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EPR-Steering History

Three Notions of Nonlocality

@ May 1935, Einstein, Podolsky & Rosen (EPR correlations):
“...as a consequence of two different measurements performed
upon the first system, the [distant] second system may be left in
states with two different [types of] wavefunctions.”

© November 1935, Schrédinger’s “entanglement of knowledge”:
“Maximal knowledge of a total system does not necessarily
include total knowledge of all its parts, not even when these are
fully separated from each other.”

© December 1964, Bell (Bell nonlocality):
“In a theory in which parameters ... determine the results of
individual measurements, .. .there must be a mechanism whereby
the setting of one measurement device can influence the reading
of another instrument, however remote.”

H. M. Wiseman (Griffith University) Loophole-free EPR-steering APWQIS, Malaysia, 2012 4/33



EPR-Steering History
Why EPR-Steering?
EPR introduce a general pure state held by (say) Alice and Bob:

W) = Z Cn|Un)|tn) = Z ds|Vs)|ps)- (1)
n=1 s=1

If Alice measures in the {|un)} (resp. {|vs)}) basis, she would instantly
collapse Bob’s system into one of the states |¢p) (resp. |¢s)):
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EPR-Steering History

Why EPR-Steering?
EPR introduce a general pure state held by (say) Alice and Bob:

W) = ch|un>|¢n> = Z ds|Vs)|ps)- (1)
n=1 s=1

If Alice measures in the {|un)} (resp. {|vs)}) basis, she would instantly
collapse Bob’s system into one of the states |¢p) (resp. |¢s)):

[A]s a consequence of two different mea-
surements performed upon the first sys-
tem, the [distant] second system may be
left in states with two different [types of]
wavefunctions.

@ Schrodinger (1935) called this steering or &3
piloting the remote state, and generalized it g
to arbitrarily many measurements by Alice.
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EPR-Steering Formal Definition

Formalizing EPR-Steering, 2007

@ HMW, Jones & Doherty (PRL, 2007) formalized and generalized
EPR-steering: to demonstrate EPR-steering is to demonstrate
that a Local Hidden State assumption for Bob cannot hold.
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EPR-Steering Formal Definition

Formalizing EPR-Steering, 2007

@ HMW, Jones & Doherty (PRL, 2007) formalized and generalized
EPR-steering: to demonstrate EPR-steering is to demonstrate
that a Local Hidden State assumption for Bob cannot hold.

@ The LHS assumption is that Bob has a local hidden state |¢¢)
(hidden to him, but perhaps known to Alice) with probability (.

@ No assumptions at all are made about Alice, except that, being
distant, she cannot alter Bob’s state.

@ That is, different measurements for Alice can only mean different
processing of her potential information (£).

@ In analogy with Bell inequalities, one can construct EPR-steering
inequalities (bipartite correlation functions), the violation of which
demonstrates the failure of the LHS assumption.
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EPR-Steering Formal Definition

Quantum Information Approach

Consider a quantum information lab with PhD student Alice, Postdoc Bob,
and Professor Charlie. Charlie wants proof that Alice and Bob can create a
shared entangled state. There are three cases to consider:

Black arrows show classical communication, forbidden between Alice & Bob.

Bell nonlolocality — EPR-steering — entanglement.
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EPR-Steering Loop-hole-free Experiment

Loop-hole-free EPR-Steering

@ Entanglement witnessing has no loopholes .- Alice & Bob are trusted.

@ Bell-nonlocality has the three well-known loopholes:
efficiency, freedom of choice, and separation.

@ EPR-steering has the same loopholes, but asymmetrically. We need
efficiency for Alice, freedom of choice for Bob, and separation.

@ Still only one experiment that closes all the loopholes (2012):

New Journal of Physics

The open-access journal for physics

Loophole-free Einstein—Podolsky—Rosen experiment
via quantum steering

1,2,6,7 1,2,6,7
)

Bernhard Wittmann , Sven Ramelow
Fabian Steinlechner?, Nathan K Langford?, Nicolas Brunner’,
Howard M Wiseman®, Rupert Ursin” and Anton Zeilinger'>>
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EPR-Steering Loop-hole-free Experiment

Closing the Loopholes

Steering Task
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To demonstrate EPR-steering we violate
the LHS prediction

S=Tx+Ty+T7<1,

where

Ty = EAX {<<6_)]?ob>}4x)2} .

where the ensemble average E”x is the
average over Alice’s result j € {—1,0,1}
when she measures X.

Experimentally we observed

S =1.049 £0.002 > 1.
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Testing the Subjectivity of Quantum Jumps
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Testing the Subjectivity of Quantum Jumps Quantum Jump Theory

Quantum State Confusion (1992)

When | began my PhD there were (at least) four schools of thought:

@ There are no quantum jumps. The atom’s state is described by a
density operator or state matrix p which evolves smoothly under
the master equation p = Lp.

@ There are measurement-induced quantum jumps in which the
atom collapses to the ground state at the (retarded) time at which
a photon is detected. e.g. Cohen-Tannoud;ji

@ There are quantum jumps but they occur regardless of whether
there is any photon detection; they are caused by randomly
occurring photon emission as in the Old Quantum Theory.

@ Maybe there are no quantum jumps but rather an individual atom
undergoes quantum state diffusion. e.g. Gisin & Percival (1992)
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Testing the Subjectivity of Quantum Jumps Quantum Jump Theory

The Modern Understanding: Open Quantum Systems

@ Open = continuously coupled to an environment or bath.
@ This creates entanglement between the system and environment.

@ If we ignore the bath then even if both system and bath are initially
pure, the system state will decohere:

[W(0)) = [6(0))ens & [15(0))ys — [W(1)) = exp (—iFheit) [W(0))
(pure) [¢:(0))sys — piys(t) = Trem [W(D)(W(D)]] (mixed)

@ For many atomic, optical, and (increasingly) solid-state systems,
this can be described by a Markovian quantum master equation
(of the Lindblad form):

§(t) = Lot) = [-iF. p] + SL &t — 1&]er ).
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Testing the Subjectivity of Quantum Jumps Quantum Jump Theory

Unravelling Quantum Master Equations

@ It is not always appropriate to ignore the bath — often it can be
measured, yielding information about the system.

@ /fa Markovian master equation can be derived
then
the bath can be measured repeatedly (monitored), on a time scale
which is short compared to the interesting system evolution,
without invalidating the master equation.
@ For perfect monitoring the conditioned system state is pure |;(1)).
@ Carmichael (1993) called this unravelling the ME into an ensemble
of stochastic quantum trajectories for |v;(1)):

E[[¢(1)) (v()[] = p(1) = exp(L)]4(0)) (¥ (0)].

@ e.g. monitoring the bath photon-number causes the system to
undergo a quantum jump when a new photon is detected.
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Testing the Subjectivity of Quantum Jumps Quantum Jump Theory

Detection, or Emission — Who Cares?

@ If there were only one way to detect a field, no-one should care.
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Testing the Subjectivity of Quantum Jumps Quantum Jump Theory

Detection, or Emission — Who Cares?

@ If there were only one way to detect a field, no-one should care.

@ But there isn’t. For an atom (or any Markovian system) the
average system dynamics p = Lp is unchanged by any
processing of the system output fields prior to detection.

@ e.g. we can add a local
oscillator field 3.
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Testing the Subjectivity of Quantum Jumps Quantum Jump Theory

Detection, or Emission — Who Cares?

@ If there were only one way to detect a field, no-one should care.

@ But there isn’t. For an atom (or any Markovian system) the
average system dynamics p = Lp is unchanged by any
processing of the system output fields prior to detection.

@ e.g. we can add a local
oscillator field 3.
T
@ Mathematically, this © = /:>

H— H- é(ﬁ*& — Beh).

amounts to ¢ — €+ f3, LRBS
' WEAK LOCAL
OSCILLATOR
@ We can even do this
adaptively, making () Eom SIGNAL

. . PROCESSOR
depend on prior clicks.
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Testing the Subjectivity of Quantum Jumps Quantum Jump Theory

Example: Stochastic Decay of Excited State Atom
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2 @ Direct

. Detection.

2 @ QSD (1992) =

0 Heterodyne

M A Detection (HMW
0 1 2 s & GJM, 1993).

. @ Adaptive

. Homodyne

. Detection

. : 5 . (HMW, 1995).
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Testing the Subjectivity of Quantum Jumps

Quantum Jump Theory

Example: Ensemble Average Decay

@
7]
@
=
a
0 2 3
t
0 2 3
t
0 2 3

H. M. Wiseman (Griffith University)

Loophole-free EPR-steering

@ Direct
Detection.

@ QSD (1992) =
Heterodyne
Detection (HMW
& GJM, 1993).

@ Adaptive
Homodyne
Detection
(HMW, 1995).
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

Are dynamical quantum jumps detector-dependent?

@ Yes!
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

Are dynamical quantum jumps detector-dependent?

@ Yes!
@ In theory.
@ But has the theory ever been tested?
@ Can we be sure that a two-level atom does not actually
e Emit a photon and jump to the ground state as in Bohr's model?
e Undergo Quantum State Diffusion (QSD), the detector-independent
model introduced by Gisin and Percival in 19927
e Undergo stochastic evolution according to some other objective
pure-state dynamical model (OPDM)?
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

Are dynamical quantum jumps detector-dependent?

@ Yes!
@ In theory.

@ But has the theory ever been tested?
@ Can we be sure that a two-level atom does not actually
e Emit a photon and jump to the ground state as in Bohr's model?
e Undergo Quantum State Diffusion (QSD), the detector-independent
model introduced by Gisin and Percival in 19927
e Undergo stochastic evolution according to some other objective
pure-state dynamical model (OPDM)?

Can we derive realistic experimental tests that would rule out all
OPDM:s, including objective quantum jumps, and QSD?

@ Realistic means not assuming efficient detection.
@ We also want to avoid any special preparation of the atom or field.
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

2-setting EPR-steering Inequality for a Qubit

e If Bob has a qubit (2LA) then for any |¢), (6x)% + (8y)% + (62)2 < 1.
@ Say that Alice can perform two different measurements A; and As.
@ Then under the LHS assumption it follows that (for example),

s=e { (o) o { ()" + (102) ) <.

where j (Alice’s “result”) is the index for the ensemble, so
2 2
e.g. E” {((6)()}41) } = Z p}q‘ (Tr [p]A‘ 6XD
J

is an average property of Bob’s state conditioned on Alice’s j.
@ If this inequality is violated, that demonstrates EPR-steering.
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

EPR-steering for a continuously monitored system

@ If Bob’s atom evolved according to an objective pure-state
dynamical model (OPSDM) then at all times ¢ it would be in some
pure state |¢¢), and Alice’s best knowledge would be if she knew &.

@ We can disprove every OPSDM if Alice can implement two
different monitoring schemes on the atom’s fluorescence, A; and
Ao, which allow her to violate an EPR-steering inequality.

@ Waiting until steady-state allows time for entanglement to grow.
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

EPR-steering for a continuously monitored system

@ If Bob’s atom evolved according to an objective pure-state
dynamical model (OPSDM) then at all times ¢ it would be in some
pure state |¢¢), and Alice’s best knowledge would be if she knew &.

@ We can disprove every OPSDM if Alice can implement two
different monitoring schemes on the atom’s fluorescence, A; and
Ao, which allow her to violate an EPR-steering inequality.

@ Waiting until steady-state allows time for entanglement to grow.
@ Thus to test the EPR-steering inequality Bob should:
@ Randomly choose o = 1 or 2, and tell Alice to implement A; or A..

@ Randomly choose the time t (> the system relaxation time) and
measure &, or 5, or &, at this time.

© Ask Alice which state (from a set {[)/-A“} nominated earlier by her)
pertained to his atom at time .

© Store his data in different files for different « and j.
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

What types of monitoring schemes?

@ Presently, the best efficiency is with homodyne measurement.
@ This uses a strong local oscillator with a choice of phase ¢.

det.eff.=m

.!. ) W
Bob’s Alice’s J@)
atom P measurement

@ The index j defining the state pf‘“ will depend on the complete
photocurrent record J*(s) for0 < s < t.
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Testing the Subjectivity of Quantum Jumps

Testing the detector-dependence

Homodyne x versus Homodyne y

In the strong driving limit (H = 5 254 Q > ~) these two monitorings with
n = 1 should give distinctly different atomlc state trajectories:

(a)

Loophole-free EPR-steering

Aq: homo-x (¢ = 0).

pj tends to localize
| at longitude ¢
jor ¢

m, near the
states: (6x) = +1.

Az: homo-y (¢ = 7).

p; is confined to the

6x = 0 great circle
(¢ = =+m/2) where
(6y)2 + (62)% = 1.

APWQIS, Malaysia, 2012
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

Applying the Steering Inequality’
Recall: LHS — S =E* {((a—x>f1)2} L E® {((ay>f2)2 + ((az>;‘2)2} <1,

The above behaviours of
the 2LA under unravel-
lings Ay (homo-x) and Az
(homo-y) suggest this is
a good inequality to try to
violate.

"H. M. Wiseman & Jay M. Gambetta, Phys. Rev. Lett. 108, 220402 (2012).
H. M. Wiseman (Griffith University) Loophole-free EPR-steering APWQIS, Malaysia, 2012

22/33



Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

Applying the Steering Inequality’

Recall: LHS — S=EA {((a—x>f1)2} +ER {((ay>f2)2 + ((az>;‘2)2} <1,

1.6 -

The above behaviours of 14
the 2LA under unravel- s
lings Ay (homo-x) and Az N
(homo-y) suggest this is
agoodinequalitytotryto % os
violate. “i 06
As a function of n (as- * *¢
sumed the same for A 0.2
and Ay), we need a total o
efficiency n > 73%. 0 0.2 0.4 0.6 0.8 !

'H. M. Wiseman & Jay M. Gambetta, Phys. Rev. Lett. 108, 220402 (2012).
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence

Can we do better?
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence
Can we do better?

@ By considering non-homodyne schemes, Yes!
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence
Can we do better?

@ By considering non-homodyne schemes, Yes!

@ To maximize E*{((6,)/*)? + ((62);%)?}, y-homodyne seems best.

@ But to maximize E* {((6+);")?}, in the limit Q > ~, scheme 's’ — a
spectrally-resolving scheme (invented by us) using an adaptively
controlled weak local oscillator — is better than homodyne x.

@ For equal efficiencies, the threshold is then 58%, much closer to
the two-measurement minimum of n > 0.5.
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@ By considering non-homodyne schemes, Yes!

@ To maximize E*{((6,)/*)? + ((62);%)?}, y-homodyne seems best.

@ But to maximize E* {((6+);")?}, in the limit Q > ~, scheme 's’ — a
spectrally-resolving scheme (invented by us) using an adaptively
controlled weak local oscillator — is better than homodyne x.

@ For equal efficiencies, the threshold is then 58%, much closer to
the two-measurement minimum of n > 0.5.

@ What about more than two different homodyne schemes e.g.
=0, o=7n/2,0=7/4..7
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Testing the Subjectivity of Quantum Jumps Testing the detector-dependence
Can we do better?

@ By considering non-homodyne schemes, Yes!

To maximize E“2{(<6y)f2)2 + (<&z>f‘2)2}, y-homodyne seems best.

@ But to maximize E* {((6+);")?}, in the limit Q > ~, scheme 's’ — a
spectrally-resolving scheme (invented by us) using an adaptively
controlled weak local oscillator — is better than homodyne x.

@ For equal efficiencies, the threshold is then 58%, much closer to
the two-measurement minimum of n > 0.5.

@ What about more than two different homodyne schemes e.g.
=0, o=7n/2,0=7/4..7

@ We have shown that for any quantum system with a single decay
channel, no matter how many different homodyne (and
heterodyne etc.) schemes are implemented it is impossible to
demonstrate EPR-steering unless n > 0.5.

@ So n > 0.73 for two homodyne schemes is not bad.
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Application to Quantum Cryptography

Outline

e Application to Quantum Cryptography
@ Standard and Bell-nonlocality-secured QKD
@ Steering-secured QKD
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Application to Quantum Cryptography Standard and Bell-nonlocality-secured QKD

Standard Quantum Key Distribution

@ Enables distant parties (Alice & Bob) to establish a key (a shared
string of random bits), guaranteed unknown to any eavesdropper.

@ The key can then be used by Alice to encode a message for Bob.
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Application to Quantum Cryptography Standard and Bell-nonlocality-secured QKD

Standard Quantum Key Distribution

@ Enables distant parties (Alice & Bob) to establish a key (a shared
string of random bits), guaranteed unknown to any eavesdropper.

@ The key can then be used by Alice to encode a message for Bob.

@ Standard protocol is prepare and measure (P&M):

@ Alice sends a sequence of qubits, each randomly prepared in one
of 4 states: |1), |1), |—), |[«) with unambiguity z4.

@ Bob randomly measures in basis Z (]) or X (<) with efficiency 7.

© Bob publicly reveals which basis in each case, and Alice publicly
reveals for which of these she could hope to predict Bob’s answer.

© They publicly determine the error rate Q®* 2 in a randomly chosen
subset of these cases, which enables them to lower bound how
much information the eavesdropper Eve may have.

@ If Qis low enough, they can extract (by public communication) from
n > 1 qubits a key of length ¢ > ngpa[1 — h(Qy) — h(Q%)]n.

2post-selected on unambiguous qubit preparation by Alice and detection by Bob.
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Application to Quantum Cryptography Standard and Bell-nonlocality-secured QKD

Standard Quantum Key Distribution

@ Enables distant parties (Alice & Bob) to establish a key (a shared
string of random bits), guaranteed unknown to any eavesdropper.

@ The key can then be used by Alice to encode a message for Bob.

@ Standard protocol is prepare and measure (P&M):

@ Alice sends a sequence of qubits, each randomly prepared in one
of 4 states: |1), |1), |—), |[«) with unambiguity z4.

@ Bob randomly measures in basis Z (]) or X (<) with efficiency 7.

© Bob publicly reveals which basis in each case, and Alice publicly
reveals for which of these she could hope to predict Bob’s answer.

© They publicly determine the error rate Q®* 2 in a randomly chosen
subset of these cases, which enables them to lower bound how
much information the eavesdropper Eve may have.

@ If Qis low enough, they can extract (by public communication) from
n > 1 qubits a key of length ¢ > ngpa[1 — h(Qy) — h(Q%)]n.

@ We call r = ngua[l — h(Q%) — h(Q%)] the key rate.

2post-selected on unambiguous qubit preparation by Alice and detection by Bob.
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Application to Quantum Cryptography Standard and Bell-nonlocality-secured QKD

Assumptions of Standard QKD

@ Quantum physics is the correct description of the world.

© No information (quantum or classical) can leave Alice’s or Bob’s
lab which is not under their control.

© Alice and Bob have secure random number generators.
© Alice’s preparation device, and Bob’s detector are trustworthy.
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Application to Quantum Cryptography Standard and Bell-nonlocality-secured QKD
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@ Quantum physics is the correct description of the world.

© No information (quantum or classical) can leave Alice’s or Bob’s
lab which is not under their control.

© Alice and Bob have secure random number generators.
© Alice’s preparation device, and Bob’s detector are trustworthy.
Note that no limitation is put on Eve’s ability. She may use a coherent

attack: intercept all n of the qubits Alice sends, process them using a
huge quantum computer, and send them on to Bob.

Alice’s preparation can be replaced by an untrusted, external source of
entanglement. In this case the last assumption is weakened to
© Alice’s and Bob’s detectors are trustworthy,

and the key rate becomes r = ngna[1 — h(Q%) — h(Q%)]
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Application to Quantum Cryptography Standard and Bell-nonlocality-secured QKD

Device-Independent QKD

@ Quantum physics is the correct description of the world.

@ No information (quantum or classical) can leave Alice’s or Bob’s
lab which is not under their control.

© Alice and Bob have secure random number gengrators.
" Alice’'s and Bob's detectors are trustworthy.

This protocol [Acin et al., PRL (2007).] again uses an (untrusted,
external) entangled source, and the best key rate* is

¢ = nansl1 — A(QE)] — log, [1 + /2 (5/2)7,

where S is the non-post-selected CHSH parameter. i.e. Bell
nonlocality (S > 2) is necessary, but not sufficient, for a secure key.

3But one does need the technical assumption that the detectors are memoryless.
“Branciard, ... , Wiseman, Phys. Rev. A (Rapid Comm.)-85, 010301 (R) 2012).
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Application to Quantum Cryptography

Steering-secured QKD

Three types of Entanglement-based QKD

~ S-QKD

(i)
Entanglement
1sDI-QKD

(ii)
EPR-steering
DI-QKD

(iii)

Bell nonlocality

H. M. Wiseman (Griffith University)
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Application to Quantum Cryptography Steering-secured QKD

1-sided Device-Independent QKD

@ Quantum physics is the correct description of the world.

@ No information (quantum or classical) can leave Alice’s or Bob’s
lab which is not under their control.

© Alice and Bob have secure random number generators.
@ Bob’s detector is trustworthy. °

SAgain for coherent attacks we must assume Alice’s detector-is memoryless.
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1-sided Device-Independent QKD

@ Quantum physics is the correct description of the world.

@ No information (quantum or classical) can leave Alice’s or Bob’s
lab which is not under their control.

© Alice and Bob have secure random number generators.
@ Bob’s detector is trustworthy. °

Our protocol [Branciard, Cavalcanti, Wallborn, Scarani & Wiseman,
Phys. Rev. A (Rapid Comm.) 85, 010301(R) (2012)] has a key rate

r = ng{nall — h(Q%)] - h(QZ ™)}

Note that EPR-steering requires only the standard (X and Z) QKD
measurements, and it can be shown that EPR-steering is necessary,
but not sufficient, for a secure key.

SAgain for coherent attacks we must assume Alice’s detector-is memoryless.
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Application to Quantum Cryptography

Comparison of Key Rates and Thresholds

Steering-secured QKD

Type [ AD C S C BD | Efficiency Thresholds

P&M T T T U T none

P&M U T T U T [na > 65.9%]

P&M U U T T T na > 65.9%

P&M | U U T T U [ ug=100% — 1, > 83.3%
Entang. | T U U U T none
EPR-S U U U U T na > 65.9%

Bell u u U u U |na=ns=n = 1n>91.1%

Bound on the secret key rate r
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Loophole-free EPR-steering
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Dotted: Best rate for DI-QKD,
A perfect visibility.

"1 solid: Best rates for 1sDI-QKD,
! visiblity = 1,0.99,0.98, 0.95.

Note r o 7npg, here set = 100%.
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Related Papers and Future Possibilities

— N\

ARTICLE

Received 3 Aug 2011 | Accepted 30 Nov 2011 | Published 10 Jan 2012

Conclusive quantum steering with superconducting
transition-edge sensors

Devin H. Smith!2, Geoff Gillett"2, Marcelo P. de Almeida'2, Cyril Branciard?, Alessandro Fedrizzi"2,
Till J. Weinhold"2, Adriana Lita3, Brice Calkins3, Thomas Gerrits3, Howard M. Wiseman?,
Sae Woo Nam3 & Andrew G. White'2

PHYSICAL REVIEW X 2, 031003 (2012)

Arbitrarily Loss-Tolerant Einstein-Podolsky-Rosen Steering Allowing a Demonstration over
1 km of Optical Fiber with No Detection Loophole

A.J. Bennet,'2 D. A. Evans,"2 D.J. Saunders,"? C. Branciard,® E. G. Ca\/alcanti,2'4 H. M. Wiseman,">* and G.J. Prydel'z""

H. M. Wiseman (Griffith University) Loophole-free EPR-steering APWQIS, Malaysia, 2012 31/33



- Conduson
Outline

0 EPR-Steering
@ History
@ Formal Definition
@ Loop-hole-free Experiment

9 Testing the Subjectivity of Quantum Jumps
@ Quantum Jump Theory
@ Testing the detector-dependence

Q Application to Quantum Cryptography
@ Standard and Bell-nonlocality-secured QKD
@ Steering-secured QKD

Q Conclusion

«40)>» «F)>r «=) « > = Q>



Conclusion

Summary, and Other Work

@ EPR-steering:
@ Only formulated rigorously in 2007.
o First loop-hole-free experiment in 2012.

@ Subjectivity (detector-dependence) of quantum jumps
o An attribute of quantum jump theory never rigorously tested.
e We have proposed a realistic experiment to prove the subjectivity
of quantum jumps on a resonantly driven 2LA.
e This generalizes EPR-steering to a continuously monitored system.

@ 1-sided Device-Independent Quantum Key Distribution
o We have developed this new asymmetric protocol.
o More secure than standard QKD, more feasible than DI-QKD.
o Inspired by, and requires, EPR-steering.

@ New work: Showing that Buscemi’s [PRL, 2012] “semi-quantum
games” are actually quantum-refereed entanglement witnesses,
and generalizing them to quantum-refereed steering tests.
[Cavalcanti, Hall, & Wiseman, arxiv:1210.6051].
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