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For each subset, given a density matrix

Are these compatible?

H

Si ⊆ {1, . . . , N}

ρSi

The Quantum Marginal Problem

think finite-
dimensional

∃ ρ[N ] : tr[N ]\Si
ρ[N ] = ρSi ?
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• studied since beginnings of quantum theory

• computionally difficult
QMA-complete (Liu, 2006) ⇒NP-hard

• fermionic version, N-representability problem
quantum chemistry
QMA-complete (Liu, Ch.& Verstraete, 2007)

• partial understanding 
Pauli principle

The Quantum Marginal Problem

occupation numbers

λi ≤ 1

currently in 
quantum 
information and 
computation

S(ρ12) + S(ρ23) ≥ S(ρ2) + S(ρ123)

v. Neumann entropy

Entropy inequalities 
(Lieb& Ruskai 1973, Pippenger 2003)



Collection of subsets of a set of particles
(overlapping)

Collection of subsets of a set of particles
(non-overlapping)

Fix subsets of the particles

For each subset, given a density matrix

Are these compatible?

ρSi

Si ∩ Sj = ∅

what if 
required to 
be pure?

∃ ρ[N ] : tr[N ]\Si
ρ[N ] = ρSi ?

yes!
ρ[N ] = ⊗iρSi



|ψ̃� := u1 ⊗ · · · ⊗ uN |ψ�

ρ1 ρ2 ρN

⇒  compatibility constraints 

depend only on eigenvalues λ(i) = (λ(i)
1 , . . . ,λ(i)

d ) ∈ Rd−1

λ(i)
1 ≥ λ(i)

2 ≥ ... ≥ λ(i)
d

One-Body Quantum Marginal Problem

Shape of set of admissible                                         ?              λ = (λ(1), · · · , λ(N)) ∈ Rm

Then                       compatible:ρ̃i := uiρiu
†
i tr[N ]\i|ψ̃��ψ̃| = ρ̃i

If                             compatible:ρi tr[N ]\i|ψ��ψ| = ρi



H

ψ

Rm

state local 
eigenvaluesψ �→ λ

Eigenvalue Polytopes

convex polytope
Kirwan convexity theorem for moment map

inscribing inequalities 
                (Berenstein-Sjamaar 2000, Klyachko 2004, Daftuar & Hayden 2004)

representation theory (Ch. & Mitchison, Klyachko 2004)

probability measure (Ch., Doran, Kousidis, Walter 2012)



Eigenvalue Polytopes
(uA, uB , uC) �→ uA ⊗ uB ⊗ uC

U(dA)× U(dB)× U(dC) → U(dAdBdC)

u(dA)× u(dB)× u(dC) → u(dAdBdC)

(xA, xB , xC) �→ xA ⊗ 1B ⊗ 1C

+1A ⊗ xB ⊗ 1C

+1A ⊗ 1B ⊗ xC

moment 
map

CPdAdBdC−1
∪

(λA,λB ,λC) ←� (ρA, ρB , ρC) ← |ψ��ψ|ABC

t∗+(dA)× t∗+(dB)× t∗+(dC) ⊂ u∗(dA)× u∗(dB)× u∗(dC) ← u∗(dAdBdC)

positive Weyl 
chamber

Image of coadjoint orbit restricted to positive 
Weyl chamber is convex polytope 
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N = 3 d = 2

Eigenvalue Distributions of Reduced Density Matrices
Matthias Christandl, Brent Doran, Stavros Kousidis, and Michael Walter

Contact: mwalter@itp.phys.ethz.ch

Introduction

Eigenvalue Distributions of Reduced Density Matrices

Given a random pure state ψABC , what is the distribution of the
eigenvalues of its reduced density matrices ρA, ρB, ρC?

ρA

ρBρC ψABC

� probability measure supported on convex polytope (moment polytope)

Motivation

�Thermodynamics, statistical physics (Lloyd–Pagels ’88, Hayden–Preskill

’07) � distribution of quantum conditional entropies, typical behavior of

canonical states, . . .

�Quantum marginal problem (Christandl–Mitchison ’04, Klyachko ’04,

Daftuar–Hayden ’04)

MAIN RESULT

Algorithm to compute exact eigenvalue distribution for any number of
particles and arbitrary statistics.

Examples

Pure State of Three Qubits

Higuchi–Sudbery–Szulc ’03:
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Result

The joint density of the maximal eigenvalues is proportional to
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c − 1

2
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2min{a, b, c} + 1− a − b − c top

2min{a, b, c}− 1 bottom

where a = λA
max

, b = λB
max

, c = λC
max

.

Mixed State of Two Qubits

Mixed state ρAB with eigenvalues λ1 > λ2 > λ3 > λ4.

Bravyi ’04:

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≤ λ1 + λ2
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max
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≤ 2λ1 + λ2 + λ3

|λA
max
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| ≤ λ1 − λ3, λ2 − λ4

Result

Joint density of the

maximal eigenvalues:

Pure State of Three Bosonic Qubits

ψABC ∈ Sym
3
(C2

)

random pure state
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Result

The density of the maximal eigenvalue is proportional to
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Illustration of Algorithm

1. Distribution of diagonal entry:

ρA
1,1

1

2
1

2. Take the derivative:

λA
max1

2
1

3. Multiply by v(λA
max

) = λA
max

− 1

2
(volume of corresp. Bloch sphere).

Technique

Notation

�Peig distribution of eigenvalues of reduced density matrices

�Pdiag distribution of diagonal entries of reduced density matrices

1� Derivative Principle

Eigenvalue distribution can be obtained from distribution of diagonal entries

by taking partial derivatives in the direction of the negative roots:

Peig = v(λ)

�
�

α>0

−∂α

�
Pdiag

Sketch of Proof

Stationary phase approximation of distribution of diagonal entries is

exact (Duistermaat–Heckman 82) and can be “inverted”.

2� Distribution of Diagonal Entries

�Probability density is volume function of family of convex polytopes

pdiag(δ
A, δB, δC) = vol {(pijk) : pijk ≥ 0,

�

ijk

pijk = 1,

�

jk

pijk = δAi ,
�

ik

pijk = δBj ,
�

ij

pijk = δCk }

� classical marginal problem

�Piecewise polynomial function

�Algorithm for its computation (Boysal–Vergne ’09)

General Algorithm for
Computing Eigenvalue Distributions of

Reduced Density Matrices

λA
1 + λB

1 ≤ 1 + λC
1 and cyclic

Higuchi, Sudbery&  Szulc 2003
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3 fermions in 6 modes H = Λ3(C6)

one-particle eigenvaluesλ1 ≥ λ2 ≥ . . . ≥ λ6

�

i

λi = 3

Dennis & Borland 1970

λ1 + λ6 = 1

λ2 + λ5 = 1

λ3 + λ4 = 1

λ5 + λ6 ≥ λ4

e.g. electrons hopping 
      on 3 sites

Pauli 1924

λ1 ≤ 1

occupation 
numbers in 
natural orbitals

(1, 1, 1, 0, 0, 0)
|0� ∧ |1� ∧ |2�
Slater determinant

λ5 + λ6 = λ4



Entanglement

LOCC: local operations and classical communication
      - well-motivated 
      - complicated definition
      - two parties solved (Nielsen majorisation)
      - three or more parties: unsolved (MREGS?)
SLOCC: stochastic LOCC
      - positive success probability (length doesn‘t matter)

      - easy characterisation

ψABC �→ ψ�
ABC

state transformations

ψABC �→ ψ�
ABC = ga ⊗ gb ⊗ gcψABC

matrices



Entanglement
entanglement class: set of states ψABC ↔ ψ�

ABC

entanglement class = orbit of  SL(dA)× SL(dB)× SL(dC)

3 qubits, 6 orbits:

1√
2
|000 + 111�

1√
2
|00 + 11�|0�

|000�

and permutations

fully separable

biseparable

GHZ

W
1√
3
(|001 + 010 + 100�)

4 qubits, infinite number of orbits
n qubits/fermions, exp(O(n)) many parameters

intractable!



state local 
eigenvaluesψ �→ λ

Entanglement Polytopes

convex polytope: entanglement polytope
Brion convexity theorem for moment map

Walter, Doran, Gross, Ch. 2012

subpolytope of quantum marginal polytope
computation using representation theory (difficult)        

ψ

RmEC ⊆ P(H)

Entanglement criterion: local eigenvalues not in polytope, 
implies state is not in corresponding entanglement class 



state local 
eigenvaluesψ �→ λ

Entanglement Polytopes

ψ

RmEC ⊆ P(H)

Entanglement criterion: local eigenvalues not in polytope, 
implies state is not in corresponding entanglement class 

uses local information only
finite number of polytopes
robust against experimental noise
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Entanglement Polytopes: 3 qubits

13

Covariant Degree Weight |GHZ� |W � |B1� |B2� |B3� |SEP�
f 1 (1, 1, 1) × × × × × ×
Hx 2 (2, 1, 1) × × × 0 0 0

Hy 2 (1, 2, 1) × × 0 × 0 0

Hz 2 (1, 1, 2) × × 0 0 × 0

T 3 (2, 2, 2) × × 0 0 0 0

∆ 4 (2, 2, 2) × 0 0 0 0 0

Table I. Three-qubit covariants—labeled as in [55, p. 33]—with their degree and weight, and their vanishing behavior on the quan-

tum states representing the six entanglement classes (× denotes non-vanishing). The invariant ∆ is Cayley’s hyperdeterminant,

which is closely related to the 3-tangle [14, 60].

Figure 5. Entanglement polytopes for three qubits: (a) GHZ polytope (entire polytope, i.e., upper and lower pyramid), (b) W

polytope (upper pyramid), (c) three polytopes corresponding to EPR pairs shared between any two of the three parties (three

solid edges in the interior), (d) polytope of the unentangled states (interior vertex).

and the separable class represented by |SEP� = |↑↑↑�.
We shall now compute the corresponding entanglement polytopes by following the general method of covariants

described in § 3 c. Using techniques crafted towards the special situation of three qubits, the same polytopes have

already been computed in [16, 57, 58]; the corresponding quantum marginal problem, which as we have explained

amounts to computing the maximal entanglement polytope, has been solved in [41]. A minimal set of generators of the

covariants of a three-qubit system (in fact, of the equivalent question for binary three-linear forms), has been determined

in late 19th century invariant theory [59]: There are six generators, and we have summarized their properties in Table I.

By Corollary 2, computing the entanglement polytopes is now a mechanical task: for any quantum state representing

the entanglement class, we merely need to collect those covariants which do not vanish on the state, and take the

convex hull of their normalized weights.

The resulting entanglement polytopes are illustrated in Figure 5. They are in one-to-one correspondence to the six

entanglement classes described above; that is, in this particular case there is no coarse-graining. As explained before,

one polytope is contained in the other if quantum states in the former class can be approximated arbitrarily well by

states in the latter class. In this case, this is also a necessary condition, since there is no coarse-graining. Since the

GHZ-class polytope is maximal, it follows that all states can be approximated arbitrarily well by states of GHZ type.

In mathematical terms, the GHZ class is dense; this is of course well-known [6]. Similarly, the polytope of the W class

(upper pyramid) contains all entanglement polytopes except the GHZ one, so that by states in the W class one can

approximate all states except those of GHZ class.

We now illustrate our method of entanglement witnessing:

• If the point (λ(1)
max,λ

(2)
max,λ

(3)
max) corresponding to the collection of local eigenvalues is contained in the lower part

of the GHZ entanglement polytope (Figure 5, (a)),

λ(1)
max + λ(2)

max + λ(3)
max < 2,

then it is by (1) not contained in any other entanglement polytope, and therefore the quantum state at hand

must be entangled of GHZ type.

• More generally, if the point is not contained in any of the polytopes corresponding to an EPR state shared

between two of the three particles (Figure 5, (c), which includes (d)), i.e., if

λ(k)
max < 1 (∀k = 1, 2, 3),



Entanglement criterion
point is not in W polytope (and not in fully or biseparable ones)

cannot be in W-class (and not in fully or biseparable ones)

must be entangled of GHZ type

Entanglement Polytopes: 3 qubits



Entanglement Polytopes: 
4 qubits

polytope explorer @ http://polytopes.leetspeak.org/

http://polytopes.leetspeak.org/
http://polytopes.leetspeak.org/


Dennis & Borland 1970

λ1 + λ6 = 1

λ2 + λ5 = 1

λ3 + λ4 = 1

λ5 + λ6 ≥ λ4

Pauli 1924

λ1 ≤ 1

Entanglement Polytopes: 
3 fermions in 6 modes

4 entanglement polytopes
- complete polytope
- below green surface
- Slater point
- bi-Slater edge

(1, 1, 1, 0, 0, 0)
|0� ∧ |1� ∧ |2�
Slater determinant

λ5 + λ6 = λ4

thanks to Peter Vrana



Summary
• The Quantum Marginal Problem

computationally difficult

• One-Body Quantum Marginal Problem
eigenvalue inequalities

• Entanglement Polytopes 
(arxiv:1208.0365, Walter et al.)

• Pinning of Fermionic 
Occupation Numbers 
(arxiv.1210.5531, to appear in PRL, Schilling et al.)
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� probability measure supported on convex polytope (moment polytope)

Motivation
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Mixed State of Two Qubits

Mixed state ρAB with eigenvalues λ1 > λ2 > λ3 > λ4.
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Illustration of Algorithm

1. Distribution of diagonal entry:

ρA
1,1
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2. Take the derivative:
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(volume of corresp. Bloch sphere).

Technique

Notation

�Peig distribution of eigenvalues of reduced density matrices

�Pdiag distribution of diagonal entries of reduced density matrices

1� Derivative Principle

Eigenvalue distribution can be obtained from distribution of diagonal entries

by taking partial derivatives in the direction of the negative roots:

Peig = v(λ)

�
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α>0

−∂α

�
Pdiag

Sketch of Proof

Stationary phase approximation of distribution of diagonal entries is

exact (Duistermaat–Heckman 82) and can be “inverted”.

2� Distribution of Diagonal Entries

�Probability density is volume function of family of convex polytopes

pdiag(δ
A, δB, δC) = vol {(pijk) : pijk ≥ 0,

�

ijk

pijk = 1,

�

jk

pijk = δAi ,
�

ik

pijk = δBj ,
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ij

pijk = δCk }

� classical marginal problem

�Piecewise polynomial function

�Algorithm for its computation (Boysal–Vergne ’09)

General Algorithm for
Computing Eigenvalue Distributions of

Reduced Density Matrices

talk to me about relation to
          entropy inequalities
          representation theory
          P vs NP problem




