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Abstract

The modular square root problem has a special property of the having com-

putational equivalent to a well-known hard mathematical problem namely

integer factorization problem. The proposed Rabin-p Key Encapsulation

Mechanism is built upon the said problem as its source of security, aiming

for efficient and practical modular square root-based cryptosystem of which

accompanied with the following properties;

1. improves the performance without plaintext padding mechanisms or

sending extra bits during encryption and decryption processes

2. the plaintext is uniquely decrypted without decryption failure

3. improve decryption efficiency by using only one modular exponentiation

4. a decryption key using only a single prime number

5. sufficiently large plaintext space

6. appropriate plaintext-ciphertext expansion ratio

7. implementable on software and hardware with ease

8. achieves IND-CPA security.
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MySEAL Requirements

This section will link the contents of this document with Section 7.1.B and

Annex G as per requirements within MySEAL Submission and Evaluation

Criteria document v1.0. It is intended to give evidence that this document

has complied with all specifications and checklist needed for MySEAL eval-

uation process.

No hidden weaknesses in the algorithm design

We certify that, to the best of our knowledge, we have fully disclosed there

are no hidden weaknesses in our algorithms.

Section 7.1.B

• Complete and unambiguous description of the basic algorithm in the

most suitable form is shown in Chapter 2.

• Complete and unambiguous description of the Rabin-p Key Encapsu-

lation Mechanism in the most suitable form is shown in Chapter 5.

• Method for key generation and parameter selection is shown in Chapter

4 [Section 4.1].
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• Statement that there are no hidden weaknesses is as the mentioned

above.

• Statement of the claim on security properties is discussed in Chapter

3.

• Expected security level is shown in Table 4.1.

• An analysis of the algorithm with respect to standard cryptanalytic

attacks is discussed throughout Chapter 3.

• Statement giving the strengths and limitations of the algorithm is de-

scribed in Chapter 4.

• Design rationale explaining design choices is described in Chapter 1

[Section 1.2].

• Statement of the estimated computational efficiency in software is men-

tioned in Chapter 6.

• Description of the basic techniques for implementers to avoid imple-

mentation weaknesses is mentioned in Chapter 7.

Annex G

• Hard mathematical problems and assumptions are described in Chapter

2, 3 and 5.

• Security model and its proof are explained throughout Chapter 5.
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Chapter 1

Introduction

1.1 Background

The Rabin encryption scheme [30] is one of an existing workable asymmetric

cryptosystem that comes with nice cryptographic properties. For instance,

it has low-cost encryption of which the Rabin encryption is relatively fast

to encrypt compared to the widely commercialized RSA cryptosystem [32],

and it has been proven to be as difficult as the integer factorization problem.

On the other hand, the decryption of Rabin’s scheme produces four possible

answers, which only one is correct. This four-to-one decryption setting of

the Rabin decryption could lead to a decryption failure scenario since no

indicator for selecting the correct plaintext is given.

Theoretically speaking, it is such a waste to abandon a cryptosystem that

possesses nice features such as the Rabin cryptosystem. Hence attempts were

made by numerous researchers with the objective to turn the Rabin cryp-

tosystem to be as practical and implementable as the RSA cryptosystem.

Broadly speaking, all the previous attempts made seem to employ one or

5



more additional features in order to obtain a unique decryption result, but

at the same time may have a small probability for decryption failure. One

of the ways to accomplish this is through manipulation of some mathemat-

ical objects such as the role of the Jacobi symbol or the Dedekind’s sums

theorem. Also, it can be done by designing an encryption function with a

special message structure. Yet, at the same time all the designs lose the

computational advantage of the original Rabin’s encryption over the RSA

cryptosystem.

In order to engage this problem and to overcome all the previous drawbacks

of Rabin’s original design and its variants, we propose the Rabin-p Key En-

capsulation Mechanism, provided with theoretical analysis, perfomance mea-

surement and robust implementation. We revisit the Rabin cryptosystem and

then aspire to furnish a new design aiming for efficient, secure and practical

Rabin-like cryptosystem. In our design, we use the modulus N = p2q and we

restrict the plaintext to be less than p2. Hence, to decrypt correctly, it suf-

fices to apply an efficient algorithm that solves the square root of quadratic

congruence modulo p instead of modulo N = p2q.

1.2 Design Rationale

In designing the Rabin-p Key Encapsulation Mechanism, the following are

the main criteria that were taken into consideration:

1. improves the performance without plaintext padding mechanisms or

sending extra bits during encryption and decryption processes

2. the plaintext is uniquely decrypted without decryption failure

3. improve decryption efficiency by using only one modular exponentiation

6



4. a decryption key using only a single prime number

5. sufficiently large plaintext space

6. appropriate plaintext-ciphertext expansion ratio

7. implementable on software and hardware with ease

8. achieves IND-CPA security.

The design principle to overcome the drawbacks of the original Rabin cryp-

tosystem and all its variants are outlined as follows. Firstly, we put the

condition on the modulus to be used is of the type N = p2q. We note that

such modulus N = p2q is claimed to be no easier than factoring the conven-

tional modulus of N = pq [5]. We then impose restriction on the plaintext

m and ciphertext c space as m ∈ Zp2 and c ∈ Zp2q, respectively. From the

plaintext-ciphertext expansion, such restriction leads to a system that is not

a length-preserving for the message.

Let m and c be the plaintext and ciphertext and c(m) be the function of

c taking m as its input. Say, for instance, the plaintext spaces and the ci-

phertext spaces in the RSA cryptosystem are the same. Thus we denote the

mapping for the RSA cryptosystem as c(m) : Zpq −→ Zpq. Note that this

situation could be an advantage for the RSA scheme since RSA encryption

has no message expansion. This is, however, not true for all cryptosystems.

The size of a message m is determined by the size of its plaintext space. Sup-

pose we put a restriction on the size of such m. If the intended plaintext m is

merely the secret key needed for the use of a symmetric cryptosystem, then

such key is indeed a short message. For example, the plaintext-ciphertext

mapping for Okamoto-Uchiyama cryptosystem [26] is c(m) : Zp −→ Zp2 ,

7



Pailier cryptosystem [28] and the cryptosystem proposed by [11] is c(m) :

Zpq −→ Z(pq)2 , Rabin-Boneh [3] mapping is c(m) : Z pq
2
−→ Zpq and the Ra-

bin variant introduced by [34] is c(m) : Zpq −→ Zp2q.

Therefore, we note that the issue of losing the ability to encrypt a relatively

longer m is insignificant. Hence, we reason that, even imposing restrictions

on the plaintext space or to set a prefix message size would not be a hindrance

for designing a considerable efficient cryptosystem.

8



Chapter 2

Rabin-p Cryptosystem: The

Design

In this chapter, we provide the details of the proposed cryptosystem namely

Rabin-p Cryptosystem. Rabin-p is named after the Rabin cryptosystem with

the additional p symbolizing that the proposed scheme only uses a single

prime p as the decryption key. This section is structured as follows. We first

describe the Rabin-p key generation, encryption and decryption procedures.

We then provide the explanation of the Rabin-p decryption process.

2.1 System Parameters

The key generation algorithm of the Rabin-p cryptosystem (Algorithm 1)

produces two random and distinct primes p and q of the same length such

that p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

9



2.2 Rabin-p Key Generation Algorithm

The key generation algorithm then produces an integer N as a product N =

p2q, which is denoted as the public key. The private key is the prime p.

Algorithm 1 Rabin-p Key Generation Algorithm

Input: The size k of the security parameter

Output: The public key N = p2q and the private key p

1: Choose two random and distinct primes p and q such that 2k < p, q <

2k+1 satisfy p, q ≡ 3 (mod 4)

2: Compute N = p2q

3: Return the public key N and the private key p

2.3 Rabin-p Encryption Algorithm

To encrypt a plaintext, the Rabin-p encryption algorithm with the public

key N does the following.

Algorithm 2 Rabin-p Encryption Algorithm

Input: The public key N

Output: A ciphertext c

1: Choose plaintext 0 < m < 22k−1 such that gcd(m,N) = 1

2: Compute c ≡ m2 (mod N)

3: Return the ciphertext c

Remark 1. The encryption algorithm (Algorithm 2) takes the plaintext m <

22k−1 and compute c ≡ m2 (mod N). We observe that the plaintext m is

restricted to the range of m < 22k−1 = 22k

2
< p2

2
< p2. The output is the

ciphertext c.

10



2.4 Rabin-p Decryption Algorithm

To decrypt a ciphertext, the Rabin-p decryption algorithm with the private

key p does the following.

Algorithm 3 Rabin-p Decryption Algorithm

Input: A ciphertext c and the private key p

Output: The plaintext m

1: Compute w ≡ c (mod p)

2: Compute mp ≡ w
p+1
4 (mod p)

3: Compute i = c−mp
2

p

4: Compute j ≡ i
2mp

(mod p)

5: Compute m1 = mp + jp

6: If m1 < 22k−1, then return m = m1. Else, return m = p2 −m1

Remark 2. We observe that the decryption algorithm needs only a single

prime number as its key. Hence, only one modular exponentiation is taking

place during the decryption process. Such computational advantage would

positively affect the overall operations.

Remark 3. We reason that since our proposed scheme does not need to carry

out any CRT computation, thus the Novak’s attack is not applicable on the

Rabin-p cryptosystem (i.e. resilient against Novak’s attack).

2.5 Proof of Correctness for Rabin-p Decryp-

tion

This section explain why the Rabin-p decryption procedure works.

11



Lemma 1. [19]. Let p be a prime number such that p ≡ 3 (mod 4) and c an

integer such that gcd(c, p) = 1. The congruence c ≡ m2 (mod p) has either

no solutions or exactly two solutions. If m1 is a solution, then −m1 (mod p)

is the other solution.

Lemma 2. [19]. Let p be a prime number such that p ≡ 3 (mod 4) and c

an integer such that gcd(c, p) = 1. The congruence c ≡ m2 (mod p2) has

exactly two solutions if c ≡ m2 (mod p) has exactly two solutions.

Proof. Suppose that c ≡ m2 (mod p2) has a solution m1. Then any other

solution m is such that p2|m2−m2
1, that is p2|(m+m1)(m−m1). Hence, we

consider p|(m+m1)(m−m1) as well. If p|(m+m1) and p|(m−m1), then p

would divide (m+m1) + (m−m1) = 2m and (m+m1)− (m−m1) = 2m1.

Since p ≡ 3 (mod 4) is an odd prime, then p - 2 so p would divide both

m and m1. Consider c ≡ m2 (mod p2). If p|m then p|m2 therefore p|c,

however gcd(c, p) = 1 therefore p - c. Hence p - m. The same goes for

p - m1. Now, consider in the case if p|(m+m1) or p|(m−m1) but not both.

Since p2|(m + m1)(m − m1), therefore either p2|(m + m1) or p2|(m − m1)

implies that m ≡ ±m1 (mod p2). Since −m1 (mod p2) is always a solution

when m1 (mod p2) is a solution, therefore the congruence has exactly two

solutions.

Lemma 3. Consider Lemma 2. Let c ≡ m2 (mod p2). Then m1 = mp+jp is

a solution to c ≡ m2 (mod p2) where mp ≡ c
p+1
4 (mod p), j ≡ i

2mp
(mod p)

such that i = c−mp
2

p
. Furthermore m2 ≡ −m1 (mod p2) is the other solution.

Proof. Suppose we consider c ≡ m2 (mod p2) as in Lemma 2. Let mp ≡ c
p+1
4

(mod p) such that mp
2 ≡ c (mod p). Suppose that m1 = mp+jp is a solution

12



for c ≡ m2 (mod p2), then we have

c ≡ m2
1

≡ (mp + jp)2

≡ mp
2 + 2mpjp (mod p2) (2.1)

Then, rearrange (2.1) as

2mpjp ≡ c−mp
2 (mod p2) (2.2)

Note that from mp
2 ≡ c (mod p), we have c−mp

2 ≡ 0 (mod p) which means

that c−mp
2 is a multiple of p. Let ip = c−mp

2 for some integer i, then we

obtain i = c−mp
2

p
. We then rewrite (2.2) as

2mpjp ≡ ip (mod p2),

of which such congruence implies that 2mpj ≡ i (mod p). Hence, we obtain

j ≡ i
2mp

(mod p). To conclude, we have the solution m1 = mp + jp such

that c ≡ m1
2 (mod p2). Furthermore, we observe that m2 ≡ −m1 (mod p2)

is the other solution as in Lemma 2.

Lemma 4. Consider Lemma 3. If m1 and m2 are the two distinct integers

solution for c ≡ m2 (mod p2), then m1 +m2 = p2.

Proof. Suppose m1 6≡ m2 (mod p2) such that m1
2 ≡ m2

2 ≡ c (mod p2).

Observe that, from Lemma 3 if m1 is a solution for c ≡ m2 (mod p2), then

m2 ≡ −m1 (mod p2) is also a solution. Thus, m2 ≡ −m1 (mod p2) can be

reinterpreted as m2 = p2 −m1. Hence m1 +m2 = p2.

Lemma 5. Let m1 and m2 be integers such that m1 +m2 = p2 with p2 is an

odd integer. Then either m1 or m2 is less than p2

2
.

13



Proof. Suppose p2 is an odd integer, then by definition p2

2
must not be an

integer. Let m1 +m2 = p2. Since that m1 and m2 are integers, therefore m1

and m2 must not be equal to p2

2
. Suppose we consider the following cases.

If for both m1 and m2 are less than p2

2
, then we should have m1 + m2 < p2.

Therefore this case contradicts with the fact that m1+m2 = p2. On the other

hand, if m1 and m2 are greater than p2

2
, then we should have m1 +m2 > p2,

which also contradicts with the fact that m1 +m2 = p2. Hence, we consider

the case where either m1 or m2 is less than p2

2
. Let m1 <

p2

2
, then there exists

a real number ε1 such that m1 + ε1 = p2

2
. On the other hand, since m1 <

p2

2
,

then m2 must be greater than p2

2
. Therefore there exists a real number ε2

such that m2 − ε2 = p2

2
. If we add up these equations, we have

(m1 + ε1) + (m2 − ε2) =
p2

2
+
p2

2
= p2

Since m1 + m2 = p2, thus ε1 − ε2 should be equal to zero, meaning that

ε1 = ε2. We conclude that only one of m1 or m2 is less than p2

2
.

Theorem 1. Let c ≡ m2 (mod N) be the Rabin-p ciphertext. Then Algo-

rithm 3 is correct.

Proof. Suppose c ≡ m2 (mod N) be the Rabin-p ciphertext where N = p2q,

thus we have c−m2 ≡ 0 (mod N). Since p2 | N , then p2 | c−m2. Algorithm

2 show that m < p2, therefore it is sufficient just solving for c ≡ m2 (mod p2)

which is efficiently solved using Lemma 3. In addition, according to Lemma 2,

there are exactly two distinct solution m1 and m2 satisfies c ≡ m2 (mod p2).

From Lemma 4 we have m1 + m2 = p2. We now show that the Algorithm

3 only produce a unique solution for m < 22k−1. Observe that the upper

bound for m < p2

2
. Consider Lemma 5, then we have either m1 or m2 is less

than p2

2
such that m1 +m2 = p2 satisfy m < 22k−1. Finally, we conclude that

14



only one of m1 or m2 are less than p2

2
and will be outputted by Algorithm 3

as the unique m < 22k−1. �

2.6 Toy Example

Suppose we have two communicating parties, namely Bob as the sender of a

message and Alice as its corresponding receiver. Let the security parameter

k = 15.

Key generation:

Alice generate two distinct primes p = 32779, q = 40829.

1. Compute N = p2q = 43869243335189

2. Alice keeps her private key p

3. Alice publish her public key N

Encryption:

Bob receives Alice’s public key. He would like to send a message m =

479571937.

1. Compute c ≡ m2 (mod N) = 26669194871231

2. Bob send c to Alice as his ciphertext.

Decryption:

Alice receives a ciphertext c = 26669194871231 from Bob. To decrypt c,

Alice then executes:

1. Compute w ≡ c (mod p) = 27646

2. Compute mp ≡ c
p+1
4 (mod p) = 15167

3. Compute i =
c−m2

p

p
= 24318

4. Compute j ≡ i
2mp

(mod p) = 14630.

5. Compute m1 = mp + jp = 479571937.

6. Since the integer m1 < 22k−1, then return the plaintext m = m1.

15



Chapter 3

Rabin-p Cryptosystem: The

Analysis

This chapter discusses the hard problem that becomes the source of security

for the Rabin-p cryptosystem. In the following sections, we show that the

problem of solving the Rabin-p ciphertext is reduced to factoring N = p2q.

Hence, in conclusion, it proves that breaking the Rabin-p cryptosystem is

indeed equivalent to factoring N = p2q. We then extend our security anal-

ysis by discussing some possible cryptanalysis, for instance; the continued

fraction’s attack, the Coppersmith’s theorems and the Novak’s attack.

3.1 Reduction to Factoring N = p2q

In this section, we show that if there exists an algorithm that can decrypt

message m from any random Rabin-p ciphertext, then such algorithm also

be able to factor N = p2q. We observe the following.

Theorem 2. Let N = p2q, m < 22k−1 and 22k−1 < m̂ < p2 such that

m+ m̂ = p2. Then gcd(m+ m̂,N) = p2.

16



Proof. Suppose 2k < p < 2k+1, then 22k < p2 < 22k+2, and 22k−1 < p2

2
<

22k+1. Suppose m < 22k−1, then from Lemma 5 there exists another integer

m̂ > 22k−1 such that m + m̂ = p2. Thus this implies p2 − m̂ = m < 22k−1.

Now, we determine the range of the m̂ such that p2 − m̂ < 22k−1. Then we

obtain the lower bound for m̂, of which

m̂ > p2 − 22k−1

> 22k − 22k−1

> 22k−1

and upper bounded by m̂ < p2. Take the gcd(m+ m̂,N), then we obtain p2.

Hence q = N
p2

.

Remark 4. Theorem 2 implies that if there exists someone or an algorithm

that can decrypt the message m from the Rabin-p’s ciphertext, then that some-

one must also be able to factor N = p2q.

3.1.1 Algorithm for Factoring N = p2q

Note that the Algorithm 3 will output only the integer m < 22k−1. Hence,

if we generate an integer m̂ such that 22k−1 < m̂ < 22k, then we can build

a factoring algorithm for N , according to Theorem 2 and the Algorithm 3.

The factoring algorithm is defined as follows.

17



Algorithm 4 Algorithm for Factoring N = p2q

Input: A ciphertext c and the modulus N

Output: The prime factors p,q

1: Choose an integer 22k−1 < m̂ < 22k

2: Compute ĉ ≡ m̂2 (mod N)

3: Ask the decryption of ĉ from Algorithm 3

4: Algorithm 3 output m < 22k−1, else reject

5: Compute gcd(m̂+m,N)

6: If gcd(m̂+m,N) = 1, then reject

7: If gcd(m̂+m,N) 6= 1, then return p2

8: Compute N
p2

= q

9: Return the prime factors p, q

3.1.2 A Toy Example

Let the security parameter k = 15. Consider the Algorithm 4 and the key

generation from Example 2.6. Factoring N = p2q according to Theorem

2:

1. Generate an integer m̂ = 786696491 such that 22k−1 < m̂ < 22k

2. Compute ĉ ≡ m̂2 (mod N) = 27953222201858

3. Ask the decryption of ciphertext ĉ from Algorithm 3

4. Receive the output m = 287766350

5. Compute gcd(m̂+m,N) = 1074462841

6. Compute N
1074462841

= 40829

7. Return the prime factors p =
√

1074462841 = 32779 and q = 40829
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3.2 Computational Equivalent

If a new cryptosystem is designed, we are expected to provide a comparison of

the relative difficulty of breaking the scheme into the solving any existing hard

problems. Now, we show that breaking the Rabin-p cryptosystem is indeed

reducible to factoring the modulus N = p2q. Furthermore, the converse of

such statement is also true.

Lemma 6. Breaking the Rabin-p cryptosystem is reducible to factoring N =

p2q.

Proof. Suppose there exists an algorithm A1 with the ability to factor the

modulus N = p2q, then we obtain the primes p and q. Thus, we can solve

the Rabin-p’s ciphertext c ≡ m2 (mod N) directly by using the Algorithm

3.

Lemma 7. Factoring N = p2q is reducible to breaking the Rabin-p cryp-

tosystem.

Proof. Conversely, suppose there exists an algorithm A2 that breaks the

Rabin-p cryptosystem. Then such algorithm is able to find the message

m from the ciphertext c ≡ m2 (mod N). By using the same approach as

Theorem 2, hence A2 can proceed to compute m̂. Finally, with the help of

Algorithm 4, A2 can easily factor the modulus N = p2q.

Theorem 3. Breaking the Rabin-p cryptosystem is equivalent to factoring

the modulus N = p2q.

Proof. This assertion is a consequence from Lemma 6 and Lemma 7.
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3.3 Analysis via Continued Fraction’s Method

We begin with the definition of the continued fractions, which serves as a

very useful mathematical tool and has been applied in many cryptanalytic

works.

Definition 1 (Continued Fractions). [14]. The continued fraction of a real

number R ∈ R is an expression of the form

R = a0 +
1

a1 + 1
a2+

1
a3+...

(3.1)

where a0 ∈ Z and ai ∈ N−{0} for i ≥ 1. The numbers a0, a1, a2, . . . are called

the partial quotients. The equation (3.1) can be denoted as R = [a0, a1, a2, . . .]

and are called the convergents of the continued fraction expansion of R. If R

is a rational number then the continued fraction expansion of R is finite.

Following this definition is an important theorem of the continued fraction

which be used widely throughout this proposal. This theorem simply says,

the unknown integers x and y can be recovered from the list of continued

fraction expansion of a rational number R satisfying the given inequality.

Theorem 4 (Legendre’s Theorem). [14] Let R is a rational number. Let

x, y ∈ Z, y 6= 0 and gcd(x, y) = 1. Suppose∣∣∣∣R− x

y

∣∣∣∣ < 1

2y2

Then x
y

is a convergent of the continued fraction expansion of R.

We outline the analysis by continued fraction’s method as follows. Suppose c

and N are the parameters from the Rabin-p cryptosystem. Since we have the

ciphertext c (mod N), thus c < N . Therefore c can be written as c = a+bpq

or c = a′ + b′p2 for some integer a, a′, b, b′.
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Theorem 5. Let c = a+ bpq for some positive integer a and b. If a < q
2

and

b < p, then b
p

is a convergent of the continued fraction expansion of c
N

.

Proof. Consider the value c = a+ bpq and N = p2q. If we divide c = a+ bpq

by N , then we obtain

c

N
=

a+ bpq

N

=
a

N
+
bpq

N

=
a

N
+
b

p
(3.2)

Rearranging (3.2),

c

N
− b

p
=

a

N

Thus, to show that ∣∣∣∣ cN − b

p

∣∣∣∣ <
1

2p2

it suffices if a
N
< 1

2p2
, which implies that a < N

2p2
= q

2
. Hence, by Theorem

4, b
p

is a convergent of the continued fraction expansion of c
N

if a < q
2
. This

leads to finding p and then q.

Theorem 6. Let c = a′ + b′p2 for some positive integer a′ and b′. If a′ < p2

2q

and b′ < q, then b′

q
is a convergent of the continued fraction expansion of c

N
.

Proof. Consider the value c = a′+b′p2 and N = p2q. If we divide c = a′+b′p2

by N , then we obtain

c

N
=

a′ + b′p2

N

=
a′

N
+
b′p2

N

=
a′

N
+
b′

q
(3.3)
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Rearranging (3.3),

c

N
− b′

q
=

a′

N

Thus, to show that ∣∣∣∣ cN − b′

q

∣∣∣∣ <
1

2q2

it suffices if a′

N
< 1

2q2
, which implies that a′ < N

2q2
= p2

2q
. Hence, by Theorem

4, b′

q
is a convergent of the continued fraction expansion of c

N
if a′ < p2

2q
. This

leads to finding q and then p.

3.4 Analysis via Coppersmith’s Method

[6] invented a significantly powerful method for finding small roots of modular

polynomial equations. This method has found many different applications

in the area of cryptography and vastly useful tool for cryptanalysis [10]. We

now reproduce Coppersmith’s theorems for the benefit of the reader.

Theorem 7. [6] Let N be an integer of unknown factorization. Let fN(x) be

a univariate, a monic polynomial of degree δ. Then we can find all solutions

x0 for the equation fN(x) ≡ 0 (mod N) with |x0| < N1/δ in polynomial time.

Theorem 8. [20] Let N be an integer of unknown factorization, which has a

divisor b > Nβ . Furthermore, let fb(x) be a univariate, a monic polynomial

of degree δ.Then we can find all solutions x0 for the equation fb(x) ≡ 0

(mod b) with |x0| < 1
2
Nβ2/δ in polynomial time.

We now analyze the Rabin-p cryptosystem based on the Theorem 7 and

Theorem 8 and obtain the following results. Suppose c,m and N are the

parameters from the Rabin-p cryptosystem.
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Theorem 9. Let c ≡ m2 (mod N) and N = p2q. If m < 23k/2 then m can

be found in polynomial time.

Proof. Suppose c ≡ m2 (mod N) and N = p2q. Consider the univariate,

monic polynomial fN(x) ≡ x2− c ≡ 0 (mod N). By applying Theorem 7 we

set δ = 2. Hence the root x0 = m can be recovered if m < N1/δ = N1/2 ≈

23k/2.

Theorem 10. Let c ≡ m2 (mod p2) such that p2 is an unknown factor for

N . If m < 22k/3 then m can be found in polynomial time.

Proof. Suppose c ≡ m2 (mod p2) such that p2 is an unknown factor for N .

Consider fp2(x) ≡ x2 − c ≡ 0 (mod p2) with p2 ≈ N2/3 ≈ 22k. We can find

a solution x0 = m if m < 1
2
Nβ2/δ < N (2/3)2/2 = N2/9 ≈ 22k/3.

Remark 5. Therefore in order to avoid both attacks, we would set m > 23k/2

in the Rabin-p encryption algorithm.

3.5 Resistant to Novak’s Attack

In general, the decryption algorithm of a Rabin-like cryptosystem consists

of two parts. The first part is for the modular exponentiation operation of

which in order to obtain the message in the form of m modulo p and m

modulo q from its corresponding ciphertext c. The second part then would

be the recombination process using the Chinese Remainder Theorem (CRT)

algorithm to recover the proper message m. Most side channel attacks deal

with the first part. For instance, the work by [18], [33] and [4] which uses

the timing attack approach or the result in [22] enables side channel attack

using the power analysis approach.
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Alternatively, [25] proposed a very efficient side channel attack upon the

CRT computation (i.e. the second part of the Rabin-like decryption). We ob-

serve that all variants of the Rabin-like cryptosystem (except Rabin-Williams

scheme) involves a process that hardly depends on the CRT or Garner’s al-

gorithm (i.e. the process to recover all the modulo square roots). Therefore,

Novak’s attack is indeed applicable for such computation, of which can result

in the insecurity of the cryptosystems [27].

Remark 6. We reason that since our proposed scheme does not need to carry

out any CRT computation, thus the Novak’s attack is not applicable on the

Rabin-p cryptosystem (i.e. resilient against Novak’s attack).

3.6 Resistant to Chosen Ciphertext Attack

Notice that the factoring algorithm mentioned by the Algorithm 4 could

provide a way to launch a chosen ciphertext attack upon the proposed scheme

in polynomial time, hence resulting in the system totally insecure in this

sense. Therefore, to provide security against this kind of attack, we could

consider implementing as a Key Encapsulation Mechanism (KEM) following

the KEM framework for Rabin cryptosystem as proposed in [9]. We will

discuss this issue further in details in Chapter 5.
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Chapter 4

Comparative Analysis

This chapter gives comparison of the basic scheme of Rabin-p cryptosystem

and other existing implementable, standardized public key encryption (ba-

sic) schemes that are based on the intractibility of the integer factorization

problem; namely the HIME(R), Rabin-SAEP+ and RSA-OAEP.

4.1 Security Level and Key Lengths

For the primes p, q of the Rabin-p cryptosystem should be chosen to be

intractable to factor the modulus of N = p2q. We choose the NIST Recom-

mendations (2016) [12] for factoring modulus which present the appropriate

key length for user’s desired level of protection, as follows. Note that for

good protection against quantum computers, the modulus size of 15360-bit

is sufficent, unless Shor’s algorithm applies [12].
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Date Security Level Modulus Size (bits) Prime Size (bits)

2016 - 2030 (& beyond) 128 3072 1024

2016 - 2030 (& beyond) 192 7680 2560

2016 - 2030 (& beyond) 256 15360 5120

Table 4.1: Recommendation modulus length for Rabin-p cryptosystem

We suppose that the bit-length k of the modulus N = p2q for Rabin-p and

HIME(R) and the bit-length K of the modulus N = pq for Rabin-SAEP+

and RSA-OAEP have been selected so that the security level of these moduli

against integer factorization attacks is the same. The bit-length of the prime

factors of a Rabin-p or HIME(R) k-bits modulus is denoted by t (so t = k
3
),

while the bit-length of the prime factors of an RSA-OAEP or Rabin-SAEP+

K-bits modulus is denoted by T (so T = K
2

). Hence we have the comparative

tables as follows.

Algorithm Modulus length Public key Private key

Rabin-p N = p2q N p

HIME(R)[15] N = p2q N p, q

Rabin-SAEP+[35] N = PQ N P,Q

RSA-OAEP[2] N = PQ N, e P,Q, dP , dQ

Table 4.2: Key bit length vs HIME(R), Rabin-SAEP+ and RSA-OAEP
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Algorithm Modulus length Public key Private key

Rabin-p 3072 3072 1024

7680 7680 2560

15360 15360 5120

HIME(R)[15] 3072 3072 2048

7680 7680 5120

15360 15360 10240

Rabin-SAEP+[35] 3072 3072 3072

7680 7680 7680

15360 15360 15360

RSA-OAEP[2] 3072 3072∼6144 6144

7680 7680∼15360 15360

15360 15360∼30720 30720

Table 4.3: Modulus, Public key(s) and Private key(s) of Rabin-p, HIME(R),

Rabin-SAEP+ and RSA-OAEP

4.2 Performance Efficiency

In this section, we compare the speed of Rabin-p when compared to HIME(R),

Rabin-SAEP+ and RSA-OAEP through its most fundamental complexity

order (i.e. basic textbook operation speed without any enhancement). As

a note, any enhancement for the benchmark algorithms will result also in

Rabin-p cryptosystem using the enhanced operation mechanism.

4.2.1 Encryption

The computational steps that dominate the execution time of the encryption

process for the Rabin-p, HIME(R), Rabin-SAEP+ and RSA-OAEP are:
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1. Rabin-p: m2 (mod N). That is, a modular squaring operation with a

k-bit modulus.

2. HIME(R): m2 (mod N). That is, a modular squaring operation with

a k-bit modulus.

3. Rabin-SAEP+: m2 (mod N). That is, a modular squaring operation

with a K-bit modulus.

4. RSA-OAEP: me (mod N). That is, a modular exponentitation opera-

tion with a K-bit modulus.

4.2.2 Decryption

The computational steps that dominate the execution time of the decryption

process for the Rabin-p, HIME(R), Rabin-SAEP+ and RSA-OAEP are:

1. Rabin-p: c
p+1
4 (mod p). That is, one modular exponentiations with

t-bit modulus.

2. HIME(R): c
p+1
4 (mod p) and c

q+1
4 (mod q). That is, two modular ex-

ponentiations with t-bit moduli.

3. Rabin-SAEP+:c
P+1
4 (mod P ) and c

Q+1
4 (mod Q). That is, two modu-

lar exponentiations with T -bit moduli.

4. RSA-OAEP: cdP (mod P ) and cdQ (mod Q). That is, two modular

exponentiations with T -bit moduli.
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4.2.3 Complexity Comparison

Algorithm Encryption Decryption

Complexity Complexity

Rabin-p O(n2) O(n3)

HIME(R) O(n2) O(n3)

Rabin-SAEP+ O(n2) O(n3)

RSA-OAEP O(n3) O(n3)

Table 4.4: Performance efficiency between the Rabin-p, HIME(R), Rabin-

SAEP+ and RSA-OAEP

4.3 Plaintext to Ciphertext Ratio

Message expansion is another angle where comparison can be made. This

area is closely related to bandwith overhead. The larger the expansion the

more bandwith is utilized. We provide a table for comparison against the

HIME(R), Rabin-SAEP+ and RSA-OAEP. Plaintext to ciphertext ratio is

denoted as m : c.

Algorithm m : c

Rabin-p 2 : 3

HIME(R)[15] ∼ 3 : 4

Rabin-SAEP+[35] 1 : 4

RSA-OAEP[2] ∼ 3 : 4

Table 4.5: Plaintext to Ciphertext Ratio vs HIME(R), Rabin-SAEP+ and

RSA-OAEP
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4.4 Conclusion

The ability of Rabin-p cryptosystem to have the following characteristics:

1. Key length comparable to currently deployed public key encryptions

algorithms;

2. Fast performance during encryption and decryption;

3. Fair message expansion rate;

4. Does not have decryption failure [refer Chapter 2];

makes Rabin-p cryptosystem a possible candidate for a secure national en-

cryption scheme. Moreover, with the beneficial features that the Rabin-p has,

the possibility of seamless deployment within current public key infrastruc-

ture cannot be ruled out. Additionally, for good protection against quantum

computers, the modulus size of 15360-bit is sufficent, unless Shor’s algorithm

applies.
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Chapter 5

Rabin-p Key Encapsulation

Mechanism: The Proposal

The security of a modern public key cryptosystem is usually viewed from their

mathematical hard problem and its security model. In this chapter, we pro-

pose the design for Rabin-p cryptosystem in the setting of Key Encapsulation

Mechanism (KEM) following the KEM framework for Rabin cryptosystem

as proposed in [9].

5.1 Preliminaries

In order to facilitate fundamental flow of knowledge, we lay down some def-

initions. We begin with important definitions concerning with the material

of related cryptographic hard problems. Secondly, we outline our security

model.
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5.1.1 Related Cryptographic Hard Problem

Definition 2 (Cryptographic Hard Problem). [21]. A cryptographic hard

problem is defined as a concrete mathematical object which is easily to com-

pute in one direction, but very hard to invert.

Definition 3 (Negligible Function). [17]. A function ε is negligible if for

every polynomial with integer coefficients f(·) there exists an N > 0 such

that for all integers n > N it holds that ε(n) < 1
f(n)

.

LetA be a probabilistic polynomial time algorithm and a probability denoted

as Pr. Then we have the following definitions.

Definition 4 (Integer Factorization Problem). [16]. Let N be a positive in-

teger. Then, the integer factorization problem (IFP) is defined as the problem

to find the prime factorization of N such that, N = pr11 p
r2
2 p

r3
3 . . . p

rs
s where pi

are distinct primes and ri ≥ 1. For our case, the problem is to find the prime

factors p and q from N = p2q.

Definition 5 (IFP Hard Problem). [17]. Let the IFP is defined as in Defini-

tion 4 with the particular modulus such that N = p2q. Suppose [A(IFP ) = 1]

is an event such that A is successfully factor p and q given N = p2q, other-

wise [A(IFP ) = 0]. We say that IFP (i.e. factoring N = p2q) is hard if for all

probabilistic polynomial time algorithm A there exists a negligible function ε

such that

Pr[A(IFP ) = 1] ≤ ε

Definition 6 (Rabin-p Hard Problem). Let the Rabin-p cryptosystem is as

defined as in Chapter 2. Suppose [A(Rabin−p) = 1] is an event such that A

successfully invert the Rabin-p cryptosystem and obtained the correct mes-

sage m, otherwise [A(Rabin−p) = 0]. As proven in Theorem 3 that breaking
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Rabin-p cryptosystem is equivalent to factoring the modulus N = p2q, thus

Pr[A(Rabin−p) = 1] = Pr[A(IFP ) = 1]. We say that breaking the Rabin-p

cryptosystem is hard relative to IFP (i.e. Definition 5) if for all probabilistic

polynomial time algorithm A there exists a negligible function ε such that

Pr[A(Rabin−p) = 1] ≤ ε

5.1.2 Security Goals and Attack Models

The security of public key cryptosystem is usually categorized from the point

of view of their goals and attack models. The currently known standard goals

of public key cryptosystems are defined as follows.

Definition 7 (Indistinguishability). ][13]. Indistinguishability (IND) refers

to the situation of given a ciphertext of one of the two plaintexts (i.e. both

plaintexts known to the adversary), and then any adversary cannot distin-

guish which one is encrypted. This notion is rather artificial, but in consid-

ering provable security of a public key cryptosystem it is usually convenient

to employ this notion as the goal of the system.

On the other hand, the currently known standard attack models upon a

public key cryptosystem are as follows.

Remark 7 (Chosen Plaintext Attacks (CPA)). . In this model, an adversary

has access to an encryption oracle. That is, such adversary can choose a set

of plaintexts and obtain the corresponding ciphertexts.

Remark 8 (Non-adaptive Chosen Ciphertext Attacks (CCA1)). . In this

model, an adversary has, in addition to the ability to the CPA adversary,

access to a decryption oracle before obtains a challenge ciphertext. That is,

the adversary can choose a set of ciphertexts and obtain the corresponding

plaintexts during this period [24].
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Remark 9 (Adaptive Chosen Ciphertext Attacks (CCA2)). . In this model,

an adversary has, in addition to the ability of the CCA1 adversary, access to

a decryption oracle even after obtaining the challenge ciphertext. However,

this kind of adversary is prohibited from asking the oracle to decrypt the

challenge ciphertext itself [31].

Several security notions can be constructed by combining these goals and

attack models, and, of course, there are relations between some of these no-

tions. In fact, the following facts on such relations have been known so far

[37]. First, regarding the attack models, the power of the adversaries gets

stronger in the order CPA, CCA1, and CCA2, so does the strength of the

security notions. It is largely agreed upon that security against CCA2 is one

of the most important attributes of any public key cryptosystem [23].

Secondly, in proposing a public key cryptosystem, it is conventional to claim

that the public key cryptosystem has the strongest security by showing that it

is secure in the sense of indistinguishability against chosen ciphertext attacks

(IND-CCA2). For instance see [2], and [8]. Hence, formalizing and proving

for any designated public key cryptosystem resilient to such stronger attack

model is very important.

5.1.3 Deterministic Encryption

We will start by considering deterministic encryption schemes.

Definition 8 (A Deterministic Encryption Scheme [9]). A deterministic en-

cryption scheme is a triple (G,E,D) where:

1. a key generation algorithm, G, which takes as input a security param-

eter 1k and outputs a public/secret key-pair (pk, sk),
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2. an encryption algorithm, E, which takes as input a message m ∈ M

and the public key pk and outputs a ciphertext C ∈ C,

3. the decryption algorithm, D, which takes as input a ciphertext C ∈ C

and and the secret-key sk and outputs either a message m ∈M or the

error symbol ⊥.

The weakest notion of security for a deterministic encryption scheme is one-

way security.

Definition 9. A deterministic encryption scheme (G,E,D) is said to be

one-way if the probability that a polynomial time attacker A can invert a

randomly generated ciphertext C = E(m, pk) (where m is chosen at random

from M is negligible as a function of k. Such a cryptosystem is often said

to be secure in the OW-CPA model.

5.1.4 Key Encapsulation Mechanism - KEM

Technically, to use the public key systems in sending long messages is not

practical. Instead, they are frequently applied to exchange, symmetric keys,

which are comparatively short [1]. The symmetric key is then employed to

encrypt the longer messages. The public key cryptosystem is somehow rela-

tively slow compared to its symmetric counterpart; thus it is not suited for

encrypting large bulk of information.

Essentially, [9] gives a generic construction method to allow an algorithm

designer to construct a KEM from almost any cryptographic problem. As

a result, we propose a Rabin-p KEM, that is as secure as factoring, in the

random oracle model. Firstly, we recall the definition of the random oracle

model as follows.
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Definition 10 (Random Oracle Model [17]). A random oracle is a function

H(· ) : {0, 1}n −→ {0, 1}n that maps an input value to a true random output

value.

In the random oracle model (ROM), one assumes that some hash function is

replaced by a random function accessible to the public. This means that the

adversary cannot calculate the result of the hash function itself, instead he

must query the random oracle. This also means that anyone, including the

adversary has access to the random oracle [7].

Definition 11 (Key Encapsulation Mechanism [9]). A KEM is a triple of

algorithms:

1. a key generation algorithm, KEM.Gen, which takes as input a security

parameter 1k and outputs a public/secret key-pair (pk, sk),

2. an encapsulation algorithm, KEM.Encap, that takes as input a public

key pk and outputs an encapsulated key-pair (K,C) (i.e. C is some-

times said to be an encapsulation of the key K),

3. a decapsulation algorithm, KEM.Decap, that takes as input an encap-

sulation of a key C and a secret-key sk, and outputs a key K.

We choose to approach provable security from an asymptotic point of view

and suggest that a scheme is secure if the probability of breaking that scheme

is negligible as a function of the security parameter.
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5.2 The Proposal for Rabin-p KEM

5.2.1 The Security of Rabin-p Encryption

Clearly, Rabin-p does not achieve IND-CPA because Rabin-p encryption al-

gorithm as shown in Chapter 2 is deterministic. Next we discuss the oneway-

ness (OW) and unbreakability (UB) of Rabin-p.

As described and discussed in Chapter 2, the onewayness for Rabin-p scheme

or the Rabin-p decryption problem is: Given public key N and ciphertext c,

find m such that E(N,m) ≡ m2 (mod N) ≡ c. Section 3 have proven that

under CPA the Rabin-p decryption problem is reduced to the integer fac-

torization problem (IFP). The proof includes an algorithm (See Section 3.2)

which chooses and encrypts a message which is larger than p2 and queries

it to the OW adversary. The adversary then returns a message less than

p2. Utilizing the Euclidean algorithm on the two distinct messages enable

the factoring of the public key N . Let this algorithm (i.e. Algorithm 4)

be named Rabin-p factoring algorithm. By the proofs of Theorem 3 and by

Definition 9, hence the Rabin-p encryption achieves OW-CPA assuming that

integer factorization is hard.

Furthermore, from the public key of Rabin-p, which is in the form of N = p2q

where p and q are k-bit primes and p, q ≡ 3 (mod 4). The private key is the

prime p. Hence the Rabin-p private key problem can be stated as: Given

the public key, N , find the private key, a k-bit prime p such that p2 divides N .

As such, the Rabin-p private key problem is exactly the integer factorization

problem under CPA and this is correctly proven in the previous section.

Hence, Rabin-p is UB-CPA, assuming integer factorization is hard.
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5.2.2 Generic construction of secure KEM

[9] propose a simpler construction for designing a KEM based on a deter-

ministic encryption scheme with weak security assumptions.In other words,

a secure KEM is build from a deterministic encryption scheme that is secure

in the OW-CPA model. The following Algorithm 5, Algorithm 6 and Algo-

rithm 7, gives a construction of a KEM based on a deterministic asymmetric

encryption scheme (G,E,D). The scheme makes use of a key derivation

function KDF and a hash function Hash. These functions will be modelled

as random oracles and so care must be taken that their outputs are suitably

independent.

Algorithm 5 Key Generation of a KEM derived from an OW-CPA secure,

deterministic encryption scheme

1: Key-generation is given by G, i.e. KEM.Gen = G

Algorithm 6 Encapsulation of a KEM derived from an OW-CPA secure,

deterministic encryption scheme

1: Generate a suitably large bit-string x ∈M.

2: Set C1 := E(x, pk)

3: Set C2 := Hash(x)

4: Set C := (C1, C2)

5: Set K := KDF (x)

6: Output (K,C)
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Algorithm 7 Decapsulation of a KEM derived from an OW-CPA secure,

deterministic encryption scheme

1: Parse C as (C1, C2).

2: Set x := D(C1, sk). If x =⊥ then output ⊥ and halt.

3: Check that C2 = Hash(x). If not, output ⊥ and halt.

4: Set K := KDF (x)

5: Output K

This construction also has the advantage that the decryption algorithm need

not return a unique solution but need only return a small subset of the

message space that includes the original message, as, with high probability,

the original message will be the only message in the subset that hashes to

give the correct value of C2. We will make heavy use of this fact in the

speciflcation of Rabin-p KEM.

Theorem 11 ([9]). Suppose that (G, E, D) is a deterministic encryption

algorithm that is secure in the OW-CPA model. Then the KEM derived from

(G, E, D) in Table 4 is, in the random oracle model, IND-CCA2 secure.

Proof. Appendix B of Theorem 4 in [9]

5.2.3 The Design of Secure Rabin-p KEM

In this work, we will view the Rabin-p as a KEM-DEM framework, and

study only the KEM component. Security analysis for Rabin-p KEM instead

of a hybrid scheme is more elegant because the KEM-DEM framework has

specified the required security level for KEM relating directly to security of

Rabin-p scheme. This section presents the security of Rabin-p as a KEM,

following the KEM framework for Rabin as proposed in [9].
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Now we are ready to present our KEM design for the Rabin-p cryptosystem.

The same procedure is retained for the key generation as described in Algo-

rithm 1 and output the public key N = p2q and the private key p. We begin

with the key generation algorithm as follows.

Algorithm 8 Rabin-p KEM Key Generation

Input: The size k of the security parameter.

Output: The public key N and the private key p.

1: Generate two random and distinct primes p and q such that p, q ≡ 3

(mod 4) where 2k < p, q < 2k+1.

2: Compute N = p2q.

3: Return the public key N and the secret key p.

Algorithm 9 Rabin-p KEM Encapsulation Algorithm

Input: The public key N .

Output: A ciphertext tuple (K,C).

1: Choose a random integer 23k/2 < x < 22k−1.

2: Compute C1 ≡ x2 (mod N).

3: Compute C2 = Hash(x).

4: Set C := (C1, C2)

5: Set K := KDF (x)

6: Output (K,C).
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Algorithm 10 Rabin-p KEM Decapsulation Algorithm

Input: A ciphertext C and the private key p.

Output: The value K.

1: Parse C as (C1, C2)

2: Compute w ≡ C1 (mod p).

3: Compute xp ≡ w
p+1
4 (mod p).

4: Compute i =
c−x2p
p

.

5: Compute j ≡ i
2xp

(mod p).

6: Compute x1 = xp + jp.

7: If x1 < 22k−1, then return x = x1. Else set x = p2 − x1.

8: Check that C2 = Hash(x). If not, output ⊥ and halt.

9: Let x be the unique square root of C1 modulo N for which Hash(x) = C2.

10: Set K := KDF (x)

11: Output K.

5.2.4 Security Proof for Rabin-p KEM

We proposing a new KEM whose security is equivalent to factoring, that

is the Rabin-p KEM. The Rabin-p KEM construction will be based on the

generic construction given in Section 5.2.2 and the Rabin-p encryption from

Chapter 2. The algorithms of Rabin-p KEM is described by Algorithm 8,

Algorithm 9 and Algorithm 10, respectively. The provable security proof of

the proposed Rabin-p KEM can be summed up in the following theorem.

Theorem 12. Providing the factoring problem is hard, Rabin-p KEM is

IND-CPA secure in the random oracle model.

Proof. It is proven in Theorem 3 that the Rabin-p function is one-way

providing that the factoring assumption is hard. Therefore, given that the

factoring problem is intractable, by Theorem 11 the proposed Rabin-p KEM
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is IND-CPA secure in the random oracle model.

Remark 10. Observe that, the Rabin-p cryptosystem falls prey to the inte-

ger factorization based-encryption security incompatibility in the same way

as Rabin cryptosystem [30]. This incompatibility is first found by [38] in Ra-

bin cryptosystem and was formally stated and proven in [29]. A simplified

statement of the security incompatibility is: If an encryption scheme OW-

CPA implies integer factorization problem, then the scheme is totally broken

under CCA. Therefore, particularly in our case, it is necessary to reduce

the security claims of Theorem 11 which originally proved for IND-CCA2

security to only achieve IND-CPA secure.
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Chapter 6

Implementation Reports

This chapter discuss the computational running time for both the encryption

and decryption process for Rabin-p cryptosystem.

6.1 Encryption Computational Running Time

The Rabin-p encryption process involves a squaring and a modular reduction

process. Its total running time is O(14k2 + 4k).

6.2 Decryption Computational Running Time

The Rabin-p decryption process involves 1 modular exponentiation, 2 modulo

reduction, 1 division over the integers, 1 modular inverse and 1 addition

process. Its total running time is O(3k3 + 142k2 + 154k + 3).
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6.3 Empirical Performance Data

These experiments were conducted using Microsoft Visual Studio 2010 on

ASUS Model G551J, Windows 8.1 with Intel(R) Core(TM) i7-4710HQ CPU

2.50GHz and 4.00GB RAM.

6.3.1 Rabin-p Encryption

Table 6.1 shows the computational time of Rabin-p encryption algorithm

when executing on specific numbers of data.

Number of

data encrypted

Time

(ms)

100 13

500 76

1000 138

5000 717

10000 1430

Table 6.1: Rabin-p encryption algorithm execution time.
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6.3.2 Rabin-p Decryption

Table 6.2 shows the computational time of Rabin-p decryption algorithm

when executing on specific numbers of data.

Number of

data decrypted

Time

(ms)

100 21

500 83

1000 156

5000 842

10000 1538

Table 6.2: Rabin-p decryption algorithm execution time.
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Chapter 7

Suggested Implementation

Practices

7.1 Key Generation Procedure

A practical key generation methodology for factoring based cryptosystems

are already established and well-developed. In implementing the Rabin-p key

generation procedure properly, we suggested the implementers to utilize the

key generation mechanism provided in [12] and [36] satisfying the condition

within Section 2.2 in Chapter 2.

7.2 Rabin-p Encryption Procedure

Chapter 2(in Section 2.3) and Chapter 3 (in Section 3.3, Section 3.4) lists out

strict conditions for variables within Rabin-p encryption procedures. These

conditions have to be satisfied in order for Rabin-p security properties to be

realized.
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7.3 Rabin-p Decryption Procedure

For implementers that wish to optimize the decryption procedure, we suggest

the the implementers to follow the mechanism as described in Chapter 2(in

Section 2.4) and in Chapter 3.
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Intellectual Property Rights
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of the joint submitters.

I further declare that the Rabin-p Key Encapsulation Mechanism are prop-

erties of Universiti Putra Malaysia (UPM). It has been filed for copyright as

according to Universiti Putra Malaysia (Research) Rules 2012. Their copy-
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Chapter 9

Full Size Test Vectors

We now provide the interested reader 3 full size test vectors for Rabin-p Key

Encapsulation Mechanism. These test vectors work on the prime number

p with 1024-bits (equivalent to 128-bit security level). We remark that all

parameters are as defined as in Section 5.2.3. The hash value C2 = Hash(x)

is using SHA-256 as the symmetric hash function algorithm.

9.1 Sample Key 1

The public key N :

60991B16F64E4BBB902562B527E4CCD3FE1181D88BF36301A7CA8DEF

CB29295E7C2583B84AB2F5BA7BD1E420CA88961B2975EE797F222AC14

655394C2F643A62FD63736EE57CFE0FD36E29E2C1195D676DAD1582887

C82D99F701A23A6497C09BF4B46ECDE12F4ED815A0FFD922210B27FF

2C4A51646A9264CF5B08985EBD81AE12493551783681F3106BCA24906FA

C6F7F149EC0609022A7C80CDE49D630E9ECC81842703B22A2ED946D21

B4A30A74E0D343CB9C8DF6F768E2D1FB3DF65C7CAF13BB4D7CBC1A

F00FA475817C738B843CD152AF059427CD62DEFF0E696208B1B7487F6E
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9DD7D4E389A187300A8BC2F3900F02E0DAAEE618F5C298F23B7E1E60

0D227450009042AA1D4AEA81F6BFD6723B46F008CB63D9C9C731D38D1

CC66A37B75D65EEB73429801F658A730C85EDE2BB31BA768D84D27681

730F692F53291CEC0B3DB994D8C4977804404A9DA2DAC94F551DE1F82

FFE6A6D76C8F067005814758EEA549B94E7515C76B93B4EC52340E5BA9

C1DC3B6CF84E7F9357CF169F0E2B

The private key p:

9F68093FE147E282A55A37D32AA1DB511C50C2EC0791584BC738AF47A

47A5EEF3A41DE8E40B4C4ED893631758194B51F58E3AAC460585A47205

F1615D5C30185331667392AF029DCD448255CE86D6BBF1F9BCBB7AF62

BD9767D90D6B95CABAB102A6600B036BC5F8DEF4634A2BAD2EE5D62

B63819A5DC13140AEF19AFF0105FF

9.1.1 Test Vector 1

The random integer x:

0718A9E9D65C570D2DD30DBA0B365C4C10547626064EBB8B4A6591E50

AFDEC6F384D9EF33A12CEDF32ED721890A958FE9EAADA6AB87FDF9

63A05AC6B72A63AF0BF8063DB2AC6DCF168C6CEEFADB2178B846775

0E04CDE9D00827C1EFCF7FDB3789F0D8CDD881886626567D84FD1645F

357ED5B686E8CC4FF0F4B8387FA987DA8B3031D535B72754618D64D393

44E83BBE6538A91B18A5493BC31D916D297FDD58B59002B32FEC917272

C45BD0C41804285EDC7DBF33962DD651633A41D3F923834AACB9B5F6

684CAED005420CD8B72E6F70401D7B574FFC8CAFD1422AA13C2078921

C4465961522A193E34C368FC522E3877BE6F067034E976071CDD3966FAC

2
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The ciphertext C1:

53C1E2231BEF8E1DBE117E44A7C2C1CAB220926AB02F0999E6901D977

D421A183426CEA9A60AC69E8234617BAB4310067C6E9240A296A6F31FC

9A0F4364D38E32BB444D8CCFB03F0DBCE77F723ACAA39D6D31702FE

02A932FE4CA4908329F242BAFB1B5D701C701FEC1F691F3A569E2C91C

CA6903E025745F9C4AD90262627A73051FCE91B407E1BB11C57125A9B0

2F26907B2390C79A8185398CF2146B906DF3B346C0DECB93B1C98A2234

B06E1EE6E2D36DFF2ED66DDADFB1D63A69535CFA8DB4CC4A792D5

4DCF92EF278EE9244BE11A6229554426E2282FA07655FF4AED4285D7A

0E493536069C35C5C1BF6E679CE26C5F92CEB2930462CB99D125E10E45

2A89F62F05FF7162C589A87AD7D76C250D07937917A9387A8A523D7E77

68723062756DB82CB573F40C3AE5EC7D3B2446CA123A74441BD9CE0E3

3A4620CEDFE040147D8675826E7C6A0DBA751F4D49EF22E701CFBBA8

44FAAE61A70FC2A9C0E5538C04E72FE55DA61B851A5DB53D4E7A6CD

D50821BF9A5C753F816C6668DBF4A31

The hash value Hash(x):

91F624BF6A5C421AB6BB28F5079AEB69A1072917BC0A727ABDC690DB

6BE3F61C

9.1.2 Test Vector 2

The random integer x:

1ECD4B6D611937F67C6B42FBE26C473A1A403ABDFADD86F5A0BF677

069FE644A8FFF9A5E47DF44A1F3C3340F7C8B22EA2CA2B075AA0E208

2EEA3E659B049B8B8B8C6294B9A35719B29E685F3B461489AA3DB6F06

F40D5E9C569E98BFF5D1B4F944AE8493D88AAC6F5EC49441D122ECE3
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D916FCF04FDCA847BBCB0C05DCC328974EB3D2692EE164DF570A956

F0A33E7F5D7E54856A1768D8F6BDC714295D6088C5465EA02C217CFAF

2F20A7F4E92B15D689F048CB951CD6012B0B5B3719DD020598299096E64

FAA23106248C1AA586455A91BC642E5CB9197A18584545F1AF3894CAA6

0BD44CE0DACE0D21EA71C58AEE24C39CA30C3E663D075763A8EE523

92E7

The ciphertext C1:

14EE1803219D42B523F0A165DBF476C0314037C6DD4479A128D803FCEA

8025F533868B220C8B8D4FD50423BEE64015239C3249A8CF9591CB1212A

BE2D32FAD51C1AFB8B6D1EEE8F9B870B94A961A37D83E94E8CF2990

11ACDBD136F3D8DE250FFE16426CE666A4637444BBD557C1F565EAF4

5F52051ABD1A29065985F48E334BF13AC383FC972E20F8779DD9DD463

75A94A80CE0F5ED8483B149BA24615E7F29448DCA99953C678E75D7DF

CE4BB5016F83FB11FB0C9B3F96BC73E906AC013CBE636F31A2C424B7

637970260356662F885721539198E1C2ECC7F897F129E1E9F93CDC10E3E7

C7859AF0233BB704368B5F34F61EC2AB1A893ED6EB896008792A4C60A

4B509E2D3FDDD74204DE4AE2DCCF2FA038278FD4BCC8F5026E799AA

399B310FE780515F2CD562C753DB8F86EFD31C4F7B0F9AECF7B6D43E

0BB9BA3682CAD274478A375E98E56B7263F91E5307A00CCA8ABC63DF

5DFE08A03B7964FAAB01845ECC687385BF0BFCBDC7CFE8EC0F7A477

38D56DF2DB7533509C600EEAA185C24

The hash value Hash(x):

89341F698854C013481922C0C32C40174C5362148F89274FA57B7D7919615

990
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9.2 Sample Key 2

The public key N :

8361303AC8602B85150B82E37D004ABD36E6E69DC7B8C1CA3DD46728B

0E57B9E954107CF1999C1E8AC5C2EE2F2B21A864546377B1672300491B0

4E304D77A308D3ACAA7C97B8D112D7D5AEA290C9C7068DC2BCE45C

E65BB51E202BCBEB27C37EA371D969CFB0EAEFBC1E15AD1CD331275

F73BCD411C583666A8F3760BFD752D14DEC54DE089924E51660FC78DA

5EAC3507AA545E6C7E96B378D792D2B02B70A377F222190C7572870FC2

DF4DA9012890B66DB64DD95D713085D5667C2EC199C5830C78458EBA7

C49E3603CFA0FDAE1F790CD59C5639435DF7BEF76FAF16D567DEAA4

4C7D8E6958414B855B8CC5230C308F41ACFF756CCC150B8962493E1352

69BB58858E7C3CC96C9DFF35579F310B0910B8E9E5104EAFA4FAFEA8

DA8F4DB9AF452CEC653FBC1703BAD6101607DE1961ECB4EE4EC19EE

B60F549C0D731DFBABD273BEDC08EA5C65D92E7992D06303BCB4C20

562530ECDF9145450F474E669385EE27B0F1C947C92870B91B361FADBD

36C95432F669100C00E1867396F0331917

The private key p:

DEEE7964B8C4A8AEF5CD09213E6BD63977E38330E4A536A2EFC927E9

2BDA0B5C637C31F7AA089B4C743C7175998F7C973372EB85639934C4032

E5F9026798F8690BCA71D8EA7DEF19AD4CBA64CF766A7B067CA64C76

A2CBBF948CA170280C376077FDBEFBBA1A758A76D94A8E9DFCAA5F

FB2100BFFB914355E589EB02B494B97
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9.2.1 Test Vector 1

The random integer x:

18C5975532F6EBC7AB76A6C459228684C3A5835EA2C622E71D5BF43205

F24E24E007E59B2D66EC10C159008259FA3182FD62DD4947F6D8B61F05

B8F6F926F04B8B428B7498BBB9D1666A6829A75C488C85C607F99A46C9

300EBFCBE0E910C05248A1C0F24C7090358BDEFD035D7F32F2F6D0F1

780323FD3A8E123B7BBAA3F8A793F0CA4E45AFF2592D40798CED3ED8

857CAB473587A17B59145B4DDAFEED544DCD130D8449524087BD37FD

6CFA015BB33424172853273473A9FF3AA91F6FC295D2617F83466A1A778

BB64EBC3E4DBB6A11F6FA247CD2E12753E9608BF3B67AC2F657CD70

4148E43FF25FA212402CAD56BD54307CE20ECC78E43513ED6DB7BD6D

The ciphertext C1:

6C3C53147D1495BB8048A91C45E37C9F99A1D1AFFDA3D4476E2D8A30

E1C216844234A272DF551226BA05FF6A37FD28766370C75B918432A835A

3DA818EAE00855A4E18165CCE601A58BEE62B636D4A94CB73CFFD33

D5B8D7D6A1A11F90BD08DAE9E9EA75A94A2D81858E8BEF36B4E92B

B47A1A88F55A90FB7903438EA78C13E8ADB49A2FACA1236EBA94C859

9DD44753818EA34773B301DF64EBB9938664CAAA42501243C7C008A10C

A99D75F77EC8D016DB20A7849BEA2A8D378C3D25FFAEC0443877B9E5

8E8F0636EFAA439E54DFD02ED3D84C775E3BB4A31997700EE5CDB0B8

03AF0CEC4660F298A650DA0E83ED044801AF43A57B9B04A0778262D33

C992B0E6AB09E2A2368856E540C5AD9E8DBF1DA97426BD1610CE8DC

FFA080A4A31F8A39542EE6D1600D09F475ADE5161E369169B1DB2CBA

61EF8FD1E2028EE592E19523B6C0001E196DD2E54131A7B3871BD0CBC

D3B48156C7DF133AEB143538B588C8EEC45F75A78E2B528D453112C60

ED9D6AED7265B91FF599461BDF6F24BB7371
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TThe hash value Hash(x):

FAF9FB73F42420D1EA11D3990A51657AAE0F647F5CEF2CAEFF1D1BF

6C3E5581D

9.2.2 Test Vector 2

The random integer x:

1642175D484D9F1E076D7B31159E79EE299197C3EC330AB9333AB903608

04013351C58282C2AC314DE108FC69CA7A2D37BC5A86D0C87607A0E98

40019B98C8692E1E667C73059EAF84DA0911CC8FEC92433078F572A7976

DB00F14D649DCEB4511CC6053E5A5B8B1A1A38AE995C977A892D2178

4145BEF38B3986A10A2483E2E03F323C0B5AD4301061C57FE70848564D4

C9A82A39C8747E62CDD08A3FD8C68190479EF81541F755160A8CADBB

EE62C802D37571813FBEDB4ABDFD832449C0C12D21F070A5A35D5C10

59F4C4F31864475A51C78136A873285E4810E2B6C6045F694A1238181E052

BB5F524E681AA4A5FA59ED32107F94BDDF3184E91291092E5

The ciphertext C1:

4E7AE2E7AC86CBDB15B072311C5B997715E66AB47D94B3154B05FDA2

00B1D3F4E86A347A40DA183AA2BEF538FB4B37835B5F54F845384ECD

94E7D0502597DAF11D0A9C9D149AFC464DDDE26D7AA4111BFC037D0

AAB6CC9985C7AB2ED9BAFC0143D354C919D57DA507857097A53CA3B

E8D80960BD813A6D3B958B0D8A7B169F038FFFBEAE60216F8D0895851

ABA313E0CD87F0C99F337B8EC6F963725C26385FB2528AB2B076D53CD

1E035A8408282F8F9BE589CDF66ACB57BAEE3739828C463EE9258BA7A

E6B1920CE93747D1B608E34BB9A200958509D08A8529BC77B0F2B89ED8
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16F5D8B8D645461EF0ED82B1C832FB2D32BEF939254B20DF07C0B02F5

7C9CD372152E003ACEABEF266D37F853E1BEE56CC573E4DB408DD3B

69574B65A57C10186EAA1446989CDC6F9025C05FE6649601EAF4FFD46D

E195C6B3C7F342C6FAFF7D48F08F9DDD5C5720E07067C68C9A759F588

9AC335A0B88FC6D427DBC1EC075839A5A95A312DA42BC72FD4CE0AC

833E05ECEE182E09E14DF91F54B1C29701E

The hash value Hash(x):

C6E4B3585E07BA91D60A4F4CDBB39A09093072F6F20AC6425BA963A0

A8FB8888

9.3 Sample Key 3

The public key N :

457601732E1F91E8673E15982C7190F2CAC121BC24D4590BF8837C444F9

7A47CFC36A47D46EBBC5C012F1250E0AA379CBF1D25E4CD0CD5C2F

6D41607A8BFB17BAD9B81D0C658C56AAC79AFA51E5D9DEE3C832248

1F9A4B7277DCA8FFBEB18218CACE9D8487FEE7B91FC5054D3F5DE1B

B1A7838F45D3770EA3D6C9E5D01AA685CC3B5DE077BED842EEA176D

340225E02E32E41587F30E8E8FB139F32A1099276F34324EFFD0C8FEAF

FE1E414B17F765043B171342B5AE40DF024D3A56D95867E1FD8545BB2F

9790FC579BCE5AEE30CC95A4CA81B1A48CEFB5435F6BEFE54A6ABA

95BDEC6C04A8F8C2787EAD0533B37B48D113AD2972832E93139DC521C

B9210584A32E6DDA985E3194F185CED66CABD064CBB6748E7407E6BC

762732FE3ECB7663B6A24BE2BB2BE522A808473F0689921888CF20C189

AA9EA77ADB1E873EDED9BFD823D235BAC2AC49ECBCDA9B594B8F2
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274A58F75299ECDC87E83E72AEC141C6AB44229CF24C280C1B16259ED

704D30955CB9FF1561EBC8E51A4C8B06E8D1F7F

The private key p:

ADE0FE9E24C7FBC63C702B8853DD98D3DFCA054E8CC7E0B2B680FE0

A8B79576327CC2612FD2DC986967F06D1CF20AB745DBEEB6781287B2A

98B3CCE9B5105F11ACD86D95FC1F128DC7E4E0C82BBB9FC2615FC709

96F1F6105D0AE36920E4511A4C087C0DE2F350EE40813E7B34DC55BEF

568C4714D613A0CF16EA145B7152FE3

9.3.1 Test Vector 1

The random integer x:

19DAD4AD323624CD281AF1770B8F9C8337E94D5AF8056B7E07AB4A42

B0B09CADF5CED628DD4719A3F47485A83DFF2EA0A37BFE072BBCC8

453E6EBD39CE71016310062E0244962045FA67761FB6259E758D650F7159

AA73C51C9C451136C13552287C7A06A6CC7C46DA95E41EC5358505670E

8C53B24DDC097C9A894FC948F4FB8EB67173D147D2D59209082ACF46E

2C1C8CAEC5C8BD4C268DBC99549A030874906EAAC4097F0017FCFE42

88CB0E8FC53D331CF2EEFDCBC51FFFD0021E8C5CF8302CC422A65A

BBEE9D281F3D71D534C96A23195034AF9FAFCF5EE506B5C3120F7AB7

3243877662C92E13F9D7314B185501FAB8991D7D094E511BDE5AD06135F

80

The ciphertext C1:

281EF58B2F124A3A5F6CB474242CE1C7D095A73DE8F62594A8940C6FB

856D0AB8FDA63560A4C9509E1D8A8354A2C96F907C6D4942991C45599D

D122CCE292F645063A3C7425582FD64033A68B7155D7829CAF664DA202
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E246B2C7522B1DB14A7869B4DB558AFE516A3A1CF6E2BD15C17342B1

5B01F802B8071CE4F3C4BA779147AF12A449DBFF4FDAE9F995D28AD

61E68584E5DD9CCB1DEC47B046F1742773B4047247B168E990BF0F3E65

4AA9A4C0F7E403947EC50051A30EAA5710C951151B244F544BF39AA77

0F1AA6BEDF239B3EFE0251AFD67CE4D59409728DDD12F37AB5BFA84

A10DB8D4BBB27598386C5F4C2AFBE444AA5379E862554E26740917CE4

237C72EE8D8B25EAAB1724B1DFA4F7F19CDB4B7BC469070776255CE6

F20A0A1450F0068C384503093B6D96E11648E3AF316EEF1CE9C4C1F451

BB1BECFFEF8BCF210EBF169A8615E4819B32C0906D08166DD324FCA6

33421C7B9D5A76E81CD6B0C1712EC2E3D2D213734C7FE36ECCB9717B

6768A000AE7E5BAE27D2988EC0B50C6

The hash value Hash(x):

62DB0258794ECFB08722A3EE866A43314DA7C1CBEEE0102584A1B5196

37FE779

9.3.2 Test Vector 2

The random integer x:

06B3E6C8FA44E0AD7682B724866A3B8018F83C2A250BC6ED44760B9B8

F668B9D13B84FC6F7D1B2A145F9D5C435A0A5A3AC77DAC5B79EB5FC

04EF58E15C0355FF040046EA8633E66CB6354268B9E1481AA60217264E3

37FE86027E6EC547BB4FE5C4AAF80DFF560F6D1757D088EF4658987748

29664361A0E0108A2434EB7C1B8CCD76F257A14C4663610E457C08318E0

03961BE8A4D5342D31D5931ED54965D49B93E3D8C266302F4860AED1E7

AEAEF1D344CF418BFA53A5470DA7DEE1F4B8FC7299C867F621961394

151F4AE7561FFCF8B07EF7B8A29177D460D18EEAC0677486BAD3B9D3
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845EB0B392600BCFB6030F8A01F7362EB3ABCBD2B6DCC5552329A2

The ciphertext C1:

3DF509D9BA9E25F5D34D29138C28AADD8A327C9C2B9BD9DC32089251

A74AA31775FED7A6BAF437E6CE7B9ACB178E3D2EA2E85483E2165184

0400E3302056B4F2B97A79A231CF85A6E29128F6FEE18D98D4636985AE

B4A111DF248B43067A5B75E76C3BB5C6F0F78535F6C9E880737B3CD312

144568CE7017D569415BDAF40CDCBED6FCBFC8BE5403744D1DAACC

ACD47EF10F7C4FE65E86572B9182CD84E2F00463BC1640C0661E23B729

D5472DF78D0F2357B8015A7CA1654D36C6F5540BB7124B17D65FE824C8

3E1F2D3AE8DCB09317ACDECB4D38304FFBEBE06C4826558DAEEEC8

7271488208826FBBC4AB21176F33CD57287BA6C67FBD99DD6C193E888

802D09F36FFA32696CF6951484AF2DFD0116FF3EBAFB8CC2E970672A1

E16F4AC09C95CBD3D291453ECBE372B79651C3B80F7D43F37C9C76101

0CC842100CC18FDF2F46E18A8C2BE4D27C27EFC173BEA15287CFF8E6

BDC998AF012F633FBFBF0A24186187F9B9969895E73E2BA119BE2C2545

28A9D1EBB5EC3A047268F66C51E8834

The hash value Hash(x):

5415BBB263767E9320616BA95C3A566D8402EDAE9A4E8189C6EBAF162

193AB4A
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