
Apr 03, 2018UPM-Malaysia 1

Mohammad Mehdi Rashidi
University of Birmingham, School of Engineering

Application of Lattice Boltzmann Method for Solving Mathematical
and Engineering Problems



2

Introduction

N-S and LBM Equations

Governing Equations

Calculation Technique
Results and Discussion

Topics



Linear Problems

Non-linear Problems

3

Non-linear DEs 

Linear DEs 



The Most Difficult PDEs in Engineering

4

Navier-Stokes Equations (N-S)
PDE
Nonlinear
Coupled
Parabolic (unsteady heat conduction, boundary layer problems)
Elliptic (wave propagation, incompressible flows)
Hyperbolic (compressible flows and shock waves)
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Common Simulation Tools

Discretization Multi-Scale 
Analysis

Difference 
Equations

Discrete 
Model(LGC
A or LBM)

Partial 
Differenti

al 
Equations

(NS)

Partial 
Differentia

l 
Equations

(NS)



6

Macroscopic Methods

Navier-Stokes Equations (FD, FV, FE,BE)

Mesoscopic Methods

Lattice Boltzmann method

Microscopic Methods

Molecular dynamics

Different Approaches
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PHYSICAL CONFIGURATION

,T C 

wC

wT

0B
We assume the steady, axially
symmetric, incompressible flow of an
electrically conducting fluid with heat
and mass transfer flow past a rotating
porous disk. Consider the fluid is infinite
in extent in the positive z-direction. The
fluid is assumed to be Newtonian. The
external uniform magnetic field B0

which is considered unchanged by
taking small magnetic Reynolds
number is imposed in the direction
normal to the surface of the disk. The
induced magnetic field due to the
motion of the electrically-conducting
fluid is negligible. The uniform suction is
also applied at the surface of the disk.

Configuration of the flow and 
geometrical coordinates.
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Governing Equations
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Governing Equations

Using the cylindrical polar coordinates (r, ϕ, z), the disk rotates
with constant angular velocity (Ω) and is placed at z=0, where z
is the vertical axis in the cylindrical coordinate system with r and
ϕ as the radial and tangential axes. The components of the flow
velocity (u, v, w) are in the directions of increasing (r, ϕ, z)
respectively. The P is pressure, ρ is the density of the fluid, T
and C are the fluid temperature and concentration. ν is the
kinematic viscosity of the ambient fluid, σ is the electrical
conductivity, k is the thermal conductivity, cp is the specific heat
at constant pressure, D is the molecular diffusion coefficient, KT

is the thermal diffusion ratio, Cs is the concentration
susceptibility, and Tm is the mean fluid temperature. The
appropriate boundary conditions subjected to uniform suction w0

through the disk are introduced as:
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Governing Equations

00, , , , at 0,w wu v r w w T T C C z        

0, 0, , , at ,u v P P T T C C z         

 We consider the temperature differences within the flow are such that the term T 4

can be expressed as a linear function of temperature. This is accomplished by
expanding it in a Taylor series about T∞ as follows [16]:

4 4 3 2 24 ( ) 6 ( )T T T T T T T T         

By neglecting second and higher-order terms in the above equation beyond the first 
degree in (T ‒ T∞), we obtain

4 3 44 3 ,T T T T    

 
Thus, according to Eqns. (9)-(10), Eq. (5) reduces to
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Governing Equations
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Governing Equations
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 where M = σ B0
2 / Ω ρ is the magnetic interaction parameter, Pr = ν ρ

cp / k is the Prandtl number, Sc = ν / D is the Schmidt number, Sr = D
(T∞ ‒ Tw) KT / ν Tm (C∞ ‒ Cw) is the Soret number, Du = D (C∞ ‒ Cw)
KT / Cs cp ν (T∞ ‒ Tw) is the Dufour number, and F, G, H, θ, and φ are
non-dimensionless functions of modified dimensionless vertical
coordinate η.



13

Governing Equations
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where Ws = w0 / (ν Ω)1/2 is the suction/injection parameter and 
Ws < 0 shows a uniform suction at the disk surface.

The transformed boundary conditions are given as
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Why lbm is important?

N-S: 
Physical problem (E, P, H)
Discretisation (FD, FV, FE, BE, CO, SP)
Solution method (EX, IM, CN)
Accuracy
Central, Upwind, Mix
Advantage: Well known
Disadvantage: More time for learning technics, Well 
known!

LBM:
Advantage: Less time for learning technics
Limitations: High-Mach number flows, consistent thermo-
hydrodynamic scheme is absent
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Propagation 

• In lattice gases, 
particles live on the 
nodes of a discrete 
lattice. The particles 
jump from one lattice 
node to the next, 
according to their 
(discrete) velocity.

Collision

• Then, the particles 
collide and get a new 
velocity. This is 
the collision phase. 
Hence the simulation 
proceeds in an 
alternation between 
particle propagations 
and collisions

LGCA

Lattice Boltzmann Method
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Lattice gases solve the 
N.S. equations of fluid 
flow. But; The major 

disadvantage of lattice 
gases for common fluid 
dynamics applications is 
the occurrence of noise. 

The lattice Boltzmann 
method solves this 

problem by pre-averaging 
the lattice gas. It 

considers 
particle distributions that 
live on the lattice nodes, 
rather than the individual 

particles.

From LGCA to LBM

Lattice Boltzmann Method
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D1Q2

D2Q7

D2Q9

D3Q15

D3Q19

LATTICE

Lattice Boltzmann Method
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Lattice Boltzmann Method
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19

Collision

Streaming

Lattice Boltzmann Method
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D2Q9 Lattice Model

Lattice Boltzmann Method
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D2Q9 Lattice Model

Lattice Boltzmann Method
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22
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Lattice Boltzmann Method
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Periodic BCs

No-slip BCs

Slip BCs

Velocity and Pressure BCs

Boundary Conditions

Lattice Boltzmann Method
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A scheme view of the U-shaped enclosure with a Heating Obstacle considered in the present study.

A New Heat Transfer Problem by LBM

Effect of Hot Obstacle Position on Natural Convection Heat Transfer of 
MWCNTs-Water Nanofluid in U-Shaped Enclosure Using BM 
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Different Cases
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present work with uniform grid size of δx=δy. The discrete particle velocity vectors ei is defined as[i]

Governing Equations
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where ρ is the lattice fluid density, T is the lattice fluid temperature and the 
weight function wi has the values of ଴ , ଵିସ , ହି଼

௜ ௜ ௬ ௠

where ρ, gy, β and T stand for local density, gravitational acceleration 
vector, thermal expansion coefficient and local temperature, respectively. 

௠ ௛ ௖ is the average temperature
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Governing Equations
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Governing Equations
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ଶ,௡ ସ,௡

ହ,௡ ଻,௡
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Boundary Conditions
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Ra
Number of 

nodes

Average Nusselt 

number

Percentage of 

error 

|ே௨೙೐ೢିே௨೚೗೏|

ே௨೙೐ೢ
×

100

1000 80 × 80 2.784583

100 × 100
2.775920 0.312077

120 × 120 2.770494 0.195850

140 × 140 2.766754 0.135176

160 × 160
2.764148 0.094279

1,000,000 80 × 80 7.297489

100 × 100 7.289082 0.115337

120 × 120
7.278520 0.145112

140 × 140 7.265810 0.174929

160 × 160 7.258021 0.107316

Grid Study
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Comparison of the local Nusselt number along the hot surface between the 

present results and Mahmoodi and Hashemi.

0

2

4

6

8

10

 

 

L
oc

a
l N

us
se

lt 
nu

m
b

e
r

Ra=103

 (Present study, AR=0.4)

A B C D

 (Mahmoodi and Hashemi, 2012, AR=0.4)

 (Mahmoodi and Hashemi, 2012, AR=0.2)
 (Present study, AR=0.2)

0

1

2

3

4

5

6

7

8

9

10

 

 

DCB

 (Mahmoodi and Hashemi, 2012, AR=0.2)

L
o

ca
l N

us
se

lt 
nu

m
be

r

Ra=104

A

 (Mahmoodi and Hashemi, 2012, AR=0.4)
  (Present study, AR=0.4)

 (Present study, AR=0.2)

0

2

4

6

8

10

12

DCBA

 

 

L
o

ca
l N

us
se

lt 
nu

m
b

e
r

Ra=105

 (Present study, AR=0.2)
 (Mahmoodi and Hashemi, 2012, AR=0.2)
 (Present study, AR=0.4)
 (Mahmoodi and Hashemi, 2012, AR=0.4)

0

5

10

15

20

25

DCB

 

 

L
o

ca
l N

us
se

lt 
nu

m
be

r

Ra=106

 (Present study, AR=0.2)

A

 (Mahmoodi and Hashemi, 2012, AR=0.2)
 (Present study, AR=0.4)
 (Mahmoodi and Hashemi, 2012, AR=0.4)

Results



34

ସଷ
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Results

Velocity contours for different 𝑅𝑎
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Isotherms for case 5, at (a) ଷ, (b) 

ସ, (c) ହ and (d) ଺

Results
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Streamlines for different cases at and ଺

Results
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Isotherms for different cases at and ଺

Results
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