2 ,          𝜆2 (10) = 0.      

            (40) 

 
 

 
Figure 3: The region of ℎ (ℎ ∈ (−1.2,−0.8)) with the minimum residual error for Example 4.3 
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The residual (29) with respect to ℎ  and the best region of ℎ  are 

shown in Figure 3. By choosing these values of ℎ, not only the convergence 

is concluded, but also we can say that the corresponding solution is more 

accurate. Thus, by the auxiliary parameter ℎ we can control and adjust the 

region and the rate of convergence. 

  

Also according to (29), The approximate optimal values of ℎ for the 

different 𝑁, are reported in Table 1. 
 

 

TABLE 1: Approximate optimal values of ℎ for the different 𝑁 
 

N Optimal 𝒉 

2

0 

-0.85 

3

0 

-0.96 

4

0 

-1.00 

5

0 

-1.00 

6

0 

-1.00 

 

To show the validity of the results of the ISPIM, the solutions of the 

ISPIM and those of the MATLAB bvp4c solver are compared in Figure 4. 

 

 
 

Figure 4: Comparison of solutions of bvp4c and the ISPIM ( ℎ = −0.96 and 𝑁 = 30) for Example 4.3 
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This problem has been solved in Tang, 2005 and the best reported 

cost functional is 3.26285. The cost functional obtained by the ISPIM for 

different 𝑁 is listed in Table 2.  

  
TABLE 2: Approximate cost functional for different 𝑁 obtained by ISPIM 

 
𝑵 𝟏𝟓 𝟐𝟎 𝟐𝟓 30 

𝑱𝑨𝒑𝒑𝒓𝒐𝒙 3.183804 3.199315 3.199061 3.199058 

 

 

Example 4.4. Consider the continuous Stirred-Tank Chemical Reactor 

system (Kirk, 1970; Elnagar and Kazemi, 1998) 

𝑚𝑖𝑛  𝐽 = ∫ (𝑥1
2 + 𝑥2

2 + 0.1𝑢2)𝑑𝑡
0.78

0
                                (41) 

𝑠. 𝑡𝑜:   {

𝑥̇1 = −2(𝑥1 + 0.25) + (𝑥2 + 0.5) exp [
25𝑥1

𝑥1+2
] − (𝑥1 + 0.25)𝑢,

 

𝑥̇2 = 0.5 − 𝑥2 − (𝑥2 + 0.5) exp [
25𝑥1

𝑥1+2
]                                           

        (42) 

 
with the initial states 𝑥1(0) = 0.05 and 𝑥2(0) = 0. The resulting TPBVP 

is: 

{
 
 
 

 
 
 𝑥̇1 = 0.39[

 
 (−2𝑥1 − 0.5) + (𝑥2 + 0.5) exp [

25𝑥1

𝑥1+2
] − 5𝜆1(𝑥1 + 0.25)

2 ]                 

𝑥̇2 = 0.39[
 
  0.5 − 𝑥2 −

(𝑥2 + 0.5) exp [
25𝑥1

𝑥1+2
] ]                                                             

𝜆̇1 = 0.39[
 
 − 2𝑥1 + 4.5𝜆1 + 10𝜆1𝑥1 + [(𝑥2 + 0.5)

50

𝑥1+2
exp [

25𝑥1

𝑥1+2
]](𝜆2−𝜆1)]     

𝜆̇2 = 0.39[
 
 2𝑥2 + 𝜆1 exp [

25𝑥1

𝑥1+2
] + 𝜆2 (−1 − exp [

25𝑥1

𝑥1+2
]) ].                                       

   (43) 

 

with the boundary conditions: 

 

{

𝑥1(0) = 0.05            
𝑥2(0) = 0                  

𝜆1 (0.78) = 0            
𝜆2 (0.78) = 0.           

                                           (44) 

 

The cost functional when ℎ = −1, by 20 points is about 0.027355 

and by 100 points is about 0.027266. Noticing to the reported cost at 1998 

by Elnagar et al. as 0.02662   (Elnagar and Kazemi, 1998) and more 

interestingly 0.02660 at 1970 by Kirk, 1970, clearly the obtained cost by 

ISPIM is dissatisfactory.  
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However, adjusting the accelerator parameter ℎ, we can obtain an 

excellent result. Choosing  ℎ = −0.28, the cost will be 0.026606 which is 

better than both of the above reports (Kirk, 1970; Elnagar and Kazemi, 

1998). This also confirms the preference of the ISPIM over the variational 

iteration method where ℎ = −1 is kept fixed there.  

 

5. CONCLUSION 

In this paper, we proposed an implicit spectral parametric iteration 

method for solving a class of nonlinear optimal control problems. The 

auxiliary parameter h plays an important role within the frame of the 

method, which can lead to a fast convergence. The obtained results confirm 

that the ISPIM is a promising tool to handle these kinds of problems. More 

interestingly, it avoids tedious computational works. Moreover, the 

developed algorithm can further be utilized for a wider class of the OCPs. 
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