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Complex systems and ‘causality’

More often than not when dealing with complex systems one is more
concerned with the non directional correlation.

However, rampant interactions and communications in complex system
inevitably leads to some form of directionality. Related terms include
‘causality’, direction, information transfer and dependence over time.

The usage of ‘causality’ measures on complex systems is already on the
rise especially in the advent of ‘big’ data. Unfortunately these measures
are NOT completely understood, especially in relation to complex systems.

Most of basic testings of these ‘causality’ measures are done on dynamical
systems or simple time series. Schreiber (2000); Lungarella et al. (2007);
Pompe and Runge (2011).
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Quantifying ‘Causality’
The Idea

”If we can measure degrees of causality.....We can then
observe how much a change in one aspect of the universe
will bring out changes in others. ”

”.. I was forced to consider the theory of information,
and above all, that partial information which our knowledge
of one part of the system gives us the rest of it.”

- Norbert Wiener, I Am A Mathematician (1956)

Prediction based outlook of ‘causality’ in the Wiener-Granger framework:
Variable A ‘causes’ variable B if the ability to predict B is improved by
incorporating information about A in the prediction of B.
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Measures of ‘causality’ in the Wiener-Granger framework
Granger causality and Transfer Entropy

The most common is Granger causality (G-causality)

was introduced by Granger (1969) in the context of autoregressive
(AR) models thus essentially linear.

depends on how good the model fits to data.

Granger has always been clear that G-causality is not absolute causality
and admitted that the optimal predictor may very well be nonlinear. The
nonlinear Transfer Entropy was first introduced by Schreiber (2000) as a
measure to determine directionality using the Markov property. It is

conceptually as an extension of G-causality.

based on information theoretic (Shannon) entropy.

a nonlinear measure that is theoretically model agnostic.
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Transfer Entropy
for ‘causal’ lag detection

Define random variables X and Y with discrete probability distributions
pX (x), x ∈ X and pY (y), y ∈ Y . Let X τ be the variable X that is shifted
by τ , so that the values of X τ (t) = X (n − τ) where X (n) is the value of
X at time step n and similarly for Y .

The lag specific Transfer Entropy of Y to X at causal lag τ , T
(τ)
YX is

T
(τ)
YX =

∑

x∈X

∑

x ′∈X

∑

y∈Y

pXX 1Y τ (x , x ′, y) log
pX |X 1Y τ (x |x ′, y)

pX |X 1(x |x ′)
(1)

where 0 log 0 = 0. T
(τ)
YX measures whether the state of Y (n − τ) influences

the current changes in X . This coincides with the view that ‘causality’ is a
situation where the state of one variable (the source) influences the
changes in another variable (the target) in the future.
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What does these measures quantify on complex systems?
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What does these measures quantify on complex systems?

How is complex systems different?
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What does these measures quantify on complex systems?

How is complex systems different?

One of the defining features: collective behaviour.
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Collective behaviour
In complex systems and the Ising model

Complex system whose main characteristic consist in essential
collective behaviour takes into account instances when the whole
system is interdependent.

Perhaps the simplest way to investigate this behaviour is by testing on
the Ising model with its critical temperature long range interactions
(diverging correlation lengths).

The lag specific Transfer Entropy is tested on the simple form of
collective behaviour near criticality of the Ising model.
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The Ising Model
L = 5, N = 25
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The Ising model
Metropolis Monte Carlo algorithm

The Metropolis Monte Carlo (MMC) algorithm is used to simulate
the 2D Ising model with periodic boundary conditions. The algorithm
proposed by Metropolis and co-workers in 1953 was designed to
sample the Boltzmann distribution γB by artificially imposing
dynamics on the simulation.

The interaction strength is set to be J = 1 and the Boltzmann
constant is fixed as KB = 1 for all the simulations. We let the system
run up to 2000 samples before sampling at every N = L2 time steps.
As a result of the MMC algorithm, a Markov chain (process) is
formed for every site on the lattice. The state of each site at each
sample will be taken as a time step n in the Markov chain (sX )n.
Sample sizes are all 100, 000.
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Transfer Entropy on Ising model
Collective behaviour at criticality as a type of ‘causality’.
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Transfer Entropy on Ising model
Collective behaviour as a type of ‘causality’.

Transfer Entropy treats collective behaviour as a type of ‘causality’ in the
Wiener-Granger framework.

It is logical to interpret collective behaviour as a type of ‘causality’ in all
directions since information is disseminated throughout the whole lattice.
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Transfer Entropy on Ising model
Collective behaviour as a type of ‘causality’.

Transfer Entropy treats collective behaviour as a type of ‘causality’ in the
Wiener-Granger framework.

It is logical to interpret collective behaviour as a type of ‘causality’ in all
directions since information is disseminated throughout the whole lattice.

This must be taken into account when estimating Transfer Entropy on
data sets from systems with collective behaviour.
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Is collective behaviour different from individual (coupled) interactions?
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Is collective behaviour different from individual (coupled) interactions?

If it is, then is it possible to differentiate these individual interactions from
collective behaviour?
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The amendment: making A and B dependent on G
L = 5, N = 25
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An amended Ising model
replicating ‘causality’

Generated using the standard MMC algorithm albeit special rules
apply whenever site A or B is chosen for flipping consideration.

At each step in the MMC algorithm, a site chosen at random to be
considered for flipping with a certain probability γB except when A or
B is selected where an extra condition needs to be fulfilled first before
it can be allowed to change.

If (sG )n−tG = 1, A (or B) can be considered for flipping with
probability γB as usual, however if (sG )n−tG = −1, no change is
allowed. Thus only one state of G (sG = 1 in this case) allows sites A
and B to be considered for flipping.

Therefore, although A (and B) have their own dynamics, their
changes still depend on the state of G at a certain ‘causal’ lag.
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Transfer Entropy on amended Ising model with tG = 10
Transfer Entropy detects direction amidst collective behaviour at exact lag
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Transfer Entropy on amended Ising model with tG = 10
Transfer Entropy detects the exact ‘causal’ lag and approaches zero at different rates
depending on time distance from the exact lag. Figures clearly shows ‘causal’ lag
detected by Transfer Entropy by clear difference in magnitude.
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Changes on the amended Ising model with tG = 10
Effect of the amendment on transition probabilities of A and B.

The Effective Rate of Change

For any sites X , the effective rate of
change is ERCX = P(Xn 6= Xn−1).
ERCA and ERCB are identical since
both sites are conditioned on site G .
These two variables clearly reflects
how the external influence (the
condition) changes the transition
probability of A and B . ERCG is
identical to the ERC of all the other
sites on the lattice (save A and B).
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Extracting directionality: Phase transition like behaviour
Comparing both directions of Transfer Entropy values and dividing by ERC on amended
Ising model with tG = 10 with L = 50.
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The amended Ising model with tG = 10 and L = 50.
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Discussion

Distinguishing collective behaviour and individual influences. The
effect of different influences must be identified in order to understand
the data obtained from complex systems.

Propose that definition of ‘causality’ in the Wiener-Granger sense
includes collective behaviour.

The ability to differentiate collective and individual (coupled)
behaviour is key in understanding complex systems.

Phase transition like behaviour of Transfer Entropy when divided with
the ERC.
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Take home message
What you need to remember if nothing else

Transfer Entropy measures collective behaviour as a type of ‘causality’
in (amended) Ising model.

Transfer Entropy manages to identify the implanted directionality
(individual influence) amidst collective influence in the Ising model.

Moreover, it also succeeds at identifying the exact causal lag.

When using Transfer Entropy and possibly any type of ‘causality’ measure
in the Wiener-Granger sense on systems with collective behaviour, one
needs to take into consideration the collective and individual (coupled)
behaviour.
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Future Research
Understanding ‘causality’ on complex systems

Among the issues we propose to further investigate using this novel
method of the amended Ising model:

many conflicting influences (for eg internal and external influences)

distinguishing interactions of multiple sources and targets

indirect ‘causality’: the underlying ‘cause’ of an apparent source-
target relationship. Eg thunder and lightning.

Phase transition like behaviour of Transfer Entropy when divided with
the ERC on complex systems.

paper: Transfer Entropy in the Ising model (arxiv:1309.0305)

fatimahabdulrazak.wordpress.com
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