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“Plurality is not to be posited without necessity.” 

William of Ockam “We are to admit no more causes of natural things than 

such as are both true and sufficient to explain their 

appearances.”

“Everything should be made as simple as possible, but 

not simpler.”

Isaac Newton

Albert Einstein
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If two models make statistically identical predictions, the model 

that requires the least input information is preferred.

Same Observable 

Output

Required Knowledge

Of System

Model A

Model B

x y

x

A(x,y)

B(x)



x

y

Computable

Function f(x,y)

Mathematical Model – Input with Entropy C

Physical 

implementation

of f 

Input encoded within 

physical system

Output retrieved by 

appropriate measurement

Physical Simulator – Initial Entropy C

If a model requires 

`x’  to make a 

prediction, then 

any physical 

implementation of 

the model must 

store ‘x’  

That is, the system 

must have at least 

entropy

 xx pp log



Suppose you’re a programmer 
for the matrix

You are tasked to program an object to 
simulate a particular desired behaviour.  

How do you do this with the least
hard drive space? i.e. system of minimal 
internal entropy?



𝑷(𝑿,𝑿)

𝑿 = …𝑥−2𝑥−1 𝑥0

X = x1x2 …

Task:

Construct a physical system A
with desired statistics such that its 
entropy:

𝑆 𝑨 = −Tr(𝜌 log𝜌)

Is minimised,  where 𝜌 =  𝑝  𝑥𝜌  𝑥

System in State 𝝆𝒙



Construct a system that stores each possible past in

a separate configuration. xx


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Set of All Pasts
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Partition the set of all pasts into 

equivalence classes, referred to as 

Causal states.

1x


2x


S1

S2

S3

Two different possible pasts belong to 

the same Causal state if they have 

coinciding futures.



Partition the set of all pasts into 

equivalence classes, referred to as 

Causal states.

S1

S2

S3

S3

S1

S2

An Epsilon Machine stores only 

which causal state the process is 

in.



S3

S1

S2

Internal Entropy:

 ii ppC log

To simulate a sequence of random coin flips….

We have a process with exactly 1 Causal State

No Information about the Past is required!

Crutchfield 1989

No classical system can simulate a given 

stochastic process using less information than a 

Epsilon Machine

C Is a intrinsic 

property of a stochastic 

process that measures 

the minimal amount of 

memory required to

simulate the given 

process.

Probability the process is in Causal State Si

Phys. Rev. Lett. 63, 105–108 (1989)



Applied to wide range of systems.

Neural Networks

Ising Models

Dripping Faucets

Pseudo-random

Number generators.

Crutchfield 1989

No classical system can simulate a given 

stochastic process using less information than a 

Epsilon Machine

C Is a intrinsic 

property of a stochastic 

process that measures 

the minimal amount of 

memory required to

generate the given 

process.

Physica A:  257, 1-4, 385-389 

IEEE Trans. Neural 

Networks, 10, 2, 284-302

Physica A:  356, 1, 133-138

PRA 238, 4-5, 244-252

Phys. Rev. Lett. 63, 105–108 (1989)
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E = I(X, X) 

Knowledge of the past contains

bits about the future.

),( XXP


)|()|()( XXIXXSXS




Coherent interactions should be easy to 
synthesize, and deterministic. 
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E = I(X, X) 

Lower bound on how many bits any simulator of 
The process must store.

Some of the information recorded is still not 

relevant to the future – the Epsilon machine 

still wastes information!

JP Crutchfield, CJ Ellison, “Time’s Barbed Arrow.” 

PRL 2009 - APS

EC 

An epsilon machines must store 𝐶𝜇

bits to know to extract entire past.  





Output r

Suppose two differing causal states have 

finite probability to transition to an 

coinciding causal state after coinciding 

output. 

P(X|S1) 

P(X|S2) 

The future of the two causal states are not 

entirely distinct.

A classical epsilon must store a property A that distinguishes S1 

and S2. But observation of the entire future does not guarantee 

the ability to retrieve A.

Some of the storage 

used to keep track of 

A is wasted.

Output r



A quantum epsilon machines does not distinguish the causal states completely. 


r k

kj
r

j krTS ,

Map each causal state Sj

to a corresponding 

quantum state

Storage of quantum causal states require 

less memory than their classical counterpart

Output r with 

probability p

021  pqSS

Output r with 

probability q

Probability a Stochastic process in 
Causal state Sj will emit output `r’ 
and transition to Sk



Future statistics can still be accurately reproduced:

A quantum epsilon machines does not distinguish the causal states completely. 


r k

kj
r

j krTS ,

Map each causal state Sj

to a corresponding 

quantum state

Output

Measure in r

basis

Quantum Operation


r k

kkj
r SrT ,

Simulator initialized in |Sj> 

Use as next input and repeat.



S3

S1

S2

A classical Epsilon Machine 

allocates enough storage to 

distinguish every causal state

Quantum systems can go beyond this by 

compressing the information further… 

distinguishing the causal states only to 

the degree that they affect the future.



Provided the best Classical simulator for a stochastic process 

erases some information, the Quantum razor is sharper

C

E = I(X, X) 

M.Gu, K.Wiesner, E.Rieper, V.Vedral, Nature Communications, 3, 762



𝑥𝑡 = 0

𝑥𝑡+1 = 0

𝑥𝑡+1 = 1

Box with coin, perturbed at each time-step 
such that coin flips with probably p. 

𝑝

1 − 𝑝



P(X|     ) P(X|     )

We cannot discard information about the state of the coin. 

Set of all pasts



Set of all pasts

Optimal classical system for generating P(X, X)

However this model isn’t very efficient…. P 0.5: E  0

has internal entropy 1, for any p ≠ 0.5



Best Classical Model

Quantum Model 

Lower Bound E

The Quantum Refinement Encode as

Encode as



Composite System with 
10 Perturbed Coins

Example: K = 10,    p = 0.4

Entropy = 10 Entropy < 1

Classical



Many organisms and devices operate based on the ability to 
predict and thus react to the environment around them. The 
fact that it is possible to make identical predictions with less 
memory by exploiting quantum dynamics implies that such 
systems need not be as complex as one originally thought.

A Question of Complexity

Minimizing Irreversibility and Information Erasure

Landauer's erasure principle states that it costs energy to erase 
information.  If we want to minimise unnecessary information 
erasure to generated some desired behaviour, quantum 
dynamics is advantageous.

Can we realize a quantum epsilon machine in experiment? 
Joint work with Griffith university has began in constructing a 
quantum simulator for the perturbed coin.

Experimental Realization



The amount of useful information the past 
contains about the future.

I(X, X) 

Even quantum simulators seem to store 
unnecessary information 
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X
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Is this an emergent source is irreversibility in 
quantum mechanics?

Can we formulate even more powerful 
theories of information that surpass quantum 
mechanics?
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