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Abstract

The aim of this series of lectures is to give a pedagogical introduction to the theory of coherent
states, touching on its mathematical and physical aspects, as well as illustrating the theory with
applications. The literature on the subject is diverse and vast, which makes it impossible to do

full justice to the topic. Excellent monographs and review papers exist on the subject, but new

papers are also coming out all the time. We shall try to give a flavour of this richness and

diversity and hope that it will motivate others to work in this fascinating field.
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Notation

» §) = Hilbert space, assumed separable, infinite or finite dimensional.

» Scalar product of ¢,9 € H

(@lv) = (¥9)
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Notation

» §) = Hilbert space, assumed separable, infinite or finite dimensional.

» Scalar product of ¢,9 € H

(@lv) = (¥9)
/ N
physicists mathematicians

» For ¢, € §), the rank one operator T = |¢) (4| is defined to be:
Tx=®Ix)¢, x€9
» Operator integrals will be assumed to converge weakly:

f: X — L(H), and (X, i) = measure space
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Notation

then
I:/;(f(x) du(x)

is assumed to converge in the sense that

/X (BIF ) du(x) < o0, o € 5

» B(X) = set of all Borel sets of X.
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Notation

then
I:/;(f(x) du(x)

is assumed to converge in the sense that

/X (BIF ) du(x) < o0, o € 5

» B(X) = set of all Borel sets of X.

| will systematically use the physicists’ notation!
Unless otherwise stated, we shall use the natural system of units, in which ¢ = h = 1.

S. Twareque Ali (Department of Mathematics and S| Coherent States in Physics and Mathematics - I-1] Jan 9 - 13, 2012 6 /52



Canonical coherent states

We start out by looking at the quintessential example of coherent states — the canonical
coherent states.
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We start out by looking at the quintessential example of coherent states — the canonical
coherent states.

It is fair to say that the entire subject of coherent states developed by analogy from this

example.
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Canonical coherent states

We start out by looking at the quintessential example of coherent states — the canonical
coherent states.

It is fair to say that the entire subject of coherent states developed by analogy from this
example.

This set of states, or rays in the Hilbert space of a quantum mechanical system, was
originally discovered by Schrodinger in 1926, as a convenient set of quantum states for
studying the transition from quantum to classical mechanics.
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Canonical coherent states

We start out by looking at the quintessential example of coherent states — the canonical
coherent states.

It is fair to say that the entire subject of coherent states developed by analogy from this
example.

This set of states, or rays in the Hilbert space of a quantum mechanical system, was
originally discovered by Schrodinger in 1926, as a convenient set of quantum states for
studying the transition from quantum to classical mechanics.

They are endowed with a remarkable array of interesting properties. Apart from initiating
the discussion, this will also help us in motivating the various mathematical directions in

which one can try to generalize the notion of a CS.
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Minimal uncertainty states

The quantum kinematics of a free n-particle system is based upon the existence of an
irreducible representation of the canonical commutation relations (CCR),

[Qi, Pl=ily, i,j=1,2,....n,

on a Hilbert space §). (Here /| denotes the identity operator on £).
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Minimal uncertainty states

The quantum kinematics of a free n-particle system is based upon the existence of an

irreducible representation of the canonical commutation relations (CCR),
[Qi7 Pj]:”(sfj'/ ihj=1,2,...,n,

on a Hilbert space §). (Here /| denotes the identity operator on £).

If nis finite, then according to the well-known uniqueness theorem of von Neumann, up
to unitary equivalence, there exists only one irreducible representation of the CCR by
self-adjoint operators, on a (separable, complex) Hilbert space.
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Minimal uncertainty states

The quantum kinematics of a free n-particle system is based upon the existence of an

irreducible representation of the canonical commutation relations (CCR),
[Qi7 Pj]:"lafjv ihj=1,2,...,n,

on a Hilbert space §). (Here /| denotes the identity operator on £).

If nis finite, then according to the well-known uniqueness theorem of von Neumann, up
to unitary equivalence, there exists only one irreducible representation of the CCR by
self-adjoint operators, on a (separable, complex) Hilbert space.

Furthermore, the CCR imply that for any state vector ¢ in $) (note, ||¢|| = 1), the
Heisenberg uncertainty relations hold:

(AQiw (APi)y 2 5, T=1,2,..,

1
2
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Minimal uncertainty states

where, for an arbitrary operator A on §),
(DAY = [(BIA%) — |(pAV) ]2

is its standard deviation in the state ¢ .
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Minimal uncertainty states

where, for an arbitrary operator A on §),

(DAY, = [(VA%) — [(PAP)[]2

is its standard deviation in the state ¢ .
As already pointed out by Schrodinger, there exists an entire family of states, 7° in the
Hilbert space, labelled by a vector parameter s = (s1,s,...,5s,) € R", each one of which

saturates the uncertainty relations
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Minimal uncertainty states

where, for an arbitrary operator A on §),

(DAY, = [(VA%) — [(PAP)[]2

is its standard deviation in the state ¢ .

As already pointed out by Schrodinger, there exists an entire family of states, 7° in the
Hilbert space, labelled by a vector parameter s = (s1,s,...,5s,) € R", each one of which
saturates the uncertainty relations

1

<AQ,‘>»,IS (AP,')ns = 5, i = 1,2,...,”.

We call these vectors minimal uncertainty states (MUSTs).
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Minimal uncertainty states

where, for an arbitrary operator A on §),

(DAY, = [(VA%) — [(PAP)[]2

is its standard deviation in the state ¢ .

As already pointed out by Schrodinger, there exists an entire family of states, 7° in the
Hilbert space, labelled by a vector parameter s = (s1,s,...,5s,) € R", each one of which
saturates the uncertainty relations

1

<AQ,‘>»,IS (AP,')ns = 5, i = 1,2,...,”.

We call these vectors minimal uncertainty states (MUSTs).
In the configuration space, or Schrodinger representation of the CCR, in which

$H = L*(R", dx), x = (x1,X2, ..., %n),
(QUI) =xw(x), (PO = —in ()
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Minimal uncertainty states

the MUSTs, 7n°, are just the Gaussian wave packets

n

70 = [[(rs?) ™+ expl—251.

i=1
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Minimal uncertainty states

the MUSTs, 7n°, are just the Gaussian wave packets

n

7°(x) = [[(rs?) "% expl— !

i=1

Not surprisingly, quantum systems in these states display behaviour very close to
classical systems. More generally, there exists a larger family of states, namely gaussons

or gaussian pure states which exhibits the minimal uncertainty property.
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Minimal uncertainty states

the MUSTs, 7n°, are just the Gaussian wave packets

s . 2\—1 Xi2
n°(x) = H(Ws,-) 4 exp[— 252].

i=1

Not surprisingly, quantum systems in these states display behaviour very close to
classical systems. More generally, there exists a larger family of states, namely gaussons
or gaussian pure states which exhibits the minimal uncertainty property.

These latter states 7op are parametrized by two vectors,
q9=1(91,92,---,Gn), P=(pP1,p2,--.,pPn) €R" and two real n x n matrices U and V, of
which U is positive definite. In the Schrodinger representation,

1 () = 7 et U]} expli(x— 3)-p] exp[- 5 (x ) - (U+V)(x ~ a)].
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Minimal uncertainty states

In the optical literature, states of the type né{’pv, for which U is a diagonal matrix but not
the identity matrix, are called squeezed states.
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Minimal uncertainty states

In the optical literature, states of the type né{’pv, for which U is a diagonal matrix but not
the identity matrix, are called squeezed states.
Note that when g = p = 0 and U is diagonal, with eigenvalues 1/s?, i =1,2,...,n, the

gaussons are exactly the MUSTs above.
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Minimal uncertainty states

In the optical literature, states of the type né{’pv, for which U is a diagonal matrix but not
the identity matrix, are called squeezed states.

Note that when g = p = 0 and U is diagonal, with eigenvalues 1/s?, i =1,2,...,n, the
gaussons are exactly the MUSTs above.

Moreover, if T denotes the orthogonal matrix which diagonalizes U, i.e., TUT ! = D,
where D is the matrix of eigenvalues of U, then defining the vectors

X' =Tx, q = Tq, p’ = Tp, and the matrix V' = TVT !, we may rewrite 1}’ (x) as

/

ry _n 1 1 ’ 1 / / -/ ’ /
My () =7 [detD]* expli(x = 3) -] exp[—5 (X —a) - (D+V)(x —q)].
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Minimal uncertainty states

In the optical literature, states of the type né{’pv, for which U is a diagonal matrix but not
the identity matrix, are called squeezed states.

Note that when g = p = 0 and U is diagonal, with eigenvalues 1/s?, i =1,2,...,n, the
gaussons are exactly the MUSTs above.

Moreover, if T denotes the orthogonal matrix which diagonalizes U, i.e., TUT ! = D,
where D is the matrix of eigenvalues of U, then defining the vectors

X' =Tx, q = Tq, p’ = Tp, and the matrix V' = TVT !, we may rewrite 1}’ (x) as

/

ry _n 1 1 ’ 1 / / -/ ’ /
My () =7 [detD]* expli(x = 3) -] exp[—5 (X —a) - (D+V)(x —q)].

It is clear from this relation that, if Q/, P/, i=1,2,..., n, are the components of the
rotated vector operators, Q' = T7!Q, P’ = TP,
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Minimal uncertainty states

where, Q = (Q1, @2, ..., Qn), P =(P1,P,..., P,) are the vector operators of position

and momentum, respectively.

1
/ / _ 1
<AQ[>7I:€j,’pV <APl>né{vpV - 27
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Minimal uncertainty states

where, Q = (Q1, @2, ..., Qn), P =(P1,P,..., P,) are the vector operators of position
and momentum, respectively.

UV = =
Ma.p 2’

(BQH, v (AP

To examine some properties of the MUSTs, take n = 1, and define the creation and

annihilation operators,

al = i(s_lQ—isP)7 a=

/2 (s7'Q + isP),

[a, a'] = 1.
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Minimal uncertainty states

where, Q = (Q1, @2, ..., Qn), P =(P1,P,..., P,) are the vector operators of position
and momentum, respectively.

UV = =
Ma.p 2’

(BQH, v (AP

To examine some properties of the MUSTs, take n = 1, and define the creation and

annihilation operators,

al = i(s_lQ—isP)7 a=

7 (s7'Q + isP),

Nig

[a, a'] = 1.

Using these operators and the MUST 7°, for a fixed s € R, we can generate a very

interesting class of other MUSTs.
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The MUST as a coherent state

To do so, define the complex variable

1
z=xtiy= (s 'q—isp),  (q,p) ER?
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The MUST as a coherent state

To do so, define the complex variable

. 1, _ .
z=x+iy = —=(sq—isp),

V2

and write

Note that al0) = 0.

(9.p) €R?
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The MUST as a coherent state

To do so, define the complex variable
z=x+iy= i(s_quisp), (9.p) €R?
V2

and write

Note that al0) = 0.
Also let {|n)}22, be the normalized eigenstates of the number operator N = a'a:

1"
Ny = nlny, Jny = B (o), (min) = S
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The MUST as a coherent state

To do so, define the complex variable

1
z=xtiy= (s 'q—isp),  (q,p) ER?

and write

Note that al0) = 0.
Also let {|n)}22, be the normalized eigenstates of the number operator N = a'a:

Niny =), Imy = @10y, (mln) = 6.

3

Then, for all z € C, the set of states in §,

2= 4 21 10) = e[ ‘Z']Z )

Nz
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The MUST as a coherent state

have the eigenvalue property

alzy = z |z).
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The MUST as a coherent state

have the eigenvalue property

alzy = z |z).

It is straightforward to verify that each one of these states |z) is again a MUST.
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The MUST as a coherent state

have the eigenvalue property

alzy = z |z).

It is straightforward to verify that each one of these states |z) is again a MUST.
Suppose now that we have a quantized electromagnetic field (in a box), and let

az, ax, k=0,£1,£2, ..., be the creation and annihilation operators for the various
Fourier modes k.
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The MUST as a coherent state

have the eigenvalue property

alzy = z |z).
It is straightforward to verify that each one of these states |z) is again a MUST.
Suppose now that we have a quantized electromagnetic field (in a box), and let

az, ax, k=0,£1,£2, ..., be the creation and annihilation operators for the various
Fourier modes k. Then in the states

{z}) = @) lz),

k

the electromagnetic field behaves “classically”.
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The MUST as a coherent state

have the eigenvalue property

alzy = z |z).
It is straightforward to verify that each one of these states |z) is again a MUST.
Suppose now that we have a quantized electromagnetic field (in a box), and let

az, ax, k=0,£1,£2, ..., be the creation and annihilation operators for the various
Fourier modes k. Then in the states

{z}) = @) lz),

k

the electromagnetic field behaves ‘“classically”. More precisely, the correlation functions
for the field factorize in these states.
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The MUST as a coherent state

Thus, let x = (x, t) be a space-time point and E*(x) the positive frequency part of the

quantized electric field (note: E~(x) = E™(x)* is the negative frequency part of the
field).
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The MUST as a coherent state

Thus, let x = (x, t) be a space-time point and E*(x) the positive frequency part of the
quantized electric field (note: E~(x) = E™(x)* is the negative frequency part of the
field).

Then,

E"(x) {ze}) = £(x) {z}),

where £ is a 3-vector valued function of x, giving the observed field strength at the
point x.
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The MUST as a coherent state

Thus, let x = (x, t) be a space-time point and E*(x) the positive frequency part of the
quantized electric field (note: E~(x) = E™(x)* is the negative frequency part of the
field).
Then,

E"(x) {z}) = E(x) Ha}),

where £ is a 3-vector valued function of x, giving the observed field strength at the
point x.

Let p be the density matrix,
p=Ha}h) {2},

(n) - -
and Gy s, ..., 0, the correlation functions,

G oo (X1 %2, < x2n) = Te[pEp (x1) - - - Ep (xa) Ef (1) - - Eiby, (x2n)]s
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The MUST as a coherent state

where Efk denotes the p-th component of E*. It is then easily verified that

n 2n
Gl(tq)yuzy-»-yuzn(XhXQv coXon) = ngk(xk) H Eny(xe)-
k=1

£=n+1
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The MUST as a coherent state

where E;Ek denotes the p-th component of E*. It is then easily verified that

n 2n
G e O, 30, 0n) = [ [ EmeC6) ] e (0)-
k=1

£=n+1

It is because of this factorizability property that the states |{z(}) or the MUSTs |z) were

called coherent states.
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The MUST as a coherent state

where E;Ek denotes the p-th component of E*. It is then easily verified that

n 2n
G i (1,0, 30n) = [ [Eme () [T Ennel0)-
k=1

£=n+1
It is because of this factorizability property that the states |{z(}) or the MUSTs |z) were
called coherent states.

However, in the current mathematical literature (though not always in the optical

literature), the term coherent state is used to designate an entire array of other

mathematically related states, which do not necessarily display either the factorizability
property or the minimal uncertainty property.
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The MUST as a coherent state

where E;Ek denotes the p-th component of E*. It is then easily verified that

n 2n
G i (1,0, 30n) = [ [Eme () [T Ennel0)-
k=1

£=n+1

It is because of this factorizability property that the states |{z(}) or the MUSTs |z) were
called coherent states.

However, in the current mathematical literature (though not always in the optical
literature), the term coherent state is used to designate an entire array of other
mathematically related states, which do not necessarily display either the factorizability
property or the minimal uncertainty property.
We shall reserve the term canonical coherent states for these MUSTs .
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The MUST as a coherent state

where E;Ek denotes the p-th component of E*. It is then easily verified that

n 2n
G i (1,0, 30n) = [ [Eme () [T Ennel0)-
k=1

£=n+1

It is because of this factorizability property that the states |{z(}) or the MUSTs |z) were
called coherent states.

However, in the current mathematical literature (though not always in the optical
literature), the term coherent state is used to designate an entire array of other
mathematically related states, which do not necessarily display either the factorizability
property or the minimal uncertainty property.
We shall reserve the term canonical coherent states for these MUSTs .

In order to bring out some additional properties of the canonical CS |z), let us write
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The MUST as a coherent state

1z) = Thsf(q«,p)v

where Z is just the complex conjugate of z, and z and g, p are related as above. The

significance of the o in this notation will become clear in a while.
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The MUST as a coherent state

1z) = Thsf(q«,p)v

where Z is just the complex conjugate of z, and z and g, p are related as above. The
significance of the o in this notation will become clear in a while.

A short computation shows that

<77rsf(q,p)‘Q|77ff(q,P)> = 4
<77t57(q«,P)|P|77ff(q,P)> = P
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The MUST as a coherent state

12) = 13(q.0)>
where Z is just the complex conjugate of z, and z and g, p are related as above. The
significance of the o in this notation will become clear in a while.
A short computation shows that
o0 Q@) = 4
(o (a.0)| PMo(a.)) = P-

In other words, the MUST nfr(q’p) is a translated Gaussian wave packet, centered at the

point g in position and p in momentum space.
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The MUST as a coherent state

1z) = Thsf(q«,p)v

where Z is just the complex conjugate of z, and z and g, p are related as above. The
significance of the o in this notation will become clear in a while.
A short computation shows that

<77rsf(q,p)‘Q|77ff(q,P)> = 4
<77KS7(CI«,P)|P|T]Z(%P)> = P

In other words, the MUST nfr(q’p) is a translated Gaussian wave packet, centered at the
point g in position and p in momentum space.
Explicitly, as a vector in L*(R, dx),

2

(qu) ]

252

Mot (x) = (1) % exp [=i(] = x)p] exp[-
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The MUST as a coherent state

We have departed from the physicists’ convention and used Z instead of z to denote the
CS. This is because we shall later want to represent them as holomorphic, rather than
antiholomorphic, functions of z, and our Hilbert space scalar product is linear in the

second variable.
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The MUST as a coherent state

We have departed from the physicists’ convention and used Z instead of z to denote the
CS. This is because we shall later want to represent them as holomorphic, rather than
antiholomorphic, functions of z, and our Hilbert space scalar product is linear in the
second variable.

We now proceed to look at some additional properties of these canonical coherent states,

which have a group theoretic, functional analytic or geometric origin.
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Some group theoretical properties

A group theoretical property of |z) emerges if we use the Baker-Campbell-Hausdorff

identity,

A+B —L1a,B] A
B = 728l ¢ eB7
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Some group theoretical properties

A group theoretical property of |z) emerges if we use the Baker-Campbell-Hausdorff
identity,

AE — ef%[A,B] eAeB7
for two operators A, B, the commutator [A, B] of which commutes with both A and B,
and the fact that a"|0) =0, n > 1, to write |z) as

1 zal za zal —za
12) = expl—5|2’] &' e7]0) = &' ~*0).
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Some group theoretical properties

A group theoretical property of |z) emerges if we use the Baker-Campbell-Hausdorff
identity,

A+B —1[AB] A B
e =e 2[’]ee,

for two operators A, B, the commutator [A, B] of which commutes with both A and B,
and the fact that a"|0) =0, n > 1, to write |z) as

1 3 t_z
|2) = expl— 512" &' €[0) = &' **[0).
In terms of (g, p) this is
Notam = €90 = U(q, p)°,

where, ¥(g, p) € R?, the operators U(q, p) = e/(PQ=P) are, of course, unitary.
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Some group theoretical properties

Moreover, we have the integral relation,

1
21 Joo 115(q,0)) (T (a,p) | dadp =1,
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Some group theoretical properties

Moreover, we have the integral relation,

1
g /Rz ‘n;(q,p)><77zsr(q,p)| dqdp - I7

The convergence of the above integral is in the weak sense, i.e., for any two vectors ¢, 1)
in the Hilbert space $,

1 s s
3 [, G0 (M50, |¥) dadp = (S[)).

21 Jge
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Some group theoretical properties

Moreover, we have the integral relation,

1

21 Jpo 750.0)) (Mo(a.)| dadp =1,

The convergence of the above integral is in the weak sense, i.e., for any two vectors ¢, 1
in the Hilbert space $,

1 S S
Py <¢‘na(q‘p)><7]a(q,p)|w> dgdp = <¢W1>

27 Jpe

This relation is called the resolution of the identity generated by the canonical CS.
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Some group theoretical properties

Moreover, we have the integral relation,

1

g e ‘7];(q,p)><ncsr(q,p)| dqdp - l7

The convergence of the above integral is in the weak sense, i.e., for any two vectors ¢, 1
in the Hilbert space $,

1 S S
By <¢‘na(q‘p)><7]a(q,p)|w> dqdp = <¢W1>

27 Jpe

This relation is called the resolution of the identity generated by the canonical CS.
The operators U(q, p) arise from a unitary, irreducible representation (UIR) of the
Weyl-Heisenberg group, Guw, which is a central extension of the group of translations of

the two-dimensional Euclidean plane.
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Some group theoretical properties

The UIR in question is the unitary representation of Gyy which integrates the CCR . An
arbitrary element g of Gy is of the form

g=(0.q,p), O€R, (q,p)€R?
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Some group theoretical properties

The UIR in question is the unitary representation of Gyy which integrates the CCR . An
arbitrary element g of Gy is of the form

g=(0,q.p), 0€R, (q.p)€cR’

with multiplication law,

gig = (61 + 6>+ &((q1, pr); (g2, p2)), q1 + G2, p1+ P2),
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Some group theoretical properties

The UIR in question is the unitary representation of Gyy which integrates the CCR . An
arbitrary element g of Gy is of the form

g=(0,q,p), 0€R, (q,p)€R’
with multiplication law,
gig = (61 + 6>+ &((q1, pr); (g2, p2)), q1 + G2, p1+ P2),

where £ is the multiplier function

£((qr, pr); (g2, p2)) = %(plqz — p2q1)-
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Some group theoretical properties

The UIR in question is the unitary representation of Gyy which integrates the CCR . An
arbitrary element g of Gy is of the form

g=1(0,9,p), 0€R, (q,p) €R’

with multiplication law,

g8 = (01 + 02+ &((q1, p1); (42, P2))s G1 + G2, P1+ p2),

where £ is the multiplier function

(P1g2 — p2q1).

N =

§((qr, pr); (G2, p2)) =

Any infinite-dimensional UIR, U*, of Gy is characterized by a real number A # 0 and

may be realized on the same Hilbert space §j, as the one carrying an irreducible

representation of the CCR:
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Some group theoretical properties

U)\(e7 q, p) _ ei)x@ U)\(q7 p) = eik(@—%)eiAer—D\qP.
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Some group theoretical properties

U/\(07 g,p) = 2y UA(q, p) = e MO—5) girpQ g —irgP

If 5 = L?(R, dx), these operators are defined by the action

(U8, q,p)9)(x) = ™" Dg(x —q), ¢ e L*(R, dx).
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Some group theoretical properties

UM, q,p) = €U (q, p) = ePO—F)eNpRg—iNaP
If 5 = L?(R, dx), these operators are defined by the action
(UX0,9,p)9)(x) = €™ Dg(x —q), ¢ € [*(R,dx).

Thus, the three operators, I, Q, P, appear now as the infinitesimal generators of this

representation and are realized as:

(@) =x6(x), (PO)x) = —1 920, [Q.P] =+

For our purposes, we take for A\ the specific value, A = % =1, and simply write U for

the corresponding representation.
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Some group theoretical properties

UA(G’ q,p) = Y UA(q7p) — @ MO=5) 4iApQ g—iNgP

If 5 = L?(R, dx), these operators are defined by the action

(UX0,9,p)9)(x) = €™ Dg(x —q), ¢ € [*(R,dx).

Thus, the three operators, I, Q, P, appear now as the infinitesimal generators of this

representation and are realized as:

i 0¢
(@)() =x6(x), (PO)X) =—1 5200, [Q.P =1
For our purposes, we take for A\ the specific value, A = % =1, and simply write U for
the corresponding representation.
We now take the phase subgroup of Guu:

©={g=(0,0,0)|0€R}.
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Some group theoretical properties

Then the left coset space Gur/© can be identified with R? and a general element in it
parametrized by (g, p).
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Some group theoretical properties

Then the left coset space Gur/© can be identified with R? and a general element in it
parametrized by (g, p).

In terms of this parametrization, Guy/© carries the invariant measure

__dqdp
2

dl/(q, p) -
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Some group theoretical properties

Then the left coset space Gur/© can be identified with R? and a general element in it
parametrized by (g, p).

In terms of this parametrization, Guy/© carries the invariant measure

dqd
dv(q,p) = T

The function

g GWH/@ — Gun, a’(q7 P) = (07 qap)y

then defines a section in the group Guw, now viewed as a fibre bundle, over the base
space Gur/©, having fibres isomorphic to ©.

S. Twareque Ali (Department of Mathematics and S| Coherent States in Physics and Mathematics - I-11 Jan 9 - 13, 2012 23 /52



Some group theoretical properties

Then the left coset space Gur/© can be identified with R? and a general element in it
parametrized by (g, p).

In terms of this parametrization, Guy/© carries the invariant measure

__dqdp
dl/(q,p) - 271' N
The function
g GWH/G)*> G, a(q,p):(O, qap)y

then defines a section in the group Guw, now viewed as a fibre bundle, over the base
space Gur/©, having fibres isomorphic to ©.

Thus, the family of canonical CS is the set,

6(7 - {nfr(q,p) - U((T(qv P))Tls | (CI,P) € GWH/@}
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Some group theoretical properties

and the resolution of the identity becomes

/ 1 tam) (| (0 p) = 1.
Gy /©
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Some group theoretical properties

and the resolution of the identity becomes

/ 1 tam) (| (0 p) = 1.
Gy /©

In other words, the CS nf,(qm) are labelled by the points (g, p) in the homogeneous space
Gwr /© of the Weyl-Heisenberg group,
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Some group theoretical properties

and the resolution of the identity becomes

/ 100 (Toam| () = 1.
J Gur/©

In other words, the CS n;(qm) are labelled by the points (g, p) in the homogeneous space
Gwr /© of the Weyl-Heisenberg group,

and they are obtained by the action of the unitary operators U(o (g, p)), of a UIR of
Guw, on a fixed vector n° € .
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Some group theoretical properties

and the resolution of the identity becomes

/ 100 (Toam| () = 1.
J Gur/©

In other words, the CS n;(qm) are labelled by the points (g, p) in the homogeneous space
Gwr /© of the Weyl-Heisenberg group,

and they are obtained by the action of the unitary operators U(o (g, p)), of a UIR of
Guw, on a fixed vector n° € .

The resolution of the identity equation is then a statement of the square-integrability of
the UIR, U, with respect to the homogeneous space Gy /©.
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Some group theoretical properties

and the resolution of the identity becomes

/ 100 (Toam| () = 1.
J Gur/©

In other words, the CS W;(q,p) are labelled by the points (g, p) in the homogeneous space
Gwr /© of the Weyl-Heisenberg group,

and they are obtained by the action of the unitary operators U(o (g, p)), of a UIR of
Guw, on a fixed vector n° € .

The resolution of the identity equation is then a statement of the square-integrability of
the UIR, U, with respect to the homogeneous space Gy /©.

This way of looking at coherent states turns out to be extremely fruitful.
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Some group theoretical properties

Indeed, one could ask if it might not be possible to use this idea to generalize the notion
of a CS and to build families of such states, using UIR's of groups other than the
Weyl-Heisenberg group, making sure in the process that basic ingredients that went into

this construction are also present in the general setting.
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Some group theoretical properties

Indeed, one could ask if it might not be possible to use this idea to generalize the notion
of a CS and to build families of such states, using UIR's of groups other than the
Weyl-Heisenberg group, making sure in the process that basic ingredients that went into
this construction are also present in the general setting.

We shall see that this is indeed possible, and that such an approach yields a powerful

generalization of the notion of a coherent state.
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Some group theoretical properties

Indeed, one could ask if it might not be possible to use this idea to generalize the notion
of a CS and to build families of such states, using UIR's of groups other than the
Weyl-Heisenberg group, making sure in the process that basic ingredients that went into
this construction are also present in the general setting.

We shall see that this is indeed possible, and that such an approach yields a powerful
generalization of the notion of a coherent state.

Two remarks are in order before proceeding.
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Some group theoretical properties

Indeed, one could ask if it might not be possible to use this idea to generalize the notion
of a CS and to build families of such states, using UIR's of groups other than the
Weyl-Heisenberg group, making sure in the process that basic ingredients that went into
this construction are also present in the general setting.

We shall see that this is indeed possible, and that such an approach yields a powerful
generalization of the notion of a coherent state.

Two remarks are in order before proceeding.

First and not surprisingly, the same canonical CS may be obtained from the oscillator
group H(4), which is the group with the Lie algebra generated by {a,a’, N = a'a, /}.
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Some group theoretical properties

Indeed, one could ask if it might not be possible to use this idea to generalize the notion
of a CS and to build families of such states, using UIR's of groups other than the
Weyl-Heisenberg group, making sure in the process that basic ingredients that went into
this construction are also present in the general setting.

We shall see that this is indeed possible, and that such an approach yields a powerful
generalization of the notion of a coherent state.

Two remarks are in order before proceeding.

First and not surprisingly, the same canonical CS may be obtained from the oscillator
group H(4), which is the group with the Lie algebra generated by {a,a’, N = a'a, /}.
Secondly, it is interesting that the canonical CS are widely used in signal processing,

where they generate the so-called windowed Fourier transform or Gabor transform.
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Some group theoretical properties

This is a hint that CS will have an important role in classical physics as well as in
quantum physics, and as a matter of fact they may be viewed as a natural bridge
between the two.
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Some group theoretical properties

This is a hint that CS will have an important role in classical physics as well as in
quantum physics, and as a matter of fact they may be viewed as a natural bridge
between the two.

Furthermore, some of the functional analytic properties of the CS, that we will now
study, also turn out to be useful in the context of non-commutative geometries, in

particular, non-commutative quantum mechanics.
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Some functional analytic properties

The resolution of the identity leads to some interesting functional analytic properties of

the CS, nf,(qyp). These properties can be studied in their abstract forms and be used to
obtain a generalization of the notion of a CS, but now independently of any group
theoretical implications.
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Some functional analytic properties

The resolution of the identity leads to some interesting functional analytic properties of
the CS, nf,(qyp). These properties can be studied in their abstract forms and be used to
obtain a generalization of the notion of a CS, but now independently of any group
theoretical implications.

Let § = L2(Gww/©, dv) be the Hilbert space of all complex valued functions on Gur/©
which are square integrable with respect to dv. Then the resolution of the identity
implies that functions ® : Gur/© — C of the type

¢(qe P) - <7]fr(q,p)|¢>a
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Some functional analytic properties

The resolution of the identity leads to some interesting functional analytic properties of
the CS, nf,(qvp). These properties can be studied in their abstract forms and be used to
obtain a generalization of the notion of a CS, but now independently of any group
theoretical implications.

Let § = L2(Gww/©, dv) be the Hilbert space of all complex valued functions on Gur/©
which are square integrable with respect to dv. Then the resolution of the identity
implies that functions ® : Gur/© — C of the type

Cb(q, P) - <7];(q,p)|d)>a

for ¢ € ), define elements in #, and moreover, writing W : $ — § for the linear map
which associates an element ¢ in $ to an element ® in ) (i.e., W¢ = ®), we see that W
is linear isometry:

Wl = [[o]f = / 1©(q, ) du(q. p) = [16]%

Gun /©
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Some functional analytic properties

The range of this isometry, which we denote by $k,
Sk =WHCH,

is a closed subspace of ) and furthermore, it is a reproducing kernel Hilbert space.
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Some functional analytic properties

The range of this isometry, which we denote by $k,
9k = W$H C 9,

is a closed subspace of ) and furthermore, it is a reproducing kernel Hilbert space.
To understand the meaning of this, consider the fuction K(q, p; q’, p’) defined on
GWH/G) X GWH/e:

K(a,p: 4,0) = Miam|maw )

= exp [—é(pq’ —p'q)] exp [—sz(p —p')°] exp [—%(q —q')

= el — Gl 2|21
= <f|?/> = K(val)’
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Some functional analytic properties
The function K is a reproducing kernel, in view of the property:

¢(q,p):/ K(q,p; q',p")®(q',p) dv(q',p'), Vo€ Hk.
Gy /©
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Some functional analytic properties
The function K is a reproducing kernel, in view of the property:
¢(q,p)=/ K(q,p: a',p)®(q,p") dv(d',p'), Y€ k.
Gy /©

The function K enjoys the properties:
Q@ Hermiticity,
K(a,p; 4,p") = K(d',p'; q,p)-
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Some functional analytic properties
The function K is a reproducing kernel, in view of the property:
¢(q,p)=/ K(q,p: a',p)®(q,p") dv(d',p'), Y€ k.
Gy /©

The function K enjoys the properties:
Q@ Hermiticity,
K(a,p; 4,p") = K(d',p'; q,p)-

@ Positivity,
K(q,p; q,p) > 0.
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Some functional analytic properties
The function K is a reproducing kernel, in view of the property:
®(q,p) =/ K(a,p; d',p")®(q',p") dv(d',p'), Y€ k.
Gy /©

The function K enjoys the properties:
Q@ Hermiticity,
K(a,p; 4,p") = K(d',p'; q,p)-

@ Positivity,
K(q,p; q,p) > 0.

© Idempotence,

/ K(a,p: ¢",p")K(q",p"; d'.p") dv(q”,p") = K(q.p; ¢, p').
GyH/©
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Some functional analytic properties

The above relations hold for all (g, p),(q’, p’) € Gwr/©. Condition 3, of idempotence is

also called the square integrability property of K.
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Some functional analytic properties

The above relations hold for all (g, p),(q’, p’) € Gwr/©. Condition 3, of idempotence is
also called the square integrability property of K.

All three relations are the transcription of the fact that the orthogonal projection
operator Px of $ onto $Hk is an integral operator, with kernel K(q, p; q',p’).
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Some functional analytic properties

The above relations hold for all (g, p),(q’, p’) € Gwr/©. Condition 3, of idempotence is
also called the square integrability property of K.

All three relations are the transcription of the fact that the orthogonal projection
operator Px of $ onto $Hk is an integral operator, with kernel K(q, p; q',p’).

The kernel K actually determines the Hilbert space k. Indeed,

(Wni.n)(a.p) = K(a,p; 4',p);
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Some functional analytic properties

The above relations hold for all (g, p),(q’, p’) € Gwr/©. Condition 3, of idempotence is
also called the square integrability property of K.

All three relations are the transcription of the fact that the orthogonal projection
operator Px of $ onto $Hk is an integral operator, with kernel K(q, p; q',p’).

The kernel K actually determines the Hilbert space k. Indeed,

(Wni.n)(a.p) = K(a,p; 4',p);

in other words, for fixed (q’, p’), the function (q,p) — K(q,p; q’,p’) is simply the
image in $k of the CS nf,(q,’p,) under the isometry W.
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Some functional analytic properties

The above relations hold for all (g, p),(q’, p’) € Gwr/©. Condition 3, of idempotence is
also called the square integrability property of K.

All three relations are the transcription of the fact that the orthogonal projection
operator Px of $ onto $Hk is an integral operator, with kernel K(q, p; q',p’).

The kernel K actually determines the Hilbert space k. Indeed,

(Wni.n)(a.p) = K(a,p; 4',p);

in other words, for fixed (q’, p’), the function (q,p) — K(q,p; q’,p’) is simply the
image in K of the CS nf,(q,’p,) under the isometry W.

Additionally, if ® is an element of the Hilbert space ik, it is necessarily of the form
®(q,p) = (M5(q,p)|®)- The resolution of the identity then implies,

¢ = d(q, P)15(q,0) dv(q, P)-
Gun /©
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Some functional analytic properties

This shows that the set of vectors 77, ), (q,p) € Gur/©, is overcomplete in £ and
hence, since W is an isometry, the set of vectors
Sola.p) = W77csr(q p)

is overcomplete in Hk.

go'(q,P)(ql7 p/) = K(q/a pl; q: p)?

V(q,p) € Gwn/©
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Some functional analytic properties

This shows that the set of vectors 77, ), (q,p) € Gur/©, is overcomplete in £ and
hence, since W is an isometry, the set of vectors

Cotar) = Wigapr  Soap(d,p) =K(d, P q,p), Y(q,p) € Gwn/©

is overcomplete in Hk.

Note that the vectors £,(q,5) are the same CS as the 7, ), but now written as vectors in
the Hilbert space of functions $k.
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Some functional analytic properties

This shows that the set of vectors 77, ), (q,P) € Gur/©, is overcomplete in ) and
hence, since W is an isometry, the set of vectors

Cotar) = Wigapr  Soap(d,p) =K(d, P q,p), Y(q,p) € Gwn/©

is overcomplete in Hk.

Note that the vectors &,(q,) are the same CS as the nj(q’p), but now written as vectors in
the Hilbert space of functions $k.

The term overcompleteness is to be understood in the following way: Since Hk is a
separable Hilbert space, it is always possible to choose a countable basis {7;}; in it,
and to express any vector ¢ € ) as a linear combination of these.
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Some functional analytic properties

This shows that the set of vectors 77, ), (q,P) € Gur/©, is overcomplete in ) and
hence, since W is an isometry, the set of vectors

Cotar) = Wigapr  Soap(d,p) =K(d, P q,p), Y(q,p) € Gwn/©

is overcomplete in Hk.

Note that the vectors &,(q,) are the same CS as the nj(q’p), but now written as vectors in
the Hilbert space of functions $k.

The term overcompleteness is to be understood in the following way: Since Hk is a
separable Hilbert space, it is always possible to choose a countable basis {7;}; in it,
and to express any vector ¢ € ) as a linear combination of these.

By contrast, the family of CS, &, in is labelled by a pair of continuous parameters (g, p),
and the resolution of the identity is also a statement of the fact that any vector ¢ can be

expressed in terms of the vectors in this family.
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Some functional analytic properties

Clearly, it should be possible to choose a countable set of vectors {7, ,)}=1 from &,

and still obtain a basis for §. This is in fact possible and many different discretizations
exist.

S. Twareque Ali (Department of Mathematics and S| Coherent States in Physics and Mathematics - I-11



Some functional analytic properties

Clearly, it should be possible to choose a countable set of vectors {7, ,)}=1 from &,
and still obtain a basis for §). This is in fact possible and many different discretizations
exist.

The most familiar situation is that where the set of points {qj, pi} is a lattice, such that
the area of the unit cell is smaller than a critical value (to be sure, the resulting set of CS

is then overcomplete).
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Some functional analytic properties

Clearly, it should be possible to choose a countable set of vectors {7, ,)}=1 from &,
and still obtain a basis for §). This is in fact possible and many different discretizations
exist.

The most familiar situation is that where the set of points {qj, pi} is a lattice, such that
the area of the unit cell is smaller than a critical value (to be sure, the resulting set of CS
is then overcomplete).

The determination of adequate subsets {qg;, pi} leads to very interesting mathematical
problems, for instance in number theory and in the theory of analytic functions. These
considerations are part of the general problem of CS discretization.
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Clearly, it should be possible to choose a countable set of vectors {7, ,)}=1 from &,
and still obtain a basis for §). This is in fact possible and many different discretizations
exist.

The most familiar situation is that where the set of points {qj, pi} is a lattice, such that
the area of the unit cell is smaller than a critical value (to be sure, the resulting set of CS
is then overcomplete).

The determination of adequate subsets {qg;, p;} leads to very interesting mathematical
problems, for instance in number theory and in the theory of analytic functions. These
considerations are part of the general problem of CS discretization.

The equation ®(q, p) = (154, |®) also implies a boundedness property for the functions

® in the reproducing kernel Hilbert space k. Indeed,
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Some functional analytic properties

Clearly, it should be possible to choose a countable set of vectors {7, ,)}=1 from &,
and still obtain a basis for §). This is in fact possible and many different discretizations
exist.

The most familiar situation is that where the set of points {qj, pi} is a lattice, such that
the area of the unit cell is smaller than a critical value (to be sure, the resulting set of CS
is then overcomplete).

The determination of adequate subsets {qg;, p;} leads to very interesting mathematical
problems, for instance in number theory and in the theory of analytic functions. These
considerations are part of the general problem of CS discretization.

The equation ®(q, p) = (154, |®) also implies a boundedness property for the functions
® in the reproducing kernel Hilbert space k. Indeed,

[®(q, p)| < [Inll l¢ll,  V(a,p) € Gwn/O,
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Some functional analytic properties

Thus, the vectors in i are all bounded functions. More importantly, the linear map

Ex(q,p) : Hx — C, Ek(q,p)® = ®(q,p),
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Some functional analytic properties

Thus, the vectors in i are all bounded functions. More importantly, the linear map

Ex(q,p) : Hx — C, Ex(q,p)® = ®(q,p),

which simply evaluates each function ® € $, at the point (g, p), and hence called an

evaluation map, is continuous.
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Some functional analytic properties

Thus, the vectors in i are all bounded functions. More importantly, the linear map
EK(q7p) s 9k _>(C7 EK(q7p)¢ :¢(q>p)7

which simply evaluates each function ® € $, at the point (g, p), and hence called an

evaluation map, is continuous.

This can in fact can be taken to be the defining property of a reproducing kernel Hilbert
space and used to arrive at a family of coherent states.
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Some functional analytic properties

Thus, the vectors in i are all bounded functions. More importantly, the linear map
EK(q7 p) Kk — (Cv EK(Q, p)q) = ¢(q> p):

which simply evaluates each function ® € $, at the point (g, p), and hence called an
evaluation map, is continuous.

This can in fact can be taken to be the defining property of a reproducing kernel Hilbert
space and used to arrive at a family of coherent states.

The CS 05, along with the resolution of the identity relation can be used to obtain a
useful family of localization operators on the phase space ' = Gy /©.
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Some functional analytic properties

Thus, the vectors in i are all bounded functions. More importantly, the linear map
EK(q7 p) Kk — (C> EK(Q, p)q) = ¢(q> p):

which simply evaluates each function ® € $, at the point (g, p), and hence called an
evaluation map, is continuous.

This can in fact can be taken to be the defining property of a reproducing kernel Hilbert
space and used to arrive at a family of coherent states.

The CS 05, along with the resolution of the identity relation can be used to obtain a
useful family of localization operators on the phase space ' = Gy /©.

Indeed, the relations (1}, | Ql15(4.0)) = g and (154 | P15 (q.)) = P, which we
obtained earlier, tend to indicate that the CS nf,(qyp) do in some sense describe the
localization properties of the quantum system in the phase space I'.

S. Twareque Ali (Department of Mathematics and S| Coherent States in Physics and Mathematics - I-11 Jan 9 - 13, 2012 33 /52



Some functional analytic properties

To pursue this point a little further, denote by A an arbitrary Borel set in I, considered
as a measure space, and let B(I') denote the o-algebra of all Borel sets of I
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Some functional analytic properties

To pursue this point a little further, denote by A an arbitrary Borel set in I, considered
as a measure space, and let B(I") denote the o-algebra of all Borel sets of T
Define the positive, bounded operator

a(A) = /A 0 (Dot (4 P)-

This family of operators, as A runs through B(I'), enjoys certain measure theoretical
properties:
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Some functional analytic properties

To pursue this point a little further, denote by A an arbitrary Borel set in I, considered
as a measure space, and let B(I") denote the o-algebra of all Borel sets of T

Define the positive, bounded operator

a(A) = /A 0 (Dot (4 P)-

This family of operators, as A runs through B(I'), enjoys certain measure theoretical
properties:

1. If Jis a countable index set and A;, i € J, are mutually disjoint elements of B(I),
ie., AiNA; =0, for i # j (0 denoting the empty set), then

a(UicsAj) = Z a(Ay),

i€l

the sum being understood to converge weakly.
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Some functional analytic properties

2. Normalization:
a(l) =1, also a(0) = 0.
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Some functional analytic properties

2. Normalization:
a(l) =1, also a(0) = 0.

Such a family of operators a(A) is said to constitute a normalized, positive
operator-valued (POV) measure on .
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Some functional analytic properties

2. Normalization:
a(f) =1, also a(0) = 0.

Such a family of operators a(A) is said to constitute a normalized, positive

operator-valued (POV) measure on §).
Using the isometry W and the CS £,(4,5), we obtain the normalized POV-measure ax(A)
on Hk:

ak(A) = /A €0(a.0)) (Ea(ap) | dv(q, p) = Wa(A)W™.
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Some functional analytic properties

2. Normalization:
a(f) =1, also a(f) =0.

Such a family of operators a(A) is said to constitute a normalized, positive
operator-valued (POV) measure on §).

Using the isometry W and the CS £,(4,5), we obtain the normalized POV-measure ax(A)
on Hk:

a(B) = /A €t Entan] di(g. p) = Wa(A)W".

Note that
an() = / €t Entan] d0(a, P) = P,
Gy /©

where Pk is the projection operator, K = Px$.
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Some functional analytic properties

If W € §i is an arbitrary state vector, and W = W1, 3 € 6, then

(Wlak(A)W) = ($la(A)p) = / (g, p) di(q. p).
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Some functional analytic properties

If W € §i is an arbitrary state vector, and W = W1, 3 € 6, then

(Wlak(A)W) = ($la(A)p) = /\w a,p)2 di(q. p).

This means that if W(q, p) is considered as being the phase space wave function of the
system, then ax(A) is the operator of localization in the region A of phase space.
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Some functional analytic properties

If W € §i is an arbitrary state vector, and W = W1, 9 € 9, then
(WIa(8)¥) = (Wla(a)0) = [ 19(a.p) di(a.p)

This means that if W(gq, p) is considered as being the phase space wave function of the
system, then ax(A) is the operator of localization in the region A of phase space.

Of course, to interpret |W(q, p)|* as a phase space probability density, an appropriate
concept of joint measurement of position and momentum has to be developed. Here is

an interesting fact reinforcing the interpretation of ax(A) as a localization operators.
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Some functional analytic properties

If W € §i is an arbitrary state vector, and W = W1, 9 € 9, then
(WIa(8)¥) = (Wla(a)0) = [ 19(a.p) di(a.p)

This means that if W(gq, p) is considered as being the phase space wave function of the
system, then ax(A) is the operator of localization in the region A of phase space.

Of course, to interpret |W(q, p)|* as a phase space probability density, an appropriate
concept of joint measurement of position and momentum has to be developed. Here is
an interesting fact reinforcing the interpretation of ax(A) as a localization operators. On
$k define the unbounded operators Qx , Pk:

(V]Qud) = / U(0,7) 4(q. p) du(q, p).

WiPk®) = [ W(a.p) po(a.p) di(a.p),
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Some functional analytic properties

on vectors W, ® chosen from appropriate dense sets in k.
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Some functional analytic properties

on vectors W, ® chosen from appropriate dense sets in k.
Then it can be shown that

[Qk, Px] = ilk, Ix = identity operator on $k.
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Some functional analytic properties

Then it can be shown that

on vectors W, ® chosen from appropriate dense sets in k.

[Qk, Px] = ilk,

operators on k.

Ix = identity operator on $k.
Thus, multiplication by g and p, respectively, yield the position and momentum
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Some functional analytic properties

on vectors W, ® chosen from appropriate dense sets in k.
Then it can be shown that

[Qk, Px] =ilk, Ik = identity operator on $k.

Thus, multiplication by g and p, respectively, yield the position and momentum
operators on k.

Mathematically, the virtue of the above functional analytic description of the coherent

states ng(

q,p) IS that it points up another possibility of generalization.
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Some functional analytic properties

on vectors W, ® chosen from appropriate dense sets in k.
Then it can be shown that

[Qk, Px] =ilk, Ik = identity operator on $k.

Thus, multiplication by g and p, respectively, yield the position and momentum
operators on k.
Mathematically, the virtue of the above functional analytic description of the coherent

states 7’ is that it points up another possibility of generalization.
N (q,p) p y or g

q,p
We would like to associate CS to arbitrary reproducing kernel Hilbert spaces. This can be

done and will be discussed later.
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Some functional analytic properties

on vectors W, ® chosen from appropriate dense sets in k.
Then it can be shown that

[Qk, Px] =ilk, Ik = identity operator on $k.

Thus, multiplication by g and p, respectively, yield the position and momentum
operators on k.
Mathematically, the virtue of the above functional analytic description of the coherent

states 15, ) i that it points up another possibility of generalization.

q,p
We would like to associate CS to arbitrary reproducing kernel Hilbert spaces. This can be

done and will be discussed later.

This will also take us into the theory of frames.
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A complex analytic viewpoint

To bring out some complex analytic properties of the canonical CS, let ¢ € $) be an
arbitrary vector. Computing its scalar product with the CS |Z) we get
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A complex analytic viewpoint

arbitrary vector. Computing its scalar product with the CS |Z) we get

(#16) = e [-12) Z

To bring out some complex analytic properties of the canonical CS, let ¢ € $) be an

=e><p[—|

L o)
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A complex analytic viewpoint

To bring out some complex analytic properties of the canonical CS, let ¢ € $) be an
arbitrary vector. Computing its scalar product with the CS |Z) we get

(216) = exp = 2L 1Z<”‘¢ sy

Here f is an analytic function of the complex variable z. In terms of z,Z we may write

dg N d, dz ANdz
dv(q,p) = FP

)

s 27i
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A complex analytic viewpoint

To bring out some complex analytic properties of the canonical CS, let ¢ € $) be an
arbitrary vector. Computing its scalar product with the CS |Z) we get

(zl6) = exp = 2L 1Z<”‘¢ "= o[- L] 1)

Here f is an analytic function of the complex variable z. In terms of z,Z we may write

dq/\dp dz \dz

dv
(g,p) = - o

)

and let us define the new measure

dz A\ dz
omi

d(z,2) = exp [~|z[’]
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A complex analytic viewpoint

To bring out some complex analytic properties of the canonical CS, let ¢ € $) be an
arbitrary vector. Computing its scalar product with the CS |Z) we get

(o) = exp =515 0 27— exp [0 £(2).

Here f is an analytic function of the complex variable z. In terms of z,Z we may write

dgNdp dzANdz
wa,p)= = — =55

and let us define the new measure

dz A\ dz

di(z,2) = exp [~ |2

In measure theoretic terms, the quantity idz A dz/2 simply represents the Lebesgue

measure dxdy, z = x + iy, on C.
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A complex analytic viewpoint

We see that ik can be identified with the Hilbert space of all analytic functions in z
which are square-integrable with respect to dpu.
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A complex analytic viewpoint

We see that ik can be identified with the Hilbert space of all analytic functions in z
which are square-integrable with respect to dpu.
Let $ror denote this Hilbert space. Then, the linear map

2
Who : $ = ol (Whoi#)(z) = exp [%] (zl9),

is an isometry.
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A complex analytic viewpoint

We see that ik can be identified with the Hilbert space of all analytic functions in z
which are square-integrable with respect to dpu.
Let $ror denote this Hilbert space. Then, the linear map

2
Whot : $ = 9ol (Whoi¢)(2) = exp [%] (zl9),
is an isometry. The vectors
s _ |22
fotap) = Whol No(q,0) = Whoi [Z) = exp [*7] Gz,

are the images of the nf,(qm) in $nor.
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A complex analytic viewpoint

We see that ik can be identified with the Hilbert space of all analytic functions in z
which are square-integrable with respect to dpu.
Let $ror denote this Hilbert space. Then, the linear map

2
Whot : $ = 9ol (Whoi¢)(2) = exp [%] (zl9),
is an isometry. The vectors
s _ |22
fotap) = Whol No(q,0) = Whoi [Z) = exp [*7] Gz,

are the images of the nf,(qm) in $nor.
The vectors (z € $Hno represent the analytic functions:

() = &7 = e [L(12F +12P) K2, 2)
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A complex analytic viewpoint

From this it is clear that the function Kpo : C x C — C,
Khot (z',2) = (G| )50 = €77,

is a reproducing kernel for /.
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A complex analytic viewpoint

From this it is clear that the function Kpo : C x C — C,
Khot (z',2) = (G| )50 = €77,

is a reproducing kernel for $po. Indeed, for any f € 5o and z € C,

/CKho/(Z,f/)f(Z/) du(z',2') = f(2) = (Gl ap-
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A complex analytic viewpoint

From this it is clear that the function Kpo : C x C — C,
Kot (2',2) = (G |G) sy = €77,
is a reproducing kernel for $po. Indeed, for any f € 5o and z € C,
/ Kh"’(z’f/)f(zl) du(z/,?') = f(z) = <C?‘f>~6ho/'
C

Note that
e 1 2 712 —
Khoi(2',2) = exp [5 (12" + [2)] K(2',2).
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A complex analytic viewpoint

From this it is clear that the function Kpo : C x C — C,
Kot (2',2) = (G |G) sy = €77,
is a reproducing kernel for $po. Indeed, for any f € 5o and z € C,
[ K2, 2IE) duz.2) = £(2) = (Gl
C

Note that 1
Khoi(2',Z) = exp [§(|Z|2 +1ZP)] K(Z,2).

Furthermore, the vectors (s satisfy the resolution of the identity relation on $4 ,

/ 1) (Gl dl2,2) = Iy
C
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A complex analytic viewpoint

The MUST, n° = |0), is represented as the constant vector in $po/:

Who " = to = Kpai( +,0), u(z)=1, VzeC,
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A complex analytic viewpoint

The MUST, n° = |0), is represented as the constant vector in $po/:
Who " = to = Kpai( +,0), u(z)=1, VzeC,
Since Khoi(2,2) = ||G]%, we get

IF(2)] < [Khor(z,2)]2 |-
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A complex analytic viewpoint

The MUST, n° = |0), is represented as the constant vector in $po/:
Who " = to = Kpai( +,0), w(z)=1, VvzeC,
Since Khoi(2,2) = ||G]%, we get
F(2)] < [Kio (2, D)) ]
Hence, the following evaluation map is continuous:

Epoi(2) : $Hpot — C, Ehoi(2)f = f(2),
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A complex analytic viewpoint

The MUST, n° = |0), is represented as the constant vector in $po/:
Whot 1° = to = Knai(+,0), w(z)=1, VvzeC,
Since Knoi(z,Z) = ||&||°, we get
F(2)] < [Kio (2, D)) ]
Hence, the following evaluation map is continuous:
Ehot(2) : $hot — C, Epoi(2)f = f(2),

Indeed, the CS (z could have been obtained by using this fact alone, i.e., by defining it
to be the vector which for arbitrary f € $po gives f(z) = ((|f).
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A complex analytic viewpoint

The MUST, n° = |0), is represented as the constant vector in $por:
Whot 1° = to = Knai(+,0), w(z)=1, VvzeC,
Since Knoi(z,Z) = ||&||°, we get
F(2)] < [Kio (2, D)) ]
Hence, the following evaluation map is continuous:
Ehot(2) : $hot — C, Epoi(2)f = f(2),

Indeed, the CS (z could have been obtained by using this fact alone, i.e., by defining it
to be the vector which for arbitrary f € $po gives f(z) = ((|f).
Such a construction would be independent of any group theory and be intrinsic to

complex manifolds admitting Kahler structures.
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A complex analytic viewpoint

The representation exp [—|z|?/2] &z of the CS on the space of holomorphic functions o/
is known among physicists as the Fock-Bargmann representation, and the Hilbert space

$hor as the Bargmann space of entire analytic functions. In the mathematical literature,

such spaces are generally called Bergman spaces.
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A complex analytic viewpoint

The representation exp [—|z|?/2] &z of the CS on the space of holomorphic functions o/
is known among physicists as the Fock-Bargmann representation, and the Hilbert space
$hor as the Bargmann space of entire analytic functions. In the mathematical literature,
such spaces are generally called Bergman spaces.

The operators a, a', in this representation, are given by

of

(af)(z) = =(2), (a'F)(2) = zf(2), f € Hhol-

0z
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A complex analytic viewpoint

The representation exp [—|z|?/2] &z of the CS on the space of holomorphic functions o/
is known among physicists as the Fock-Bargmann representation, and the Hilbert space
$hor as the Bargmann space of entire analytic functions. In the mathematical literature,
such spaces are generally called Bergman spaces.

The operators a, a', in this representation, are given by

(ah)2) = &

The basis vectors |n) € §) are mapped by W to the vectors

(2), (a'F)(2) = zf(2), f € Hhol.

Whoi |n) = un, un(z) =

in f,)hol-
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A complex analytic viewpoint

The representation exp [—|z|?/2] &z of the CS on the space of holomorphic functions o/
is known among physicists as the Fock-Bargmann representation, and the Hilbert space
$hor as the Bargmann space of entire analytic functions. In the mathematical literature,
such spaces are generally called Bergman spaces.

The operators a, a', in this representation, are given by

(ah)2) = &

The basis vectors |n) € §) are mapped by W to the vectors

(2), (a'F)(2) = zf(2), f € Hhol.

Whoi |n) = un, un(z) =

5K
> S

in $Hror. Additionally,

oo
Khol Z Z E Un
n=0
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Some geometrical considerations

As already pointed out, the existence of the CS (7 can be traced back to certain intrinsic
geometrical properties of C, considered as a one-dimensional, complex Kahler manifold.
Without discussing this notion in depth here, we may still look at a few main features of

this property.
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Some geometrical considerations

As already pointed out, the existence of the CS (z can be traced back to certain intrinsic
geometrical properties of C, considered as a one-dimensional, complex Kahler manifold.
Without discussing this notion in depth here, we may still look at a few main features of
this property.

To begin with, C may be thought of as being either a one-dimensional complex manifold
or a two-dimensional real manifold R?, equipped with a complex structure.
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Some geometrical considerations

As already pointed out, the existence of the CS (z can be traced back to certain intrinsic
geometrical properties of C, considered as a one-dimensional, complex Kahler manifold.
Without discussing this notion in depth here, we may still look at a few main features of
this property.

To begin with, C may be thought of as being either a one-dimensional complex manifold
or a two-dimensional real manifold R?, equipped with a complex structure.

In the first case, one works with the holomorphic coordinate z (or the antiholomorphic

coordinate Z). In the second case, one uses the real coordinates g, p.
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Some geometrical considerations

As already pointed out, the existence of the CS (z can be traced back to certain intrinsic
geometrical properties of C, considered as a one-dimensional, complex Kahler manifold.
Without discussing this notion in depth here, we may still look at a few main features of
this property.

To begin with, C may be thought of as being either a one-dimensional complex manifold
or a two-dimensional real manifold R?, equipped with a complex structure.

In the first case, one works with the holomorphic coordinate z (or the antiholomorphic
coordinate Z). In the second case, one uses the real coordinates g, p.

Considered as a real manifold, R? is symplectic, i.e., it comes equipped with a closed,

non-degenerate two-form

1
Q:dq/\dp:7dz/\df7

S. Twareque Ali (Department of Mathematics and S| Coherent States in Physics and Mathematics - I-11 Jan 9 - 13, 2012 43 / 52



Some geometrical considerations

while considered as a complex manifold, C admits the Kahler potential function:

d(Z,2) =27,
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Some geometrical considerations

while considered as a complex manifold, C admits the Kahler potential function:
d(Z,2) =27,
from which the two-form emerges upon differentiation:

_ 18°9(z,2)

Q T 0207 dz A\ dz.
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Some geometrical considerations

while considered as a complex manifold, C admits the Kahler potential function:
o(Z',z) = 7'z,
from which the two-form emerges upon differentiation:

19°9(z,2)
i 0z0z

Similarly, the Kahler potential also determines the reproducing kernel:

Q= dz A\ dz.

Kiol(z',2) = exp [®(Z', Z)],
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Some geometrical considerations

while considered as a complex manifold, C admits the Kahler potential function:
o(Z',z) = 7'z,
from which the two-form emerges upon differentiation:

10°d(z,2) _
Q = TW dz N dz.

Similarly, the Kahler potential also determines the reproducing kernel:
KhO/(z/’ 2) = exp [¢(zl7 E)]?

while the measure du, defining the Hilbert space $501 of holomorphic functions, is given

in terms of it by

dz A\ dz
omi

du(z.7) = exp[~0(2,2)]
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Some geometrical considerations

Continuing, if we define the complex one-form

O = —j0:9(z,Z) = —izdz,
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Some geometrical considerations

Continuing, if we define the complex one-form
O = —j0:9(z,Z) = —izdz,

we get
Q=0,0,

where 9, 07 denote (exterior) differentiation with respect to z and Z, respectively.

S. Twareque Ali (Department of Mathematics and S| Coherent States in Physics and Mathematics - I-11



Some geometrical considerations

Continuing, if we define the complex one-form

O = —j0:9(z,Z) = —izdz,

we get
Q=0,0,

where 9, 0 denote (exterior) differentiation with respect to z and Z, respectively.

It appears therefore, that it is the Kahler structure of C, (or the fact that it comes
equipped with the K3hler potential ®) which leads to the existence of the Hilbert space
$Hnor of holomorphic functions and consequently, the CS (7 (the appearance of these

latter being a consequence of the continuity of the evaluation map.
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Some geometrical considerations

Continuing, if we define the complex one-form
O = —j0:9(z,Z) = —izdz,

we get
Q=0,0,

where 9, 0 denote (exterior) differentiation with respect to z and Z, respectively.

It appears therefore, that it is the Kahler structure of C, (or the fact that it comes
equipped with the K3hler potential ®) which leads to the existence of the Hilbert space
$Hnor of holomorphic functions and consequently, the CS (7 (the appearance of these

latter being a consequence of the continuity of the evaluation map.

Once again, this situation is generic to all Kahler manifolds.
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Some geometrical considerations

Let P(z) be the one dimensional projection operator onto the vector subspace of 50/
generated by the vector (7, and denote this subspace by $o(2).
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Some geometrical considerations

Let P(z) be the one dimensional projection operator onto the vector subspace of 50/
generated by the vector (7, and denote this subspace by $o(2).
The collection of all these one-dimensional subspaces, as z ranges over C, defines a

(holomorphic) line bundle over the manifold C — a structure which is intimately related to

the existence of a geometric prequantization of C.
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Some geometrical considerations

Let IP(z) be the one dimensional projection operator onto the vector subspace of $ao
generated by the vector (7, and denote this subspace by $o(2).

The collection of all these one-dimensional subspaces, as z ranges over C, defines a
(holomorphic) line bundle over the manifold C — a structure which is intimately related to
the existence of a geometric prequantization of C.

However, while a complex Kahler structure is in some sense ideally suited to the existence
of a geometric prequantization, a family of CS may define a geometric prequantization

even in the absence of such a structure.
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A quantization problem

As an example of an application of the canonical CS we look at a quantization problem

of a simple classical system.
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A quantization problem

As an example of an application of the canonical CS we look at a quantization problem
of a simple classical system.

In classical mechanics, observables are real valued functions on phase space and they
form an algebra with respect to a product defined by the Poisson bracket. The
observables of quantum mechanics are self-adjoint operators on a Hilbert space, forming
an algebra with respect to the commutator bracket, divided by ih.
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A quantization problem

As an example of an application of the canonical CS we look at a quantization problem
of a simple classical system.

In classical mechanics, observables are real valued functions on phase space and they
form an algebra with respect to a product defined by the Poisson bracket. The
observables of quantum mechanics are self-adjoint operators on a Hilbert space, forming
an algebra with respect to the commutator bracket, divided by ih.

A quantization of a classical system is a linear map f — Of of the classical observables f
to self-adjoint operators Of in a way such that the Poisson bracket {f, g} of two classical

observables is mapped to %[O,r, Og].
i
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A quantization problem

As an example of an application of the canonical CS we look at a quantization problem
of a simple classical system.

In classical mechanics, observables are real valued functions on phase space and they
form an algebra with respect to a product defined by the Poisson bracket. The
observables of quantum mechanics are self-adjoint operators on a Hilbert space, forming
an algebra with respect to the commutator bracket, divided by ih.

A quantization of a classical system is a linear map f — Of of the classical observables f
to self-adjoint operators Of in a way such that the Poisson bracket {f, g} of two classical
observables is mapped to %[O,r, O]

One also tries to ensure, in the process, that some particular subalgebra of the quantized

observables, chosen for physical reasons, be irreducibly realized on the Hilbert space.
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A quantization problem

Consider a classical particle of mass m, having a single degree of freedom, moving on the

configuration space R and having the phase space R.
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A quantization problem

Consider a classical particle of mass m, having a single degree of freedom, moving on the
configuration space R and having the phase space R.
On the Hilbert space $ = L*(R, dx) take the set of CS

i q
To(a.p) = &Pl (x = Z)pln(x — q),
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A quantization problem

Consider a classical particle of mass m, having a single degree of freedom, moving on the
configuration space R and having the phase space R.
On the Hilbert space $ = L*(R, dx) take the set of CS

i q
To(a.p) = &Pl (x = Z)pln(x — q),

and corresponding to a function f of the variables (g, p), define the formal operator:

dqdp

O = [ #(@.P)totas) (ota| d(a.p).  d(a.p) = G
R2 i
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A quantization problem

Consider a classical particle of mass m, having a single degree of freedom, moving on the
configuration space R and having the phase space R.
On the Hilbert space $ = L*(R, dx) take the set of CS

i q
To(a.p) = &Pl (x = Z)pln(x — q),

and corresponding to a function f of the variables (g, p), define the formal operator:

dqdp

0 = [ #(a.P)otao) (el dv(.p).  dila.p) = St

In general, the operator Or defined in this way will be unbounded and technical
questions involving domains have to be addressed.
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A quantization problem

Consider a classical particle of mass m, having a single degree of freedom, moving on the
configuration space R and having the phase space R.
On the Hilbert space $ = L*(R, dx) take the set of CS

i

q
No(a,p) = exp[h(x - E)P]n(x -q),

and corresponding to a function f of the variables (g, p), define the formal operator:

dqgdp

Or = /Rz £(9, P)ota.p)) (Motap)| dv(a,p),  drla.p) = 5 =

In general, the operator Or defined in this way will be unbounded and technical
questions involving domains have to be addressed.

However, assuming that Or can be defined on a dense set, its action on a vector ¢, taken
from this set is given by the integral operator relation:
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A quantization problem

(00)() = 5 | dap £(q.p) [ [ ' & H 7’ — )] n(x — a).
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A quantization problem

(00)x) = 7 [ dadp Fla.p) [ ' & F 97’ — @)ol)] nlx — @)

R
From this it follows that if f(q, p) = f(q) is a function of g alone, then O is the
operator of multiplication by the function |n|*> * f (the asterisk denotes a convolution):

Inf? % F(x) = / In(x — q)*f(q) da.
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A quantization problem

(00)x) = 7 [ dadp Fla.p) [ ' & F 97’ — @)ol)] nlx — @)

From this it follows that if f(q, p) = f(q) is a function of g alone, then O is the
operator of multiplication by the function |n|*> * f (the asterisk denotes a convolution):

700 = | = a)F(@) da.

Similarly, if f(q, p) = f(p) is a function of p alone then Of is the (in general pseudo-)
differential operator

.0
Or = f(flha),
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A quantization problem

(00)(x) = 7 [ dado Fla.p) [ ' & H P — q)ox)] nix — @)

From this it follows that if f(q, p) = f(q) is a function of g alone, then O is the
operator of multiplication by the function |n|*> * f (the asterisk denotes a convolution):

wﬂwuwaému—anmdq

Similarly, if f(q, p) = f(p) is a function of p alone then Of is the (in general pseudo-)
differential operator

.0
Or = f(flha),
(formally, if f(q) is written as a power series in g, then Or is obtained by replacing g by
.0
—lh& .
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A quantization problem

In particular, taking f(q) = q and f(p) = p, we get:

(0a)(x) = x6(x).  (0p6)(x) = ~inD2 (),
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A quantization problem

In particular, taking f(q) = q and f(p) = p, we get:

(0a)(x) = x6(x).  (0p6)(x) = ~inD2 (),

while if f = H, the harmonic oscillator Hamiltonian,

2 2 2

P mw- 2
H=F*_
om T2 T

then
n d? m2w?
= Tomde T2

x>+ C,

o)
I
\
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A quantization problem

In particular, taking f(q) = q and f(p) = p, we get:

(0a)(x) = x6(x).  (0p6)(x) = ~inD2 (),

while if f = H, the harmonic oscillator Hamiltonian,

2 2 2
P mw- 2
H=_"—
m T2 T
then , -
he d m°w
=——— C
On=—smaet 2 X 16

where C is the constant
C= @h% m2w?.

which simply changes the ground state energy.
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A quantization problem

We see in this example, that this method of quantization yields the expected result, in
that the Poisson bracket {q, p} is properly mapped to the commutator bracket

,l Og, Op], and the algebra generated by Og4, O, and [ is irreducibly represented on $).
ipLFe e q, Up
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A quantization problem

We see in this example, that this method of quantization yields the expected result, in
that the Poisson bracket {q, p} is properly mapped to the commutator bracket

%[Oq7 O,], and the algebra generated by Og, O, and [ is irreducibly represented on §.
Thus, formally at least, the use of the canonical CS leads to the same quantization result
as ordinarily obtained by making the substitutions, ¢ — “multiplication by x” and

., 0
p%—lh&.
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A quantization problem

We see in this example, that this method of quantization yields the expected result, in
that the Poisson bracket {q, p} is properly mapped to the commutator bracket

%[Oq7 O,], and the algebra generated by Og, O, and [ is irreducibly represented on §.
Thus, formally at least, the use of the canonical CS leads to the same quantization result
as ordinarily obtained by making the substitutions, ¢ — “multiplication by x” and

p— —ihﬁ.

X
The method is quite general and can be applied to a large number of physical situations.
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Outlook

We have quickly gleaned through a number of illustrative properties of the canonical
coherent states. Each one of these properties can be taken as the starting point for a

generalization of the notion of a CS.
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generalization of the notion of a CS.

From a purely physical point of view, for example, it could be useful to look for

generalizations which preserve the minimal uncertainty property. In doing so, it is useful

to exploit some of the group theoretical properties as well.
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generalization of the notion of a CS.

From a purely physical point of view, for example, it could be useful to look for
generalizations which preserve the minimal uncertainty property. In doing so, it is useful
to exploit some of the group theoretical properties as well.

Mathematical generalizations could be based on group theoretical, analytic or related

geometrical properties.
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Outlook

We have quickly gleaned through a number of illustrative properties of the canonical
coherent states. Each one of these properties can be taken as the starting point for a
generalization of the notion of a CS.

From a purely physical point of view, for example, it could be useful to look for
generalizations which preserve the minimal uncertainty property. In doing so, it is useful
to exploit some of the group theoretical properties as well.

Mathematical generalizations could be based on group theoretical, analytic or related
geometrical properties.

We shall attempt to describe a bit of all of these various possibilities and along the way.
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