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Abstract: In this note, we consider a hypersingular and supersingular integral equations (HSIEs, SuperSIEs) of the first kind 

on the interval ,−1,1- with the assumption that kernel of the hypersingular integral is constant on the diagonal of the domain 

𝐷 = ,1, −1- × ,−1,1-. Projection method together with Chebyshev polynomials of the first, second, third and forth kinds are 

used to find bounded, unbounded and semi-bounded solutions of HSIEs and SuperSIEs respectively. Exact calculations of 

hypersingular and supersingular integrals for Chebyshev polynomials allow us to obtain high accurate approximate solution. 

Gauss-Chebyshev quadrature with Gauss-Lobotto nodes are presented as the high accurate computation of regular kernel 

integrals. Existence of inverse of hypersingular integral operator leads to the convergence of the proposed method in the case of 

bounded and unbounded solution. Many examples are provided to verify the validity and accuracy of the proposed method. 

Comparisons with other methods are also given. Numerical examples reveal that approximate solutions are exact if solution of 

HSIEs is of the polynomial forms with corresponding weights. SPU times are also shown to present effectiveness of the method 

and less complexity computations. 

Keywords: Integral equations, Hypersingular integral equations, Chebyshev polynomials, Approximation. 

 

1. Introduction 

General singular integral equations of the first kind of 

order 𝑝 has the form  

1

𝜋
 ∫  

1

;1

𝜑(𝑡) [
𝐾(𝑥, 𝑡)

(𝑡 − 𝑥)𝑝
+ 𝐿1(𝑥, 𝑡)] 𝑑𝑡 = 𝑓(𝑥), 

𝑝 = *1,2,3,⋯ +, −1 < 𝑥 < 1, (1) 

encounters in several physical problems such as 

aerodynamics, hydrodynamics, elasticity theory, acoustics, 

electromagnetic scattering and fracture mechanics and so on 

(see [1-14]). 

Notation ∫  
1

;1

𝜑(𝑡)𝑑𝑡

(𝑡;𝑥)𝑝
 denotes Cauchy singular integrals 

( 𝑝 = 1 ), Hadamard finite-part integral or hypersingular 

integral (𝑝 = 2) and when 𝑝 > 2 is called supersingular 

integrals and 𝑥 is the singular point. The formulation of this 

classes of boundary value problems in terms of supersingular 

integral equations have drawn lots of interests. Many 

scientific and engineering problems [1-4] such as acoustics, 

electromagnetic scattering and fracture mechanics, can be 

reduced to boundary integral equations with hypersingular 

and supersingular kernels. In 1985, Golberg [5] consider Eq. 

(1) with the kernel 𝐾(𝑥, 𝑡) = 1, 𝑝 = 2  and proposed 

projection method with the truncated series of Chebyshev 

polynomials of the second kind together with Galerkin and 

collacation methods. Uniform convergence and the rate of 

convergence of projection method are obtained for 

hypersingular integral equations (HSIEs) (1). In 1992, Martin 

[6] obtained the analytic solution to the simplest 

one-dimensional hypersingular integral equation i.e. the case 

of 𝐾(𝑥, 𝑡) = 1, 𝑝 = 2  and 𝐿1(𝑥, 𝑡) = 0  in Eq. (1). 

Capobianco et al. (1998, [7]) developed collocation method 

and quadrature collocation methods for the approximate 

solution of singular integro-differential equations of Prandtl’s 

type in weighted spaces of continuous functions. Theoretical 

convergence and rate of convergence are proved. In 2003, 

Lifanov and Paltavski [8] proposed discrete closed vortex 

frames and applied it to the analysis of a numerical scheme 

of the solution of a hypersingular integral equation Eq. (1) 

for the cases 𝑝 = 3 and 𝑝 = 5 on the torus. They have 

proved the existence and uniqueness of the solution of this 

equation under natural conditions with the help of the 

numerical method. Chakrabarti and Berghe ([9], 2004) 

developed approximate method for solving singular integral 

equations of the first kind 𝑝 = 1 in Eq. (1) over a finite 

interval. The singularity is assumed to be of the Cauchy type, 

and the four basically different cases of singular integral 



 

 

equations of practical occurrence are dealt with 

simultaneously. The obtained results are found to be in 

complete agreement with the known analytical solutions of 

simple equations. In 2006, Mandal and Bera [10] have 

proposed a simple approximate method (Polynomial 

approximation) for solving a general hypersingular integral 

equation of the first kind (1) with 𝐾(𝑥, 𝑥) = 0, 𝑝 = 2. The 

method is mostly concentrated with the bounded solution and 

illustrated proposed method by considering some simple 

examples. Mandal and Bhattacharya ([11], 2007) proposed 

approximate numerical solutions of some classes of integral 

equations (Fredholm integral equations of second kind, 

Characteristic hypersingular integral equation and HSIEs of 

second kind) by using Bernstein polynomials as basis. The 

method was explained with illustrative examples. 

Convergence of the method is shown by referring to Golberg 

and Chen [12] for each class of integral equations. Boykov et 

al. ([13-14], 2009-2010) proposed method asymptotically 

optimal and optimal in order algorithms for numerical 

evaluation of one-dimensional hypersingular integrals with 

fixed and variable singularities as well as a spline-collocation 

method and its justification for the solution of 

one-dimensional hypersingular integral equations, 

polyhypersingular integral equations, and multi-dimensional 

hypersingular integral equations. Dardery and Allan ([15], 

2014) considered Eq. (1) with 𝑝 = 1. They have analyzed 

the numerical solution of singular integral equations by using 

Chebyshev polynomials of first, second, third and fourth kind 

to obtain systems of linear algebraic equations, these systems 

are solved numerically. The methodology of the present work 

expected to be useful for solving singular integral equations 

of the first kind, involving partly singular and partly regular 

kernels. The singularity is assumed to be of the Cauchy type. 

The method is illustrated by considering some examples. In 

2019, Novin and Arakhi [16] proposed and investigated a 

modification of the homotopy perturbation method (HPM) to 

solve HSIEs of the first kind Eq. (1) with 𝑝 = 2, 𝐾(𝑥, 𝑡) =

1, 𝐿1(𝑥, 𝑡) = 0 . Proposed method are compared with the 

standard homotopy perturbation method. It is shown 

modified HPM converges fast and gives the exact solutions. 

The validity and reliability of the proposed scheme are 

discussed by providing different examples. The modification 

of the homotopy perturbation method has been discovered to 

be the significant ideal tool in dealing with the complicated 

function within an analytical method. Lastly, Ahdiaghdam 

([17], 2018) considered HSIEs of the form 

   − ∫  
1

;1

𝜓(𝑡)

(𝑡 − 𝑥)𝛼
+∫  

1

;1

𝐾(𝑥, 𝑡)𝜓(𝑡)𝑑𝑡 = 𝑓(𝑥),    

             −1 < 𝑥 < 1,    𝛼 ∈ 𝑁, (2) 

where 𝐾(𝑡, 𝑥)  and 𝑓(𝑥)  are given real valued Holder 

continuous functions and 𝜓(𝑡) is the unknown function to 

be determined. He has solved Eq. (2) for 𝛼 = *1,2,3,4+ by 

using four kind of Chebyshev polynomials for all four cases 

of solutions (bounded, unbounded, left and right bounded) of 

super-singular integral equations (SuperSIEs). Special 

technique is applied by using the orthogonal Chebyshev 

polynomials to get approximate solutions for singular and 

hyper-singular integral equations of the first kind. A singular 

integral equation is converted to a system of algebraic 

equations based on using special properties of Chebyshev 

series. The error bounds are also stated for the regular part of 

approximate solution of singular integral equations. The 

efficiency of the method is illustrated through some examples. 

Convergence of the proposed method is obtained for 

𝛼 = *1,2+. 

In 2011, Abdulkawi et.al. [18], considered the finite part 

integral equation (1) with 𝐾(𝑥, 𝑡) = 1, 𝑝 = 2 and showed 

the exactness of the proposed method for the linear density 

function and illustrated it with examples. Nik Long and 

Eshkuvatov [19] have used the complex variable function 

method to formulate the multiple curved crack problems into 

HSIEs of the first kind (𝐾(𝑥, 𝑡) = 1, 𝑝 = 2) in more general 

case and these HSIEs are solved numerically for the 

unknown function, which are later used to find the stress 

intensity factor (SIF). In 2016, Eshkuvatov et al. [20], have 

used modified homotopy perturbation method (HPM) to 

solve Eq. (1) for the bounded case with 𝑝 = 2  on the 

interval [âˆ’1,1] with the assumption that the kernel 𝐾(𝑥, 𝑡) 

of the hypersingular integral is constant on the diagonal of 

the domain 𝐷 = ,−1,1- × ,−1,1-. Theoretical and practical 

examples revealed that the modified HPM dominates the 

standard HPM, reproducing kernel method and Chebyshev 

expansion method. Finally, it is found that the modified HPM 

is exact, if the solution of the problem is a product of weights 

and polynomial functions. For rational solution the absolute 

error decreases very fast by increasing the number of 

collocation points. Eshkuvatov and Narzullaev ([21], 2019) 

have solved Eq. (1) for the cases 𝑝 = 2 and the kernel 

𝐾(𝑥, 𝑡)  of the hypersingular integral is constant on the 



 

 

diagonal of the domain 𝐷 = ,−1,1- × ,−1,1- , using 

projection method together with Chebyshev polynomials of 

the first and second kinds to find bounded and unbounded 

solutions of HSIEs (1) respectively. Existence of inverse of 

hypersingular operator and exact calculations of 

hypersingular integral for Chebyshev polynomials allowed us 

to obtain high accurate approximate solution for the case of 

bounded and unbounded solution. 

In this note, general HSIEs (1) is considered for the 

cases of bounded, unbounded and semi-bounded solutions 

and outlined the collocation method together with kernel 

expansions. For the unique solution of the unbounded and 

bounded cases the following conditions  

1

𝜋
∫  
1

;1

𝜑(𝑥)𝑑𝑥 = 𝐶, 

𝜑(−1) = 𝜑(1) = 0.                  (3) 

are imposed respectively. 

The structure of the paper is arranged as follows: In section 2, 

all the necessary tools are outlined and in Section 3, the 

details of the derivation of the projection method is presented. 

Section 3, discusses the existence and uniqueness of the 

solution in Hilbert space. Finally in Section 4, examples are 

provided to verify the validity and accuracy of the proposed 

method, followed by the conclusion in Section 5. 

2. Preliminaries 

Ahdiaghdam [17] summarized the work in Mason and 

Handscomb [22] as follows. Let 𝑃𝑟,𝑗(𝑡) be the Chebyshev 

polynomials of the first-forth kind given by  

𝑃𝑗,𝑟(𝑡) =

{
 
 
 
 
 

 
 
 
 
 
𝑇𝑗(𝑡) = cos(𝑗𝜃), 𝑟 = 1

𝑈𝑗(𝑡) =
sin((𝑗 + 1)𝜃)

sin(𝜃)
,   𝑟 = 2

𝑉𝑗(𝑡) =
cos (.𝑗 +

1

2
/ 𝜃)

cos .
𝜃

2
/

, 𝑟 = 3,

𝑊𝑗(𝑡) =
sin (.𝑗 +

1

2
/ 𝜃)

sin .
𝜃

2
/

,   𝑟 = 4,

 (4) 

where 𝑡 = 𝑐𝑜𝑠𝜃.  

The function 𝑃𝑟,𝑗(𝑡) satisfy the following orthogonality 

properties 

𝜇𝑖,𝑗
𝑟 =

1

𝜋
〈𝑃𝑖,𝑟 , 𝑃𝑗,𝑟〉𝑟 =

{
 
 
 
 

 
 
 
 
0,   𝑖 = 𝑗,

1,   𝑖 = 𝑗 = 0, 𝑟 = 1
1

2
,   𝑖 = 𝑗 = 0, 𝑟 = 1  

1

2
,   𝑖 = 𝑗, 𝑟 = 2

1,   𝑖 = 𝑗, 𝑟 = *3,4+,

(5) 

with respect to inner product 

〈𝑓, 𝑔〉𝑟 = ∫  
1

;1

𝑤𝑟(𝑡)𝑓(𝑡)𝑔(𝑡)𝑑𝑡, 

where 𝑤𝑟(𝑡), 𝑟 = *1,2,3,4+ , the weight functions 

defined by  

𝑤𝑟(𝑡) =
𝜆𝑟(𝑡)

√1;𝑡2
,   𝜆𝑟(𝑡) =

{
 
 

 
 
1, 𝑟 = 1,

1 − 𝑡2, 𝑟 = 2,
1 + 𝑡, 𝑟 = 3,
1 − 𝑡, 𝑟 = 4,

  (6) 

In Mason and Handscomb [22] have proven the following 

theorem.  

Theorem 1 As a Cauchy principle value integral, we have 

𝑆𝑗,𝑟(𝑥) =
1

𝜋
∫  
1

;1

𝑤𝑟(𝑡)𝑃𝑗,𝑟(𝑡)

𝑡 − 𝑥
𝑑𝑡 = 

                        =

{
 
 

 
 
𝑈𝑗;1(𝑥),     𝑟 = 1,

−𝑇𝑗:1(𝑥)     𝑟 = 2,

𝑊𝑗(𝑥)     𝑟 = 3,

𝑉𝑗(𝑥)     𝑟 = 4.

     (7) 

Ahdiaghdam [17] has proved the following statement.  

Theorem 2 For 𝑚 ≥ 1  derivative of Chebyshev 

polynomials has the form  

𝑑

𝑑𝑥
𝑃𝑟,𝑚(𝑥) = 

 

{
 
 

 
 
𝑚𝑈𝑚;1(𝑥),     𝑟 = 1,

∑  
,𝑚;1-/2
𝑘<0 2(𝑚 − 2𝑘)𝑈𝑚;2𝑘;1(𝑥)     𝑟 = 2,

∑  𝑚;1
𝑘<0 (−1)

𝑘2(𝑚 − 𝑘)𝑈𝑚;𝑘;1(𝑥)   𝑟 = 3,

∑  𝑚;1
𝑘<0 2(𝑚 − 𝑘)𝑈𝑚;𝑘;1(𝑥)     𝑟 = 4.

(8) 

Darbery and Allan [15] summarized three term relations 

of four kind of Chebyshev polynomials which is given in 

Mason and Handscomb [22]. 

{
 

 
𝑃𝑟,𝑚(𝑥) = 2𝑥𝑃𝑟,𝑚;1(𝑥) − 𝑃𝑟,𝑚;2(𝑥),𝑚 ≥ 2,   𝑟 = *1,2,3,4+,

𝑃𝑟,0(𝑥) = 1, 𝑟 = *1,2,3,4+,

𝑃1,1(𝑥) = 𝑥,   𝑃2,1(𝑥) = 2𝑥,   𝑃3,1(𝑥) = 2𝑥 − 1,   𝑃4,1(𝑥) = 2𝑥 + 1,
 

                                           (9) 

It is known that the hypersingular operator 𝐻𝑔  can be 

considered as differential Cauchy operator 𝐶𝑔 i.e.,  



 

 

𝐻𝑔𝑢 =
𝑑

𝑑𝑥
𝐶𝑔𝑢 =

𝑑

𝑑𝑥
.
1

𝜋
∫  
1

;1

𝜔(𝑡)

𝑡;𝑥
𝑢(𝑡)𝑑𝑡/. (10) 

On the other hand from (7) it follows that for all 𝑚 = 1,2, …,  

𝐶𝑔𝑇𝑚(𝑥) =
1

𝜋
 ∫  

1

;1

𝑇𝑚(𝑡)

√1 − 𝑡2(𝑡 − 𝑥)
𝑑𝑡 = 𝑈𝑚;1(𝑥),    

𝐶𝑔𝑈𝑚(𝑥) =
1

𝜋
∫  
1

;1

√1 − 𝑡2𝑈𝑚(𝑡)

(𝑡 − 𝑥)
𝑑𝑡 = −𝑇𝑚:1(𝑥),     

𝐶𝑔𝑉𝑚(𝑥) =
1

𝜋
 ∫  

1

;1

√
1 + 𝑡

1 − 𝑡

𝑉𝑚(𝑡)𝑑𝑡

(𝑡 − 𝑥)
= 𝑊𝑚(𝑥),    

𝐶𝑔𝑊𝑚(𝑥) =
1

𝜋
∫  
1

;1

√
1 − 𝑡

1 + 𝑡

𝑊𝑚(𝑡)𝑑𝑡

𝑡 − 𝑥
= −𝑉𝑚(𝑥). 

                                           (11) 

For 𝑚 = 0 we have  

𝐶𝑔𝑇0(𝑥) = 0, 𝐶𝑔𝑈0(𝑥) = −𝑇1(𝑥),    

𝐶𝑔𝑉0(𝑥) = 𝑊0(𝑥),   𝐶𝑔𝑊0(𝑥) = −𝑉0(𝑥),   

In Eshkuvatov [21] and Ahdiaghdam [17] shown that 

differentiating Eq. (11) for 𝑚 = *1,2,⋯ + leads to 

𝐻𝑔𝑇𝑚(𝑥) =
1

𝜋
∫  
1

;1

𝑇𝑚(𝑡)

√1 − 𝑡2(𝑡 − 𝑥)2
𝑑𝑡 

=
1

1 − 𝑥2
[
𝑚 + 1

2
𝑈𝑚;2(𝑥) −

𝑚 − 1

2
𝑈𝑚(𝑥)] 

𝐻𝑔𝑈𝑚(𝑥) =
1

𝜋
∫  
1

;1

√1 − 𝑡2𝑈𝑚(𝑡)

(𝑡 − 𝑥)2
𝑑 = −(𝑚 + 1)𝑈𝑚(𝑥), 

𝐻𝑔𝑉𝑚(𝑥) =
𝑑

𝑑𝑥
𝐶𝑔𝑉𝑚(𝑥) =

𝑑

𝑑𝑥
𝑊𝑚(x) 

= ∑  

𝑚;1

𝑘<0

2(𝑚 − 𝑘)𝑈𝑚;𝑘;1(𝑥), 

𝐻𝑔𝑊𝑚(𝑥) =
𝑑

𝑑𝑥
𝐶𝑔𝑊𝑚(𝑥) = −

𝑑

𝑑𝑥
𝑉𝑚(𝑥) 

= ∑  

𝑚;1

𝑘<0

(−1)𝑘:12(𝑚 − 𝑘)𝑈𝑚;𝑘;1(𝑥), 

 (12) 

for 𝑚 = 0  

𝐻𝑔𝑇0(𝑥) = 0, 𝐻𝑔𝑈0(𝑥) = −𝑈0(𝑥),     

𝐻𝑔𝑉0(𝑥) = 0,    𝐻𝑔𝑊0(𝑥) = 0, 

  (13) 

Moreover,  

𝑇𝑚:1(𝑥) =
1

2
,𝑈𝑚:1(𝑥) − 𝑈𝑚;1(𝑥)-,    𝑚 = 0,1,2, . .. 

𝑥𝑈𝑚(𝑥) =
1

2
,𝑈𝑚:1(𝑥) + 𝑈𝑚;1(𝑥)-,    𝑚 = 0,1…. 

(1 − 𝑥2)𝑈𝑛(𝑥) =
1

2
,𝑇𝑛(𝑥) − 𝑇𝑛:1(𝑥)-, 𝑛 = 0,1, … 

𝑉𝑚(𝑥) = 𝑈𝑚(𝑥) − 𝑈𝑚;1(𝑥),   𝑚 = 0,1,2,⋯ 

𝑊𝑚(𝑥) = 𝑈𝑚(𝑥) + 𝑈𝑚;1(𝑥)),   𝑚 = 0,1, … 

 (14) 

where 𝑈;1(𝑥) = 0 and 𝑈𝑛(−𝑥) = (−1)
𝑛𝑈𝑛(𝑥). 

3. Description of the method  

Since kernel in Eq. (1) is constant on the diagonal of the 

region 𝐷 = ,−1,1- × ,−1,1- we can assume that  

𝐾(𝑥, 𝑥) = 𝑐0,    𝑐0 ≠ 0.  (15) 

Taking into account Eq. (15) we can write Eq. (1) in the form  

𝑐0
𝜋
∫  
1

;1

𝜑(𝑡)

(𝑡 − 𝑥)𝑝
𝑑𝑡 +

1

𝜋
 ∫  

1

;1

𝑄1(𝑥, 𝑡)𝜑(𝑡)

(𝑡 − 𝑥)𝑝;1
𝑑𝑡 

+
1

𝜋
∫  
1

;1
𝐿1(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥),       (16) 

where 𝑄1(𝑥, 𝑡) =
𝐾(𝑥,𝑡);𝐾(𝑥,𝑥)

𝑡;𝑥
. 

Main aim is to find four type of solution of Eq. (16). Hence, 

we search solution in the form  

𝜑(𝑥) = 𝑤𝑟(𝑥)𝑢(𝑥),    𝑟 = *1,2,3,4+,  (17) 

where 𝑤𝑖(𝑥), 𝑖 = *1,2,3,4+ are defined by (6). Substituting 

(17) into (16) yields  

𝑐0
𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡 − 𝑥)𝑝
 𝑢(𝑡) 𝑑𝑡 +

1

𝜋
∫  
1

;1

𝑤𝑟(𝑡)𝑄1(𝑥, 𝑡)

(𝑡 − 𝑥)𝑝;1
 𝑢(𝑡) 𝑑𝑡 

+
1

𝜋
∫  
1

;1

𝑤𝑟(𝑥)𝐿1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡 = 𝑓(𝑥),    

 𝑟 = *1,2,3,4+ ,    − 1 < 𝑥 < 1,  (18) 

Introducing notations for all value of 𝑟 = *1,2,3,4+  and 

𝑝 = *1,2,⋯ +  

𝐻𝑟,𝑝𝑢 =
𝑐0
𝜋
  ∫  

1

;1

𝑤𝑟(𝑡)

(𝑡 − 𝑥)𝑝
𝑢(𝑡)𝑑𝑡,  

𝐶𝑟,𝑝𝑢 =
1

𝜋
 ∫  

1

;1

𝑤𝑟(𝑡)𝑄1(𝑥, 𝑡)

(𝑡 − 𝑥)𝑝;1
𝑢(𝑡)𝑑𝑡, 

𝐿𝑟𝑢 =
1

𝜋
∫  
1

;1
𝑤𝑟(𝑡)𝐿1(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,  (19) 

leads to the operator equation  

𝐻𝑟,𝑝𝑢 + 𝐶𝑟,𝑝𝑢 + 𝐿𝑟𝑢 = 𝑓,    𝑟 = *1,2,3,4+,         (20) 



 

 

To find an approximate solution of Eq (20), 𝑢(𝑡)  is 

approximated by  

𝑢(𝑡) ≅ 𝑢𝑛,𝑟(𝑡) = ∑  𝑛
𝑗<0 𝑏𝑗,𝑟𝑃𝑗,𝑟(𝑡),   𝑟 = *1,2,3,4+, (21) 

which gives approximate solution of Eq. (16) as follows  

𝜑(𝑥) ≈ 𝜔𝑟(𝑥) ∑  𝑛
𝑗<0 𝑏𝑗,𝑟𝑃𝑗,𝑟(𝑥),   𝑟 = *1,2,3,4+,   (22) 

where unknown coefficients 𝑏𝑗,𝑟 are needed to be defined. 

To do this end substitute (21) into (18) to obtain  

∑ 

𝑛

𝑗<0

𝑏𝑗,𝑟 [
𝑐0
𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡 − 𝑥)𝑝
 𝑃𝑗,𝑟(𝑡)𝑑𝑡

+
1

𝜋
∫  
1

;1

𝑤𝑟(𝑡)𝑄1(𝑥, 𝑡)

(𝑡 − 𝑥)𝑝;1
 𝑃𝑗,𝑟(𝑡) 𝑑𝑡 

+
1

𝜋
∫  
1

;1

𝑤𝑟(𝑥)𝐿1(𝑥, 𝑡)𝑃𝑗,𝑟(𝑡)𝑑𝑡] = 𝑓(𝑥),     

𝑟 = *1,2,3,4+,  (23) 

and consider three cases in terms of 𝑝 values. 

3.1. Case 1 (Singular Integral Equation): Let 𝑝 = 1 then 

operator form of the Eq. (20) is 

𝐶𝑟,1𝑢 + 𝐿𝑟𝑢 = 𝑓,    𝑟 = *1,2,3,4+,     (24) 

where 

𝐶𝑟,1𝑢 =
𝑐0
𝜋
∫  
1

;1

 
𝑤𝑟(𝑡)

(𝑡 − 𝑥)
𝑢(𝑡)𝑑𝑡, 

𝐿𝑟𝑢 =
1

𝜋
∫  
1

;1
𝑤𝑟(𝑡)𝐿(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,   (25) 

with  

𝐿(𝑥, 𝑡) = 𝑄1(𝑥, 𝑡) − 𝐿1(𝑥, 𝑡), 

𝑄1(𝑥, 𝑡) =
𝐾(𝑥,𝑡);𝐾(𝑥,𝑥)

𝑡;𝑥
  (26) 

We substitute (21) into (24) to yield approximate solution of 

Eq. (24)  

∑ 

𝑛

𝑗<1

𝑏𝑗,𝑟 [
𝑐0
𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡 − 𝑥)
𝑃𝑗,𝑟(𝑡) 𝑑𝑡 +

1

𝜋
∫  
1

;1

𝑤𝑟(𝑥)𝐿(𝑥, 𝑡)𝑃𝑗,𝑟(𝑡) 𝑑𝑡] 

+𝑏0,𝑟 0
𝑐0

𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡;𝑥)
 𝑑𝑡 +

1

𝜋
∫  
1

;1
𝑤𝑟(𝑥)𝐿(𝑥, 𝑡)𝑑𝑡1 = 𝑓(𝑥), (27) 

It is easy to evaluate the weight integrals in Eq. (27) as  

𝑟(𝑥) =
1

𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡;𝑥)
 𝑑𝑡 =

{
 
 

 
 
0, 𝑟 = 1,
−𝑥     𝑟 = 2,
1, 𝑟 = 3,
−1, 𝑟 = 4,

   (28) 

Exact evaluation of singular integral in Eq. (27) and taking 

into account Theorem 1 with (28) we arrive at  

∑ 

𝑛

𝑗<1

𝑏𝑗,𝑟[𝑐0 𝑆𝑗,𝑟(𝑥) + 𝜓𝑗,𝑟(𝑥)] 

      +𝑏0,𝑟[𝑐0𝑟(𝑥) + 𝜓0,𝑟(𝑥)]  = 𝑓(𝑥), 𝑟 = *1,2,3,4+,  (29) 

where  

𝜓𝑗,𝑟(𝑥) =
1

𝜋
∫  
1

;1
𝑤𝑟(𝑥)𝐿(𝑥, 𝑡)𝑃𝑗,𝑟(𝑡)𝑑𝑡, (30) 

here kernel 𝐿(𝑥, 𝑡) is defined by (26). 

Consider particular case. Let 𝑟 = 1, in this case we search 

unbounded solution on the edge by imposing first condition 

in Eq. (3)  

1

𝜋
∑  𝑛
𝑗<0 𝑏𝑗,1 ∫  

1

;1

𝑇𝑗(𝑡)

√1;𝑡2
𝑑𝑡 = 𝐶,               (31) 

which leads to 𝑏0,1 = 𝐶. Shifting second term in Eq. (29) to 

the right and exact calculation of 𝑆𝑗,1(𝑥) = 𝑈𝑗;1(𝑥) leads to  

∑  𝑛
𝑗<1 𝑏𝑗,1[𝑐0 𝑈𝑗;1(𝑥) + 𝜓𝑗,1(𝑥)] = 𝑓1(𝑥),     (32) 

where 𝑓1(𝑥) = 𝑓(𝑥) − 𝐶𝜓0,1(𝑥). 

In order to solve Eq. (32) for unknown parameters 𝑏𝑗,1 using 

collocation method we choose the suitable node points 

*𝑥𝑖+𝑖<1
𝑛  such as roots of 𝑈𝑛(𝑥)  or (1 − 𝑥2)𝑈𝑛;2(𝑥)  or 

Gauss-Lobotto nodes i.e. zeros of 𝑇′𝑛(𝑥). Then Eq. (32) 

leads to a system of linear equation for 𝑖 = *1,2,⋯ 𝑛+ 

∑  𝑛
𝑗<1 𝑏𝑗,1[𝑐0 𝑈𝑗;1(𝑥𝑖) + 𝜓𝑗,1(𝑥𝑖)] = 𝑓1(𝑥𝑖)        (33) 

Solving (33), we find the unknown coefficients 𝑏𝑗,1, 𝑗 =

1, … , 𝑛 then substituting the values of 𝑏𝑗,1  into Eq. (22) 

yields the numerical solution of Eq. (24) for 𝑟 = 1.  

For the cases 𝑟 = *2,3,4+ we use (29) at the collocation 

points 𝑥𝑖 , 𝑖 = 0,1,2,⋯𝑛  as the roots of 𝑈𝑛:1(𝑥)  or 

𝑉𝑛:1(𝑥),𝑊𝑛:1(𝑥) or Gauss-Lobotto nodes 𝑇𝑛:1
′ (𝑥). 

3.2. Case 2 (Hyper-singular Integral Equation): Let 𝑝 = 2 

then operator form of the Eq. (20) can be obtained by 

subtracting and adding 𝑄1(𝑥, 𝑥) in the second term of Eq. 

(18) so that  

𝐻𝑟,2𝑢 + 𝐶𝑟,2𝑢 + 𝐿𝑟𝑢 = 𝑓,    𝑟 = *1,2,3,4+ (34) 

where  

{
 
 

 
 𝐻𝑟,2𝑢 =

𝑐0

𝜋
 ∫  
1

;1

𝑤𝑟(𝑡)

(𝑡;𝑥)2
𝑢(𝑡)𝑑𝑡,

𝐶𝑟,2𝑢 =
𝑄1(𝑥,𝑥)

𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡;𝑥)
𝑢(𝑡)𝑑𝑡,

𝐿𝑟𝑢 =
1

𝜋
∫  
1

;1
𝑤𝑟(𝑡)𝐿

∗(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡,

  (35) 



 

 

with  

{
 

 
𝐿∗(𝑥, 𝑡) = 𝑄2(𝑥, 𝑡) + 𝐿1(𝑥, 𝑡),

𝑄2(𝑥, 𝑡) =
𝑄1(𝑥,𝑡);𝑄1(𝑥,𝑥)

𝑡;𝑥
,

𝑄1(𝑥, 𝑡) =
𝐾(𝑥,𝑡);𝐾(𝑥,𝑥)

𝑡;𝑥
.

   (36) 

To find approximate solution of Eq. (34) substitute (21) into 

(34) to yield  

∑ 

𝑛

𝑗<1

𝑏𝑗,𝑟 [
𝑐0
𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡 − 𝑥)2
 𝑃𝑗,𝑟(𝑡) 𝑑𝑡

+
𝑄1(𝑥, 𝑥)

𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡 − 𝑥)
 𝑃𝑗,𝑟(𝑡) 𝑑𝑡 +

1

𝜋
∫  
1

;1

𝑤𝑟(𝑥)𝐿
∗(𝑥, 𝑡) 𝑃𝑗,𝑟(𝑡) 𝑑𝑡] 

 +𝑏0,𝑟 [
𝑐0
𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡 − 𝑥)2
 𝑑𝑡 +

𝑄1(𝑥, 𝑥)

𝜋
∫  
1

;1

𝑤𝑟(𝑡)

(𝑡 − 𝑥)
 𝑑𝑡 

  +
1

𝜋
∫  
1

;1
𝑤𝑟(𝑥)𝐿

∗(𝑥, 𝑡) 𝑑𝑡1 = 𝑓(𝑥),  (37) 

Exact calculation of Hypersingular and singular integrals in 

Eq. (37) and differentiation of 𝑟(𝑥) in Eq. (28) as well as 

using the results of Theorem 2 leads to  

∑ 

𝑛

𝑗<1

𝑏𝑗,𝑟 [𝑐0
𝑑

𝑑𝑥
𝑆𝑗,𝑟(𝑥) + 𝑄1(𝑥, 𝑥)𝑆𝑗,𝑟(𝑥) + 𝜓𝑗,𝑟

∗ (𝑥)] 

 +𝑏0,𝑟 [𝑐0
𝑑

𝑑𝑥
𝑟(𝑥) + 𝑄1(𝑥, 𝑥)𝑟(𝑥) + 𝜓0,𝑟

∗ (𝑥)] 

= 𝑓(𝑥),  (38) 

where 𝜓𝑗,𝑟
∗ (𝑥) =

1

𝜋
∫  
1

;1
𝑤𝑟(𝑥)𝐿

∗(𝑥, 𝑡)𝑃𝑗,𝑟(𝑡) 𝑑𝑡 and  

Consider different values of 𝒓. For the unbounded case 

𝑟 = 1 we use the results of (31) and due to (12) and (38) it 

follows that  

∑ 

𝑛

𝑗<1

𝑏𝑗,1 [𝑐0
𝑑

𝑑𝑥
𝑈𝑗;1(𝑥) + 𝑄1(𝑥, 𝑥)𝑈𝑗;1(𝑥) + 𝜓𝑗,1

∗ (𝑥)] 

     = 𝑓1(𝑥),  (39) 

where 𝑓1(𝑥) = 𝑓(𝑥) − 𝑐𝜓0,1
∗ (𝑥) and  

𝜓𝑗,1
∗ (𝑥) =

1

𝜋
∫  
1

1

𝐿∗(𝑥,𝑡)

√1;𝑡2
𝑇𝑗(𝑡)𝑑𝑡,   (40) 

where 𝐿∗(𝑥, 𝑡) is defined by (36). 

To solve Eq. (39) for unknown parameters 𝑏𝑗,1  using 

collocation method we choose the suitable node points 

*𝑥𝑖+𝑖<1
𝑛  such as roots of 𝑈𝑛(𝑥)  or Gauss-Labotto nodes 

𝑇′𝑛(𝑥). Then Eq. (39) leads to a system of linear algebraic 

equation  

∑  𝑛
𝑗<1 𝑏𝑗,1 [𝑐0 0

𝑑

𝑑𝑥
𝑈𝑗;1(𝑥)1

𝑥<𝑥𝑘
+ 𝑄1(𝑥𝑘 , 𝑥𝑘)𝑈𝑗;1(𝑥𝑘) +

             𝜓𝑗,1
∗ (𝑥𝑘)]  = 𝑓1(𝑥𝑘), 𝑘 = 1,2, . . . , 𝑛,       (41) 

Solving the Eq. (41) for the unknown coefficients 𝑏𝑗,1, 𝑗 =

1, … , 𝑛  and substituting the values of 𝑏𝑗,1  into Eq. (22) 

yields the numerical solution of Eq. (34) for 𝑟 = 1.  

In the case of bounded solution we assume that 𝑟 = 2, then 

from Theorem 1-Theorem 2 and properties of operators 

(12)-(13) as well as (38) it follows that  

∑  𝑛
𝑗<1 𝑏𝑗,2 0−𝑐0(𝑗 + 1)𝑈𝑗(𝑥) −

𝑄1(𝑥,𝑥)

2
[𝑈𝑗:1(𝑥) − 𝑈𝑗;1(𝑥)] +

𝜓𝑗,2
∗ (𝑥)1 + 𝑏0,2[−𝑐0 − 𝑥𝑄1(𝑥, 𝑥) + 𝜓0,2

∗ (𝑥)] = 𝑓(𝑥)    (42) 

where 𝜓𝑗,2
∗ (𝑥) =

1

𝜋
∫  
1

1
𝐿∗(𝑥, 𝑡)√1 − 𝑡2𝑈𝑗(𝑡)𝑑𝑡. 

To find the unknown parameters 𝑏𝑗,1  we use collocation 

method and choose the suitable node points *𝑥𝑖+𝑖<1
𝑛  such as 

roots of 𝑈𝑛:1(𝑥)  or (1 − 𝑥2)𝑈𝑛;1(𝑥)  or Gauss-Labotto 

nodes 𝑇′𝑛:1(𝑥). Then Eq. (42) leads to a system of linear 

algebraic equation for 𝑘 = *0,1, … 𝑛+ 

∑  𝑛
𝑗<1 𝑏𝑗,2 0−𝑐0(𝑗 + 1)𝑈𝑗(𝑥𝑘) −

𝑄1(𝑥𝑘,𝑥𝑘)

2
[𝑈𝑗:1(𝑥𝑘) − 𝑈𝑗;1(𝑥𝑘)] +

𝜓𝑗,2
∗ (𝑥𝑘)1 + 𝑏0,2[−𝑐0 − 𝑥𝑘𝑄1(𝑥𝑘 , 𝑥𝑘) + 𝜓0,2

∗ (𝑥𝑘)] = 𝑓(𝑥𝑘) (43) 

Again solving the system of Eq. (43) for the unknown 

coefficients 𝑏𝑗,2 𝑗 = 0, … , 𝑛  and substituting the values of 

𝑏𝑗,2 into Eq. (22) yields the numerical solution of Eq. (34) 

for 𝑟 = 2.  

For semi-bonded cases 𝒓 = *𝟑, 𝟒+ we have  

∑ 

𝑛

𝑗<1

𝑏𝑗,𝑟 [𝑐0
𝑑

𝑑𝑥
𝑆𝑗,𝑟(𝑥) + 𝑄1(𝑥, 𝑥)𝑆𝑗,𝑟(𝑥) + 𝜓𝑗,𝑟

∗ (𝑥)] 

  +𝑏0,𝑟 0𝑐0
𝑑

𝑑𝑥
𝑟(𝑥) + 𝑄1(𝑥, 𝑥)𝑟(𝑥) + 𝜓0,𝑟

∗ (𝑥)1 = 𝑓(𝑥   (44) 

where  

𝜓𝑗,𝑟
∗ (𝑥) 

=

{
 

 
1

𝜋
∫  
1

;1
√
1:𝑡

1;𝑡
𝐿∗(𝑥, 𝑡)𝑉𝑗(𝑡) 𝑑𝑡, 𝑟 = 3,

1

𝜋
∫  
1

;1
√
1;𝑡

1:𝑡
𝐿∗(𝑥, 𝑡)𝑊𝑗(𝑡) 𝑑𝑡, 𝑟 = 4.

   (45) 

𝑆𝑗,𝑟(𝑥) =
1

𝜋
∫  
1

;1

𝑤𝑟(𝑡)𝑃𝑗,𝑟(𝑡)

(𝑡;𝑥)
𝑑𝑡 = {

𝑊𝑗(𝑥), 𝑟 = 3

−𝑉𝑗(𝑥), 𝑟 = 4
 (46) 



 

 

𝑑

𝑑𝑥
𝑆𝑗,𝑟(𝑥)

=

{
 
 

 
 ∑  

𝑚;1

𝑘<0

2(𝑚 − 𝑘)𝑈𝑚;𝑘;1(𝑥), 𝑟 = 3,

∑  

𝑚;1

𝑘<0

(−1)𝑘:12(𝑚 − 𝑘)𝑈𝑚;𝑘;1(𝑥), 𝑟 = 4

 

  (47) 

and  

𝑑

𝑑𝑥
𝑟(𝑥) = 0,    𝑟 = *3,4+.  (48) 

hence the system of algebraic equation can be obtained at the 

collation points such as roots of 𝑉𝑛:1(𝑥) or 𝑊𝑛:1(𝑥) or 

Gauss-Labotto nodes 𝑇′𝑛:1(𝑥), as follows  

∑ 

𝑛

𝑗<1

𝑏𝑗,𝑟 [𝑐0 (
𝑑

𝑑𝑥
𝑆𝑗,𝑟(𝑥))

𝑥<𝑥𝑘

+ 𝑄1(𝑥𝑘 , 𝑥𝑘)𝑆𝑗,𝑟(𝑥𝑘) + 𝜓𝑗,𝑟
∗ (𝑥𝑘)] 

 +𝑏0,𝑟[(−1)
𝑟:1𝑄1(𝑥𝑘 , 𝑥𝑘) + 𝜓0,𝑟

∗ (𝑥𝑘)] 

= 𝑓(𝑥),   𝑟 = *3,4+,   𝑘 = 1,2,⋯𝑛 + 1.    (49) 

To find the unknown coefficients 𝑏𝑗,2 𝑗 = 0, … , 𝑛 we solve 

Eq. (49) and substitute the values of 𝑏𝑗,2 into Eq. (22)  to 

get numerical solution of Eq. (34) for 𝑟 = *3,4+. 

 

3.3 Case 3 (Super-singular Integral Equation. Let 𝑝 ≥ 3 

and assume that main kernel in Eq. (1) can be written as 

follows  

𝐾(𝑥, 𝑡) = 𝑐0 + 𝑄1(𝑥)(𝑡 − 𝑥)…+ 𝑄𝑝;1(𝑥)(𝑡 − 𝑥)
𝑝;1 

+𝑄𝑝(𝑡, 𝑥)(𝑥 − 𝑡)
𝑝,                 (50) 

then Eq. (1) is of the form  

𝑐0
𝜋
∫  
1

;1

𝜑(𝑡)

(𝑡 − 𝑥)𝑝
𝑑𝑡 +

𝑄1(𝑥)

𝜋
∫  
1

;1

𝜑(𝑡)

(𝑡 − 𝑥)𝑝;1
𝑑𝑡 

+⋯+
𝑄𝑝;1(𝑥)

𝜋
 ∫  

1

;1

𝜑(𝑡)

(𝑡 − 𝑥)
𝑑𝑡 +

1

𝜋
∫  
1

;1

𝐿𝑝(𝑥, 𝑡)𝜑(𝑡)𝑑𝑡 

= 𝑓(𝑥)  − 1 < 𝑥 < 1,                       (51) 

where 𝐿𝑝(𝑥, 𝑡) = 𝑄𝑝(𝑡, 𝑥) + 𝐿1(𝑥, 𝑡). 

It is easy to see that  

1

(𝑝;1)!

𝑑𝑝−1

𝑑𝑥𝑝−1
∫  
1

;1

𝜑(𝑡)

(𝑡;𝑥)
 𝑑𝑡 = ∫  

1

;1

𝜑(𝑡)

(𝑡;𝑥)𝑝
 𝑑𝑡.        (52) 

Searching solution in the form  

𝜑(𝑡) = 𝑤𝑟(𝑡) ∑  𝑛
𝑗<0 𝑏𝑗,𝑟𝑃𝑗,𝑟(𝑡), 𝑟 = *1,2,3,4+,   (53) 

and using the results of Theorem 1 and relationship Eq. (52) 

we arrive at  

∑ 

𝑛

𝑗<0

𝑏𝑗,𝑟 [
𝑐0

(𝑝 − 1)!

𝑑𝑝;1

𝑑𝑥𝑝;1
𝑆𝑗,𝑟(𝑥) +

𝑄1(𝑥)

(𝑝 − 2)!

𝑑𝑝;2

𝑑𝑥𝑝;2
𝑆𝑗,𝑟(𝑥)

+⋯ +
𝑄𝑝;2(𝑥)

1!

𝑑

𝑑𝑥
𝑆𝑗,𝑟(𝑥) 

+𝑄𝑝;1(𝑥)𝑆𝑗,𝑟(𝑥) + 𝜓𝑗,𝑟(𝑥)] = 𝑓(𝑥),      (54) 

where 𝜓𝑗,𝑟(𝑥) =
1

𝜋
∫  
1

;1
𝑤𝑟(𝑥)𝐿𝑝(𝑥, 𝑡)𝑃𝑗,𝑟(𝑡) 𝑑𝑡. 

Since 𝑝 ≥ 3, from (28) it can be easily get that for all 

𝑟 = *1,2,3,4+, 

𝑑2

𝑑𝑥2
𝑟(𝑥) =

𝑑3

𝑑𝑥3
𝑟(𝑥) = ⋯

𝑑𝑝−1

𝑑𝑥𝑝−1
𝑟(𝑥) = 0,    (55) 

Splitting Eq. (54) into two parts (𝑗 = 0 and 𝑗 ≥ 1) and 

taking into account Eq. (55) yields  

∑  𝑛
𝑗<1 𝑏𝑗,𝑟 0

𝑐0

(𝑝;1)!

𝑑𝑝−1

𝑑𝑥𝑝−1
𝑆𝑗,𝑟(𝑥) +

𝑄1(𝑥)

(𝑝;2)!

𝑑𝑝−2

𝑑𝑥𝑝−2
𝑆𝑗,𝑟(𝑥) +

⋯ +
𝑄𝑝−2(𝑥)

1!

𝑑

𝑑𝑥
𝑆𝑗,𝑟(𝑥) + 𝑄𝑝;1(𝑥)𝑆𝑗,𝑟(𝑥) + 𝜓𝑗,𝑟(𝑥)1 +

𝑏0,𝑟 0𝑄𝑝;2(𝑥)
𝑑

𝑑𝑥
𝑟(𝑥) + 𝑄𝑝;1(𝑥)𝑟(𝑥) + 𝜓0,𝑟(𝑥)1 = 𝑓(𝑥).  (56) 

To find the unknown coefficients 𝑏𝑗,2 𝑗 = 0, … , 𝑛 we solve 

Eq. (56) at the collation points 𝑥𝑘 , 𝑘 = 1,2,⋯𝑛 + 1 which 

is taken as the roots of orthogonal polynomials 𝑈𝑛:1(𝑥) or 

Gauss-Labotta node points 𝑇′𝑛:1(𝑥) = 0. Then substitute 

the values of 𝑏𝑗,𝑟 into Eq. (53) to get numerical solution of 

Eq. (51)) for 𝑟 = *1,2,3,4+.  

4. Quadrature method 

The In this section, we develop Gauss-Chebyshev 

quadrature formula with Gauss-Lobotto nodes for weighted 

kernel integrals. It is known that many weighted kernel 

integrals have not exact solution in many circumstations. So 

that we need suitable quadrature for numerical computation 

of weighted kernel integrals. In Kythe [24], states that the 

Gauss quadrature formula of the form  

∫  
𝑏

𝑎
𝑤(𝑥)𝑓(𝑥)𝑑𝑥 = ∑  𝑛

𝑖<0 𝐴𝑖𝑓(𝑥𝑖),   (57) 

is exact for all 𝑓 ∈ 𝑃2𝑛:1 if the weights 𝐴𝑖 and the nodes 

𝑥𝑖  can be found for different orthogonal polynomials 

approximation of 𝑓(𝑥) on the interval ,𝑎, 𝑏-. 



 

 

In particular, if ,𝑎, 𝑏- = ,−1,1-  and 𝑤𝑟(𝑥), 𝑟 =

*1,2,3,4+  are defined by (6), as well as orthogonal 

polynomials are the Chebyshev polynomials of first, second, 

third and forth kind respectively then resulting formulas of 

Eq. (57) are known as Gauss-Chebyshev rule. Let us define 

the nodes 𝜉𝑗,1, 𝜉𝑗,2, 𝜉𝑗,3, 𝜉𝑗,4  as the zeros of 

𝑇𝑛:1(𝑥), 𝑈𝑛:1(𝑥), 𝑉𝑛:1(𝑥),𝑊𝑛:1(𝑥) respectively,  

𝜉𝑘,1 = 𝑐𝑜𝑠 (
(2𝑘 − 1)𝜋

2(𝑛 + 1)
) ,    𝑗 = 1,2, . . . , 𝑛 + 1,

𝜉𝑘,2 = 𝑐𝑜𝑠 (
𝑘𝜋

𝑛 + 2
) ,    𝑘 = 1,2, . . . , 𝑛 + 1,

𝜉𝑘,3 = 𝑐𝑜𝑠 (
(2𝑘 − 1)𝜋

2𝑛 + 3
) ,    𝑘 = 1,2, . . . , 𝑛 + 1,

𝜉𝑘,4 = 𝑐𝑜𝑠 (
2𝑘𝜋

2𝑛 + 3
) ,    𝑖 = 1,2, . . . , 𝑛 + 1.

(58) 

Lemma 3 Open Gauss-Chebyshev rules are given as  

1

𝜋
∫  
1

;1

1

√1 − 𝑡2
𝑓(𝑡)𝑑𝑡 = ∑  

𝑛:1

𝑘<1

𝐴𝑘,1𝑓(𝜉𝑘,1), 𝐴𝑘,1 =
1

𝑛 + 1
 

1

𝜋
∫  
1

;1

√1 − 𝑡2𝑓(𝑡)𝑑𝑡 = ∑  

𝑛:1

𝑘<1

𝐴𝑘,2𝑓(𝜉𝑘,2), 𝐴𝑘,2 =
(1 − 𝑡𝑘

2)

𝑛 + 2
 

∫  
1

;1

√
1 + 𝑡

1 − 𝑡
𝑓(𝑡)𝑑𝑡 = ∑  

𝑛:1

𝑘<1

𝐴𝑘,3𝑓(𝜉𝑘,3), 𝐴𝑘,3 =
2

2𝑛 + 3
(1 + 𝜉𝑘,3), 

1

𝜋
∫  
1

;1

√
1 − 𝑥

1 + 𝑥
𝑓(𝑥)𝑑𝑥 = ∑  

𝑛:1

𝑘<1

𝐴𝑘,4𝑓(𝜉𝑘,4), 𝐴𝑘,4 =
2

2𝑛 + 3
(1 − 𝑥𝑘,2). 

 (59) 

The word "open" is used for not including endpoints. We 

usually omit "open" since all Gaussian rules with positive 

weight function are of the open type. In Kythe [24] stated the 

following theorems.  

Theorem 4 (Johnson and Riess 1977). Gaussian QF has 

precision 2𝑛 + 1 only if the points 𝑥𝑖 , 𝑖 = 0,1, . . . , 𝑛 are the 

zeros of 𝜙𝑛:1(𝑥) , where 𝜙𝑛:1(𝑥)  are orthogonal 

polynomials.  

Theorem 5 If 𝑓 ∈ 𝐶2𝑛:2,𝑎, 𝑏-, then the error of Gaussian 

QF is given by  

𝑅𝑛(𝑓) = 𝐼𝑎
𝑏(𝑓) − 𝐼𝑛(𝑓) 

=
𝑓2𝑛+2(𝜉)

(2𝑛:2)!
∫  
𝑏

𝑎
𝜌(𝑥)𝑃𝑛:1

2 (𝑥)𝑑𝑥,    𝜉 ∈ ,𝑎, 𝑏-,    (60) 

where 𝑃𝑛:1(𝑥)  is the orthogonal polynomials of degree 

𝑛 + 1  with 𝑛 + 1  distinct zeros and 𝜌(𝑥)  is a weight 

function.  

In Eshkuvatov et al. [21] we have extended 

Gauss-Chebyshev QF using Chebyshev polynomials of first 

and second kind for the weight kernel integrals (29). In a 

similar way we are easily able to extent Gauss-Chebyshev 

QF for the cases of third and forth kind of Chrbyshev 

polynomials. 

In many problems of HSIEs regular kernel 𝐿(𝑥, 𝑡) will be 

given as convolution type  

𝐿(𝑥, 𝑡) = ∑  𝑚
𝑖<1 𝑐𝑖(𝑥)𝑑𝑖(𝑡).   (61) 

In the case of convolution type kernel (61), 

Gauss-Chebyshev QF has the form  

𝜓𝑗,𝑟(𝑥) =
1

𝜋
∫  
1

1
𝑤𝑟(𝑡)𝐿(𝑥, 𝑡)𝑃𝑗,𝑟(𝑡)𝑑𝑡 =

{
 
 

 
 
∑  𝑚
𝑖<1 𝑐𝑖(𝑥) ∑  𝑛:1

𝑘<1 𝐴𝑘,1(𝑑𝑖(𝑡𝑘,1)𝑇𝑗(𝑡𝑘,1)), 𝑟 = 1

∑  𝑚
𝑖<1 𝑐𝑖(𝑥) ∑  𝑛:1

𝑘<1 𝐴𝑘,2(𝑑𝑖(𝑡𝑘,2)𝑉𝑗(𝑡𝑘,3)), 𝑟 = 2,

∑  𝑚
𝑖<1 𝑐𝑖(𝑥) ∑  𝑛:1

𝑘<1 𝐴𝑘,3(𝑑𝑖(𝑡𝑘,3)𝑉𝑗(𝑡𝑘,3)), 𝑟 = 3,

∑  𝑚
𝑖<1 𝑐𝑖(𝑥) ∑  𝑛:1

𝑘<1 𝐴𝑘,4(𝑑𝑖(𝑡𝑘,2)𝑊𝑗(𝑡𝑘,2)), 𝑟 = 4.

 

  (62) 

For non convolution regular kernel 𝐿(𝑥, 𝑡) case, we have 

the following Gauss-Chebyshev QF  

𝜓𝑗,𝑟(𝑥) =
1

𝜋
∫  
1

1

𝑤𝑟(𝑡)𝐿(𝑥, 𝑡)𝑃𝑗,𝑟(𝑡)𝑑𝑡

=

{
 
 
 
 
 
 

 
 
 
 
 
 
∑  

𝑛:1

𝑘<1

𝐴𝑘,1𝑓1(𝑥, 𝑡𝑘,1), 𝑓1(𝑥, 𝑡𝑘,1) = 𝐿(𝑥, 𝑡𝑘,1)𝑇𝑗(𝑡𝑘,1)𝑟 = 1,

∑  

𝑛:1

𝑘<1

𝐴𝑘,2𝑓2(𝑥, 𝑡𝑘,2), 𝑓2(𝑥, 𝑡𝑘,2) = 𝐿(𝑥, 𝑡𝑘,2)𝑈𝑗(𝑡𝑘,3)𝑟 = 2,

∑  

𝑛:1

𝑘<1

𝐴𝑘,3𝑓3(𝑥, 𝑡𝑘,3), 𝑓3(𝑥, 𝑡𝑘,3) = 𝐿(𝑥, 𝑡𝑘,3)𝑉𝑗(𝑡𝑘,3)𝑟 = 3,

∑  

𝑛:1

𝑘<1

𝐴𝑘,4𝑓4(𝑥, 𝑡𝑘,4), 𝑓4(𝑥, 𝑡𝑘,4) = 𝐿(𝑥, 𝑡𝑘,4)𝑊𝑗(𝑡𝑘,4)𝑟 = 4.

 

  (63) 

where 𝑡𝑘,𝑟 , 𝑟 = *1,2,3,4+ are defined by (58) 

5. Important Tables 

We very often need to use polynomial values of the 

Chebyshev polynomials for the numerical computation. Table 

1 refers to the first few terms of Chebyshev polynomials of 

first 𝑇𝑛(𝑥) and second kinds 𝑈𝑛(𝑥) respectively and Table 

2 refers to the first few terms of Chebyshev polynomials of 

third 𝑉𝑛(𝑥)  and forth kinds 𝑊𝑛(𝑥) . Polynomial form of 

Table 1 and Table 2 can be easily get by three term 

recurrence relationship given by Eq. (9). 

Table 1: Chebyshev polynomials of the first and second kind 



 

 

 n  𝑇𝑛(𝑥)   𝑈𝑛(𝑥)  

0  1   1  

1  𝑥   2𝑥  

2  2𝑥2 − 1  4𝑥2 − 1 

3  4𝑥3 − 3𝑥   8𝑥3 − 4𝑥 

4  8𝑥4 − 8𝑥2 + 1   16𝑥4 − 12𝑥2 + 1 

5  16𝑥5 − 20𝑥3 + 5𝑥  32𝑥5𝑘 − 32𝑥3 + 6𝑥 

6 32𝑥6 − 48𝑥4 +

18𝑥2 − 1  

 64𝑥6 − 80𝑥4 + 24𝑥2 − 1 

Table 2: Chebyshev polynomials of the third and forth kind 

𝑛   𝑉𝑛(𝑥)   𝑊𝑛(𝑥)  

0  1   1  

1  2𝑥 − 1   2𝑥 + 1  

2  4𝑥2 − 2𝑥 − 1   4𝑥2 + 2𝑥 − 1  

3  8𝑥3 − 4𝑥2 − 4𝑥 + 1   8𝑥3 + 4𝑥2 − 4𝑥 − 1  

4  16𝑥4 − 8𝑥3 − 12𝑥2 +

4𝑥 + 1  

 16𝑥4 + 8𝑥3 − 12𝑥2 −

4𝑥 + 1  

5  32𝑥5 − 16𝑥4 + 32𝑥3 +

12𝑥2 + 6𝑥 − 1  

 32𝑥5 − 16𝑥4 − 32𝑥3 −

12𝑥2 + 6𝑥 + 1  

6  64𝑥6 − 32𝑥5 − 80𝑥4 +

32𝑥3 + 24𝑥2 − 6𝑥 − 1  

 64𝑥6 + 32𝑥5 − 80𝑥4 −

32𝑥3 + 24𝑥2 + 6𝑥 − 1  

 

6. Numerical results 

6.1 Case 1: 𝒑 = 𝟐, 𝒓 = 𝟐. (Bounded solution) 

Example 1: Solve HSIEs of the form  

1

𝜋
∫  
1

;1
0
𝐾(𝑥,𝑡)

(𝑡;𝑥)2
+ 𝐿(𝑥, 𝑡)1 𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥),    (64) 

where  

𝐾(𝑥, 𝑡) = 2 + 𝑡𝑥(𝑡 − 𝑥),    𝐿1(𝑥, 𝑡) =
1

𝑡 + 2
+

1

𝑥 + 2
, 

and  

𝑓(𝑥) = −
20√3

(2 + 𝑥)2
−
10𝑥2

𝑥 + 2
(2 − √3 + 𝑥) 

+10(2 − √3)𝑥 +
10

3
(2√3 − 3) +

10(2 − √3)

𝑥 + 2
. 

The exact solution of Eq. (64) is  

𝜑(𝑥) = √1 − 𝑥2
10

𝑥:2
. (65) 

Remark. In this example, main kernel 𝐾(𝑥, 𝑡) is given as 

convolution form and on the diagonal 𝐾(𝑥, 𝑥) = 𝑐𝑜𝑛𝑠𝑡. On 

the other hand regular kernel 𝐿(𝑥, 𝑡) is not convolution type. 

Here we present experimentally that the proposed method 

can work well even the regular kernel 𝐿(𝑥, 𝑡) in Eq. (64) is 

not in the convolution type and solution is not of the 

polynomial form.  

Solution. Suitable changes in Eq. (64) leads to  

2

𝜋
∫  
1

;1

𝜑(𝑡)𝑑𝑡

(𝑡 − 𝑥)2
+
𝑥2

𝜋
∫  
1

;1

𝜑(𝑡)𝑑𝑡

𝑡 − 𝑥
 

+
1

𝜋
∫  
1

;1
0𝑥 +

1

𝑥:2
+

1

𝑡:2
1 𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥),  (66) 

So that 𝑐0 = 2,    𝑄1(𝑥, 𝑥) = 𝑥2 and  

𝐿(𝑥, 𝑡) = 𝑥 +
1

𝑥:2
+

1

𝑡:2
.  

From Eqs. (42) and (66) we obtain  

0
1

2
.𝑥 +

1

𝑥:2
/ + 𝑔0,21 𝑏0,2 + .−2 +

𝑥2

2
/ 𝑏1,2 +

+
𝑥2

2
𝑈𝑛:1(𝑥)𝑏𝑛,2 +∑  𝑛

𝑗<1 ,−2(𝑗 + 1)𝑏𝑗,2 

+
𝑥2

2
(𝑏𝑗:1,2 − 𝑏𝑗;1,2)𝑈𝑗(𝑥) + 𝑏𝑗,2𝑔𝑗,2-  

= 𝑓(𝑥),   (67) 

 where 𝑏;1,1 = 𝑏𝑛:1,1 = 0 and 

 𝑔𝑗,1 =
1

𝜋
∫  
1

;1

√1;𝑡2

𝑡:2
𝑈𝑗(𝑡)𝑑𝑡.  

We choose the collocation points 𝑥𝑖 as in Eq. (58). Solving 

Eq. (67) for the unknown coefficients 𝑏𝑗,1
(𝑛)

 for different 

values of 𝑛  and substituting it into (22), we obtain the 

numerical solution of Eq. (64). Errors of numerical solution 

of Eq. (64) and comparisons with the method presented in 

Eshkuvatov [20] are given in Table 3. 

Table  3: Numerical solution of Example 1 

     𝑥    Exact, (65)   Errors 𝑅𝑛, 𝑛 = 6   Errors in [20] 

 𝑛,𝑚 = 6,  

-0.9999   0.1414037   3.5663 × 10;4   1.0852 × 10;4  

-0.901   3.9473984   1.2235 × 10;4   3.5502 × 10;4  

-0.725   5.4019519   2.4011 × 10;3   1.88998 × 10;4  

-0.436   5.7541347   2.2201 × 10;3   3.0648 × 10;4  

-0.015   5.0372166   −1.6201 × 10;3   0.8678 × 10;4  

0.015   4.9622208   −1.601 × 10;3   1.9992 × 10;4  

0.436   3.6943623   1.3001 × 10;3   3.3917 × 10;4  

0.725   2.5275188   −0.9487 × 10;3   0.6333 × 10;4  

0.901   1.4954122   2.0388 × 10;4   1.2746 × 10;4  

.9999   0.0471408   1.0831 × 10;4   0.3333 × 10;4  



 

 

 

     𝑥    Exact, (65)  Errors 𝑅𝑛, 

𝑛 = 26,  

Errors in [20] 

 𝑛,𝑚 = 26,  

-0.9999   0.1414037   5.2180 × 10;015   1.4040 × 10;10  

-0.901   3.9473984   −1.2879 × 10;015   1.8203 × 10;9 

-0.725   5.4019519   1.7764 × 10;015   0.6194 × 10;9 

-0.436   5.7541347   −1.5987 × 10;014   0.2622 × 10;9 

-0.015   5.0372166   −1.4211 × 10;014   0.1739 × 10;9 

.015   4.9622208   −1.1546 × 10;014   1.8552 × 10;9 

.436   3.6943623   −9.7700 × 10;015   0.1970 × 10;9 

.725   2.5275188   −2.6645 × 10;015   0.2347 × 10;9 

.901   1.4954122   −4.8850 × 10;015   0.1340 × 10;9 

.9999   0.0471408   1.4225 × 10;015   3.5400 × 10;10 

 

Table 3 shows that when 𝑥 comes close to the end points of 

the interval (−1,1) or in the middle of the interval, errors 

decreases drastically and when 𝑛 = 26 the errors reached to 

almost zero. It reveals that proposed method is suitable for 

HSIEs when solution is bounded. On the other hand proposed 

method is dominated over the method proposed in Eshkuvatov 

at al. [20]. In [20] 𝑛 stands for number of nodes and 𝑚 is for 

number of selection function. 

 

Example 2: (Mandal and Bera [10]) Let us consider the 

following HSIEs  

1

𝜋
∫  
1

;1

𝜑(𝑡)

(𝑡 − 𝑥)2
𝑑𝑡 +

1

𝜋
∫  
1

;1

(𝑡 + 𝑥)𝜑(𝑡)𝑑𝑡 = 1 + 2𝑥, 

   (68) 

 The exact solution of Eq. (68) is  

𝜑(𝑥) = −
4

31
√1 − 𝑥2(9 + 10𝑥). (69) 

Solution: Comparing (68) with (33) we get  

𝑐0 = 1,    𝑄1(𝑥, 𝑥) = 0    𝐿(𝑥, 𝑡) = 𝑥 + 𝑡. 

Eq. (37) yields  

∑ 

𝑛

𝑗<1

𝑏𝑗,2[−(𝑗 + 1)𝑈𝑗(𝑥) + 𝜓𝑗,2
∗ (𝑥)] 

𝑏0,2[−1 + 𝜓0,2
∗ (𝑥)] = (1 + 2𝑥),   (70) 

 where  

𝜓𝑗,1(𝑥) =
1

𝜋
∫  
1

1

(𝑡 + 𝑥)√1 − 𝑡2𝑈𝑗(𝑡)𝑑𝑡. 

Due to orthogonality condition (5), we obtain  

𝜓0,1(𝑥) =
𝑥

2
,    𝜓1,1(𝑥) =

1

4
    𝜓𝑗,1(𝑥) = 0,    𝑗 ≥ 2. (71) 

Substituting (71) into (70) and choosing collocation points 

𝑥𝑖 as given in Eq. (58), the system of algebraic equations (70) 

has the form  

∑ 

𝑛

𝑗<2

(−(𝑗 + 1))𝑏𝑗,2𝑈𝑗(𝑥𝑖) +
𝑥𝑖
2
𝑏0,2 +

1

4
𝑏1,2 

= (1 + 2𝑥𝑖),    𝑖 = 0, . . . , 𝑛,  (72) 

Solving Eq. (72) for the different value of 𝑛, we obtain the 

numerical solution of Eq. (68). The comparison errors of Eq. 

(68) are summarized in Table 4.  

Table 4: Comparison results of Example 2 

         𝑥    Exact solution 

(69)  

 Error of 

proposed method  

 Errors of Mandal 

and Bera [10] 

n=3 

-0.998   0.0079350   1.73 × 10;018   5.55 × 10;017  

-0.688  −0.19851699   1.11 × 10;016   −1.94 × 10;016  

-0.118  −1.00198275   2.22 × 10;016   0.00 × 10:00  

.118  −1.30437141   2.22 × 10;016   0.00 × 10:00  

.688  −1.48700461   2.22 × 10;016   4.44 × 10;016 

.998  −0.15481294   2.27 × 10;017   8.33 × 10;017  

n=7  

-0.998   0.0079350   6.94 × 10;018   3.09 × 10;016  

-0.688  −0.19851699   5.55 × 10;017   3.61 × 10;016  

-0.118  −1.00198275   2.22 × 10;016   0.00 × 10:00  

.118  −1.30437141   2.22 × 10;016   0.00 × 10:00  

.688  −1.48700461   0.00 × 10:00   −8.88 × 10;016 

.998  −0.15481294   2.27 × 10;017   −6.11 × 10;016  

 

Table  5: CPU time (in seconds). Comparisons for 

Example 2 

Number of points 

𝑛  

 CPU Prop. 

method (68)  

 Mandal and Bera 

[10] 

3  0.3121   0.6022  

7  0.9409   1.5328  

10  1.6526    

20  5.204    

30  11.3804    

50  32.4334    

 

Table 5, reveals that proposed method and Mandal’s method 

[10] are very accurate to this example for small value of 𝑛 but 

Table 5 shows that CPU time of proposed method is much 

more less than Mandal’s method [10]. On the other hand for 

large value of 𝑛  computational complexity of Mandal’s 

method is much more higher than the proposed method. On 

the other hand proposed method can be used for any value of 

𝑛. In Table 5, we are able to compute for "𝑛 = *3,7+" only. It 



 

 

can be shown that the method proposed here is exact for 

Example 2 with only 𝑛 = 2. 

 

6.2 Case 2: 𝒑 = 𝟐, 𝒓 = 𝟏. (Unbounded solution) 

 

Example 3: Let HSIEs with corresponding condition be 

given by 

1

𝜋
∫  
1

;1

(1 + 2(𝑡 − 𝑥))

(𝑡 − 𝑥)2
𝜑(𝑡)𝑑𝑡 +

1

𝜋
∫  
1

;1

(
1

2
𝑒2𝑥𝑡3)𝜑(𝑡)𝑑𝑡

= 4 + 8𝑥 

1

𝜋
∫  
1

;1

𝜑(𝑡)𝑑𝑡 = 1. 

  (73) 

The exact solution of Eq. (73) is  

𝜑(𝑥) =
1

√1;𝑥2
(4𝑥2 − 1).  (74) 

Solution: Comparing Eq. (73) with (34) we obtain  

𝑐0 = 1,    𝑄1(𝑥, 𝑥) = 2 and 𝐿(𝑥, 𝑡) =
𝑒2𝑥𝑡3

2
.  

Let approximate solution be searched as (22), then Eq. (41) 

becomes  

∑  𝑛
𝑗<1 𝑏𝑗,2 2

𝑑

𝑑𝑥
𝑈𝑗;1(𝑥) + 2𝑈𝑗;1,1(𝑥) + 𝜓𝑗,2(𝑥)3

            +𝑏0,2𝜓0,2(𝑥) = (4 + 8𝑥),
 (75) 

where  

𝜓𝑗,2(𝑥) =
𝑒2𝑥

𝜋
∫  
;1

1

𝑡3

2

𝑇𝑗(𝑡)

√1 − 𝑡2
𝑑𝑡,    𝑗 = 0,1, . .. 

It is known that  

𝑡3 =
1

4
,𝑇3(𝑥) + 3𝑇1(𝑥)-.      (76) 

Taking into account (76) and orthogonality conditions (5), we 

get  

𝜓0,2(𝑥) = 0,    𝜓1,2(𝑥) =
3

16
𝑒2𝑥,    𝜓2,2(𝑥) = 0,    

 𝜓3,2(𝑥) =
1

16
𝑒2𝑥,    𝜓𝑗,2(𝑥) = 0,    𝑗 ≥ 4. 

With these values of 𝜓𝑗,2(𝑥), Eq. (74) takes the form  

∑  𝑛
𝑗<1 𝑏𝑗,2 2

𝑑

𝑑𝑥
𝑈𝑗−1(𝑥) + 2𝑈𝑗−1(𝑥)3 + 𝑏1,2

3𝑒2𝑥

16

        +𝑏3,2
𝑒2𝑥

16
= (4 + 8𝑥),

     (77) 

For 𝑛 = 3 and applying Table 1, we arrive at  

2𝑏1,2 + 𝑏2,2(2 + 4𝑥) + 𝑏3,2(8𝑥 + 2(4𝑥
2 − 1))  

+𝑏1,2
3𝑒2𝑥

16
+ 𝑏3,2

𝑒2𝑥

16
= (4 + 8𝑥).    (78) 

Equating like powers of 𝑥 from both sides of Eq. (78), we 

get  

𝑏1,2 = 3 = 0,   𝑏2,2 = 2.  (79) 

To find 𝑏0,2 we impose second condition of (6.36) to yield 

𝑏0,2 = 1. Substitute values of 𝑏𝑖,2, 𝑖 = *0,1,2,3+ into (6.24)  

𝜑(𝑥) =
1

√1 − 𝑥2
(𝑇0(𝑥) + 2𝑇2(𝑥)) 

=
1

√1;𝑥2
(4𝑥2 − 1).  (80) 

which is identical with the exact solution (73)..  

 

6.3 Case 3: 𝒑 = 𝟐, 𝐫 = 𝟑. Bounded solution on 
the left and unbounded solution on the right 

 

Example 4: Let us investigate the following HSIEs.  

1

𝜋
∫  
1

;1

(1 + 2(𝑡 − 𝑥))

(𝑡 − 𝑥)2
𝜑(𝑡)𝑑𝑡 +

1

𝜋
∫  
1

;1

(
1

2
𝑒2𝑥𝑡3)𝜑(𝑡)𝑑𝑡 

= 𝑓(𝑥), (81) 

where 𝑓(𝑥) = −32𝑥3 − 32𝑥2 + 24𝑥 + 4 +
1

2
𝑒2𝑥. 

The exact solution of Eq. (81) is  

𝜑(𝑥) = √
1:𝑥

1;𝑥
(−16𝑥3 + 24𝑥2 − 12𝑥 + 8). (82) 

Solution: Comparing (81) with (33) we get  

𝑐0 = 1,    𝑄1(𝑥, 𝑥) = 2,    𝐿
∗(𝑥, 𝑡) =

1

2
𝑒2𝑥𝑡3. (83) 

From (82)-(83) and (36) it follows that  

𝑏0,3(2 + 𝜓0,3(𝑥))

            +∑  

𝑛

𝑗<1

𝑏𝑗,3

{
 

 
∑  

𝑗;1

𝑘<0

(−1)𝑘2(𝑗 − 𝑘)𝑈𝑗;𝑘;1(𝑥)

+2(𝑈𝑗(𝑥) + 𝑈𝑗;1(𝑥)) + 𝜓𝑗,3(𝑥)}
 

 

            = −32𝑥3 − 32𝑥2 + 24𝑥 + 4 +
1

2
𝑒2𝑥.

 

  (84) 

where 𝑈;1(𝑥) = 0 and  

𝜓𝑗,3(𝑥) =
1

𝜋
∫  
1

1
.
1

2
𝑒2𝑥𝑡3/√

1:𝑡

1;𝑡
𝑉𝑗(𝑡)𝑑𝑡.  (85) 

It can be easily obtain that  

𝑡3 =
3

8
𝑉0(𝑡) +

3

8
𝑉1(𝑡) +

1

8
𝑉2(𝑡) +

1

8
𝑉4(𝑡).  (86) 

Using (86) and orthogonality conditions (5) we obtain  

𝜓0,3(𝑥) =
3

16
𝑒2𝑥, 𝜓1,3(𝑥) =

3

16
𝑒2𝑥, 𝜓2,3(𝑥) =

1

16
𝑒2𝑥,   

𝜓3,3(𝑥) =
1

16
𝑒2𝑥, 𝜓𝑗,3(𝑥) = 0,    𝑗 ≥ 4  (6.24) 



 

 

Substituting (6.24) into (84) and equating like powers of 𝑥 

leads to  

𝑏0,3 = 8, 𝑏1,3 = −6, 𝑏2,3 = 4, 𝑏3,3 = −2 

which leads to identical with exact solution 

 

7. Conclusion 

In this note, we have developed projection method for solving 

HSIEs of the first kind, where the kernel 𝐾(𝑥, 𝑡) is constant 

on the diagonal of the rectangle region 𝐷. Collocation method 

are used to obtain a system of algebraic equations for the 

unknown coefficients. Examples verify that the developed 

method is very accurate and stable for HSIEs of the first kind. 

Numerical solution are obtained with the help of Matlab 

software. 
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