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ABSTRACT
The reduction of time on parallel computation has spurred interests on the development of numerical 
methods with parallel capability.  This paper presents a derivation of a fifth order Runge-Kutta method 
which is suitable for parallel implementation.  The sparsity structure in the development of fourth 
order parallel Runge-Kutta methods has inspired the construction of this method.  Numerical results 
in terms of accuracy are compared to three established fourth order parallel Runge-Kutta method. The 
results based on sequential computations suggest that the new method is more accurate compared to 
the three methods. On the parallel performance of the method an algorithm was developed using C 
language and the parallel computation was done in Message Passing Interface (MPI) environment. 
The execution times of the method by sequential and parallel implementation on two large problems 
are presented.  Results show that time taken for the parallel computation gave significant reduction 
compared to the sequential implementation.

Keywords: Fifth order Runge-Kutta method, initial value problem, parallel computation, two 
processors

INTRODUCTION
Runge-Kutta method is a famous one-step method for solving initial value problems (IVP). Developed 
from Euler’s Rule, Runge-Kutta methods are able to achieve higher order without sacrificing the 
one-step form. The classical fourth order Runge-Kutta method often emerged as one of numerical 
methods introduced mainly for students studying applied mathematics and engineering. Traditionally, 
Runge-Kutta methods are all explicit however Butcher (1987) has listed six basic reasons for taking 
a serious interest in implicit Runge-Kutta methods.  The main reason is because of the higher orders 
of accuracy can be obtained than for explicit methods. Due to the excessive cost in evaluating the 
stages in a fully implicit Runge-Kutta method, many researchers have opted for the diagonally implicit 
Runge-Kutta (DIRK) method, as called by Alexander (1977).  For these methods, the coefficient 
matrix A has a lower triangular structure with equal elements on the diagonal.  Sometimes these 
methods are referred to as singly diagonally implicit Runge-Kutta (SDIRK), with DIRK methods 
not necessarily having equal diagonals.  
	 Latest development has shown that attentions are now given to parallel implementation in 
numerical computation.  According to Jackson (1991), the desire for parallel IVP solvers arises from 
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the need to solve many important problems more rapidly than is currently possible.  The reduction 
in cost particularly time, is undeniably give great motivation in developing this idea.
	 Iserles and Nørsett’s (1990) idea in presenting parallel Runge-Kutta methods through sparsity 
structure is considered as one of the best parallel designs for Runge-Kutta methods. The structure 
allows the evaluation of the functions with independent arguments to be computed on different 
processors at the same time as one single evaluation on one processor.  Previous methods using the 
sparsity structure are fourth order DIRK methods suitable to be implemented on two processors 
(Nørsett & Simonsen (1987), Jackson (1991), van der Houwen et al. (1992), Jackson & Nørsett 
(1995) and Burrage (1995)).    
	 In this paper, we present a fifth order Runge-Kutta method (which later will be referred 
as P2DIRK5), where a pattern of DIRK is developed to permit the implementation of parallel 
computation.  Comparison of numerical results based on sequential computations to established 
parallel fourth order Runge-Kutta methods will be discussed. The performance of P2DIRK5 
particularly on the cost of computation time in solving two large systems of ordinary differential 
equations (ODEs) will be presented. 

THE PARALLELISM OF RUNGE-KUTTA METHODS
The IVP for a system of first order ordinary differential equations (ODEs) is defined by

	  ( ) ( , ), [ , ], ( )y x f x y x a b y a y0!= =l 	 (1) 

The general s-stage  Runge-Kutta method for problem as in Eq.  is defined by
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	 The coefficients in Eqs. (2) can also be displayed by using Butcher’ array or Butcher’s tableau 
(Butcher, 1987) as shown in Figure 1

c   A

  bT

Figure 1.  Butcher’ array or Butcher’s tableau
 
	 The s-dimensional vectors c and b and the  sxs matrix A in Figure 1 are [ , , , , ] ,c c c cs

T
1 2 3 f

[ , , , , ]b b b bs
T

1 2 3 f  and  aij6 @, respectively. 
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	 Iserles and Nørsett (1990) have explored the parallelism in Runge-Kutta methods by analyzing 
directed graph for matrix of sparsity structure as shown in Figure 2 (also in Nørsett and Simonsen, 
1987).

Figure 2.  Sparsity structure for fourth order Runge-Kutta methods.

In Runge-Kutta formulation it is written as,
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which is a fourth order diagonally implicit Runge-Kutta method.  Clearly from the method,   does 
not depend on   and  does not depend on 3k .  A digraph is used to model the sparsity pattern of the 
matrix as shown in Figure 3.

                      Figure 3. Digraph of sparsity structure for fourth order Runge-Kutta methods.
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Methods of this kind are:

Figure 4. Method by Jackson and Norsett (DIRK1)

Figure 5. Method by Iserles and Norsett (DIRK2)

Figure 6. Method by Iserles and Norsett (DIRK3).

	 Figure 4 is a method by Jackson and Norsett (1995) and through the discussion it will be referred 
as DIRK1. Meanwhile Figures 5 and 6 which are methods by Iserles and Norsett (1990) will be 
referred as DIRK2 and DIRK3.  These three methods are suitable for parallel implementation using 
two processors.
	 We extend the method to a higher order Runge-Kutta method which is a fifth order with six 
stages having the same sparsity structure (see Figure 7). 
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Figure 7. Sparsity structure and digraph for fifth order Runge-Kutta methods with six stages.

The derivation of the method can be found in Din et al. (2006). Following is the coefficients obtained 
for the method.
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STABILITY OF THE METHOD
The stability function or stability  polynomial  ( )R ht  as given in Lambert (1991)
		   
		  ( ) ( )R h hb I hA e1 T 1= + - -t t t 	 (5)

is obtained when the method is applied to the linear test equation
		
		   , , Re( )y y C 0<!m m m=l 	 (6)

ht  in Eq. (5) represents  hc  and  e = [1, 1, ...1]T  An alternative expression for Eq.  is given in the 
following lemma.  The proof can be seen in Butcher (2003).

Lemma: Let (A,b,c) denote a Runge-Kutta method.  Then its stability function is given by
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Using Mathematica, we obtained the stability polynomial for the method as
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while the stability region where the region lies outside the closed boundary is shown in Figure 8.    
P2DIRK5 is said to has an A(a )-stability with  . .88 58.a c     

Figure 8. Stability region for PDIRK5
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THE PERFORMANCE OF THE PARALLEL PROCESSING
In comparing the performance between a multiprocessor system and a single processor system we 
shall use the speedup factor and efficiency denoted by Sp  and Ep  respectively.  Sp  is defined as,

		  S t
t

p
p

s=

                  	                             
where tp is the execution time of the best sequential algorithm running on a single processor  while  
tp  is the execution time for solving the same problem on a multiprocessor. The maximum speedup 
possible is usually p with processors p, normally referred to as linear speedup.  However several 
factors will appear as overhead in the parallel version and limit the speedup making it rare in achieving 
the linear result.  Among common overheads are (Wilkinson & Allen, 2005):
1.	 Periods when not all processors can be performing useful work and are simply idle.
2.	 Extra computations in the parallel version not appearing in the sequential version.
3.	 Communication time between processes.
.	
.	 Due to these factors the speedup is often less than p.  
	 The efficiency Ep  is defined as,
 				  
		  E p

S
p

p
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which is the ratio of speedup to the number of processors.  It is used to measure the processor 
utilization.  If given as a percentage, the efficiency of 100% happens when all the processors are 
being used on the computation at all times and  Sp equal to p.
	 The algorithm for P2DIRK5 is executed in C language. For the parallel implementation it is 
supported by Message Passing Interface (MPI) which is a message passing library standard and is 
extensively used to write message passing programs on high performance computing (HPC) platforms.   
Both sequential and parallel algorithms were run on Sunfire V1280 with eight homogenous processors 
located at Institute of Mathematical Research (INSPEM), Universiti Putra Malaysia, Serdang. 

NUMERICAL EXPERIMENTS

Accuracy of the Method
All problems that were tested are non-stiff problems. The codes for the algorithm are written and 
compiled in Microsoft Visual C++. Table 1 gives the performance comparison between P2DIRK5, 
DIRK1, DIRK2 and DIRK3 in term of maximum error.  The step sizes used are 0.01, 0.001, 0.0001 
and 0.00001.  The maximum error is defined as
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where  yi is the computed value and  y (xi )  is the true solution of the problems.
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A.	 Tested problems:

Problem S1:

	 ( )y x y
2
1

= -l

	
	 y (0) = 1, x0 20# #

        
        Exact solution: y(x) = e-x

	 Source: Artificial problem

Problem S2:
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       Source: Mathews (1992)

Problem S3:
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Problem S4:
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	 Source:  Shampine (1980)

Problem S5:
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B.	 Results

Table 1. Numerical Results for Test Problems S1 - S5 using DIRK1, DIRK2, DIRK3 and P2DIRK5

Problem Method h=0.01 h=0.001 h=0.0001 h=0.00001

1
DIRK1
DIRK2
DIRK3

P2DIRK5

7.3605888(-08)
6.4177323(-09)
7.3685400(-08)
6.0281913(-10)

7.3612702(-08)
1.1036538(-10)
7.3612690(-08)
6.0285110(-14)

7.3579575(-08)
1.1032453(-11)
7.3579575(-08)
4.2743586(-15)

7.3576266(-08)
1.1093904(-12)
7.3576266(-08)
7.3274720(-15)

2
DIRK1
DIRK2
DIRK3

P2DIRK5

4.0070930(-07)
1.4971420(-09)
4.0070932(-07))
3.7505332(-11)

3.9980949(-07)
1.4979307(-10)
3.9980949(-07)
7.1054274(-14)

3.9971949(-07)
1.4992452(-11)
3.9971948 (-07)
1.1368684(-13)

3.9970999(-07)
1.8207658(-12)
3.9970999(-07)
6.2527761(-13)

3
DIRK1
DIRK2
DIRK3

P2DIRK5

1.5551270(-07)
8.8400030(-08)
1.5264842(-07)
8.3484779(-09)

1.3570843(-07)
4.4003146(-10)
1.3750830(-07)
8.3568894(-13)

1.3742278(-07)
4.3480053(-11)
1.3742278(-07)
2.1371793(-15)

1.3741428(-07)
4.3480497(-12)
1.3741428(-07)
5.7731597(-15)

4
DIRK1
DIRK2
DIRK3

P2DIRK5

3.6288467(-07)
5.1755977(-07)
3.3138603(-07)
4.8777528(-08)

7.3683759(-08)
3.3248782(-10)
7.3684274(-08)
4.8845324(-12)

7.3586936(-08)
3.3109404(-11)
7.3586934(-08)
2.0250468(-13)

7.3577007(-08)
3.3071323(-12)
7.3577007(-08)
1.7443824(-12)

5
DIRK1
DIRK2
DIRK3

P2DIRK5

1.0926560(-02)
1.3619845(-04)
1.0929159(-02)
1.9870018(-05)

1.1000071(-02)
1.3223398(-05)
1.1000069(-02)
1.7280399(-09)

1.1003057(-02)
1.3228455(-06)
1.1003057(-02)
1.7826096(-10)

1.1003246(-02)
1.3214958(-07)
1.1003246(-02)
4.1836756(-10)

Execution time
Two large problems were tested using P2DIRK5 to compare the sequential and parallel time taken to 
solve the problems for N=5000, 10000, 15000, 20000 and 30000 for step sizes 0.01, 0.001, 0.0001 
and 0.00001.  Table 2 shows the total steps for every step size considered.

Table 2.  Step size and its total steps

Step size Total steps
0.01 100
0.001 1000
0.0001 10000
0.00001 100000
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A.	 Tested problems

Problem L1  (A Parabolic Partial Differential Equations):
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N = Number of equations

x0 1# #

Source: Hull et al. (1972)

Problem L2  (Lagrange Equation for the hanging string):
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Initial values:   yi (0) = 0 except yN-2 (0) = 1
Source: Majid (2004)

B.	 Results
The performance of the sequential and parallel execution times for every problem is shown in 
Figure 9(a) and 10(a) respectively while Figure 9(b) and 10(b) show the speedup performance for 
the problems.  
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         (a)    Time taken  for sequential and parallel executions              (b)  Speedup

Figure 9.  Results for Problem  L1

 
      

      

 (a) Time taken for sequential and parallel executions               (b)  Speedup

Figure 10.  Results for Problem  L2

	 The efficiency of the method  is given in Table 3.

Table 3.  The efficiency  of P2DIRK5

No.  of
equations Problem

Efficiency (%)

h=0.01 h=0.001 h=0.0001 h=0.00001

5000
L1 65.13 65.77 65.81 65.71
L2 65.81 65.99 66.29 66.29

10000
L1 69.22 69.81 70.4 69.66
L2 69.35 69.61 70.24 71.5

15000
L1 79.53 78.11 78.96 78.27
L2 85.49 85.79 85.96 86.29

20000
L1 85.51 85.32 85.06 85.37
L2 85.07 85.44 91.53 92.42

30000
L1 85.62 85.55 85.27 85.73
L2 85.32 85.51 85.98 85.83
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 DISCUSSION AND CONCLUSION
From the results in Table 1,it is found that among the three established methods, DIRK2 shows the 
most accurate result. An interesting finding can be seen for DIRK1 and DIRK3 where they reach to 
a same performance when we used the step sizes 0.0001 and 0.00001.  For all methods, the smaller 
the step size used, the results became more accurate.  Finally, it is clearly shown that PDIRK5 is the 
best method among the four methods in term of accuracy.
	 As for the execution time, Figure 9(a) and 10(a), showed that for every step sizes the parallel 
execution times are better than the sequential execution times.   The time reduction is more apparent as 
the number of equations increased and the results are consistent for every step size.  In Figure 9(b) and 
10(b), the results show that as the number of equations gets larger, the speedup increased.  In Problem 
L2, for step sizes 0.0001 and 0.00001 the speedup have reached up to 1.83 and 1.85 respectively,  
approaching to the ideal speedup for  two processors execution.  The processors utilization for that 
particular execution are  91.53% and 92.42% respectively, as shown in Table 3.  We can say that 
during the execution, the processors are almost fully utilized.  We can also observed in Table 3 that 
as the problems get larger, the processors utilization improved.
	 P2DIRK5 is a newly derived fifth order DIRK method with parallel capability.  The parallel 
structure is based on the sparsity structure introduced by Iserles and Nørsett (1990) which has been 
used in deriving efficient fourth order DIRK methods.  Din et. al (2006), have shown that P2DIRK5.  
In this paper, we showed that P2DIRK has better accuracy than the fourth order methods of its type 
and the ability to reduce the computation time by the parallel implementation on two processors.   
This contribution is significant when large problems come in hands because time reduction means 
cheaper cost in the computation processes.  This makes P2DIRK5 as an efficient method for solving 
ODEs.
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