
Noncommutative geometry and the fractional quantum Hall effect:
the discrete model - part 1

Mathai Varghese
School of Mathematical Sciences

University of Adelaide
AUSTRALIA

1



Classical Hall Effect

It is said that in 1878, Edwin Hall, a graduate student at John Hopkins, was
reading Maxwell’s ‘Treatise on Electricity and Magnetism’, which had just re-
cently appeared in print in 1873. In it, Maxwell discussed the deflection of
electrical currents by a magnetic field and wrote,

“It must be carefully remembered that the mechanical forces which urges a

conductor, acts, not on the current itself, but on the conductor which carries it.”

Hall was confused by this statement and skeptical, and devised the Hall effect
experiment in 1879 to test the truth of Maxwell’s assertion (in the negative).



Hall Effect experiment

� sample: thin metallic plate;
� magnetic field Bz perpendicular to the sample in z direction;
� small current jx in the x direction.



By Flemming’s rule, an electric field Ey is created in the y-direction, which
is called the Hall current. In stationary state, the Hall conductance σH is

proportional to the filling factor ν =
ρ�

eB
where ρ is the 2-d density of charge

carriers, � is Planck’s constant, e is the electron charge.



Integer quantum Hall Effect

In 1980, Klaus von Klitzing made the unexpected discovery that the Hall con-
ductivity was exactly quantized, upon lowering the temperature below 1 K,
large sample size and very strong magnetic fields.

The effect is measured with very high precision (of the order of 10−8) and
allows for a very accurate measurement of the fine structure constant e2/hc.
The von Klitzing constant, RK = h/e

2 is named in his honour.

For this finding, von Klitzing was awarded the 1985 Nobel Prize in Physics.



• setup as in the classical Hall effect;
• temperatures < 1◦K, and ∼ ∞ 2D-sample;
• strong magnetic field.



✲

✻

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
��

ν

1

22

�

e2
σH



Under the above conditions, one can effectively use the independent electron
approximation and reduce the problem to a single particle case.

The main physical property of the integer quantum Hall effect (IQHE) is that
the conductance σH , as a function of the filling factor ν, has plateaux at
integer multiples of e2/h.

The idea of modelling the integer quantum Hall effect on an index theorem
started fairly early after the discovery of the effect. Laughlin (1998 Nobel
prize winner) had a formulation that can already be seen as a form of the
Gauss–Bonnet theorem, while this was formalized more precisely in such
terms shortly afterwards by Thouless et al. (1982) and by Avron, Seiler, and
Simon (1983).



An early success of Connes’ noncommutative geometry was a rigorous math-
ematical model of the integer quantum Hall effect, developed by Bellissard
and his collaborators. Unlike the previous models, this accounts for all as-
pects of the phenomenon: integer quantization, localization, insensitivity to
the presence of disorder, vanishing of direct conductivity at plateaux levels.

Again the integer quantization is reduced to an index theorem, albeit of
a more sophisticated nature, involving the Connes–Chern character, the K-
theory of C∗-algebras and cyclic cohomology.



Outline of lecture series

Lecture 1: Spectral theory of discrete magnetic Schrödinger operators.

Lecture 2: Discrete model for the fractional quantum Hall effect: hyperbolic
and noncommutative geometry.

Lecture 3: Continuous model for the quantum Hall effect and the equivalence
with the discrete model.

Lecture 4: Higher twisted (or projective) index theory.

Lecture 5: Miscellaneous: semiclassical asymptotics, spectral triples etc.



Preliminaries

Let Γ be a finitely generated discrete group and G be its Cayley graph, i.e.
the vertices of G are the elements of Γ and the edges emanating from a vertex
α ∈ G are translates of the vertex giα by a generating set, where {gi}

N
i=1 are

a symmetric set of generators of Γ.

Example: Let Γ = Z
2 with generators (1,0), (−1,0, ), (0,1), (0,−1) ∈ Z

2

and group operation vector space addition.,
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Let σ be a multiplier on Γ, i.e. σ : Γ×Γ → U(1) is a U(1)-valued 2-cocycle
on the group Γ i.e. σ satisfies the following identities:

• σ(γ,1) = σ(1, γ) = 1 ∀γ ∈ Γ

• σ(γ1, γ2)σ(γ1γ2, γ3) = σ(γ1, γ2γ3)σ(γ2, γ3)

∀γ1, γ2, γ3 ∈ Γ

Example: and define for fixed α1, α2 ∈ R, and for all (m�
, n

�), (m,n) ∈ Z
2,

the multiplier,

σ((m�
, n

�), (m,n)) = exp(−i(α1m
�
n+ α2n

�
m)).

Consider the Hilbert space of square summable functions on Γ,

�
2(Γ) =




f : Γ → C,

�

γ∈Γ
|f(γ)|2 < ∞




 .



There are natural left σ-regular and right σ-regular representations on �
2(Γ).

Left σ-regular representation: ∀ γ, γ
� ∈ Γ

(Lσ
γf)(γ

�) = f(γ−1
γ
�)σ(γ, γ−1

γ
�)

L
σ
γL

σ

γ�
= σ(γ, γ�)Lσ

γγ�

Right σ-regular representation: ∀γ, γ� ∈ Γ

(Rσ
γf)(γ

�) = f(γ�γ)σ(γ�, γ)

R
σ
γR

σ

γ�
= σ(γ, γ�)Rσ

γγ�

When σ = 1, these are the standard left and right regular representations.

Fact (exercise) Use the cocycle identity to show that the left σ-regular repre-
sentation commutes with the right σ̄-regular representation, where σ̄ denotes
the conjugate cocycle. Also the left σ̄-regular representation commutes with
the right σ-regular representation.



Random Walk operator & Harper operator

Again let {g1, . . . , gN} be a symmetric set of generators for Γ. The Random
Walk operator on the Cayley graph of Γ is the average of the values of the
functions evaluated at the nearest neighbors, i.e.

H : �
2(Γ) → �

2(Γ) is a bounded operator

Hf(γ) =
N�

i=1
f(γgi) i.e. H =

N�

i=1
Rgi

where Rgi
denotes right regular representation translation.

The Harper operator can be viewed as a generalization of the Random Walk
operator. It is the Random Walk operator in the σ-regular representation i.e.

Hσ =
N�

i=1
R
σ
gi

Remarks The discrete analogue of the Laplacian operator ∆ = N −H, and
the discrete analogue of the magnetic Laplacian (DML) is ∆σ = N −Hσ.



Example: Let Γ = Z
2 and define for fixed α1, α2 ∈ R, and for all (m�

, n
�), (m,n) ∈

Z
2, the multiplier,

σ((m�
, n

�), (m,n)) = exp(−i(α1m
�
n+ α2n

�
m)).

Let U ≡ R
σ

(0,1), (Uf)(m�
, n

�) = f(m�
, n

� +1)e−iα2m
�

.

Let V = R
σ

(1,0), (V f)(m�
, n

�) = f(m� +1, n�)e−iα1n
�

.

Then U, V satisfy the Weyl commutation relation,

UV = e
iθ
V U

where θ = α2 − α1. Also the Harper operator in this case is

Hσ = U + V + (U + V )∗ .
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The Harper operator on Z
2 has a long history and has been studied by people

listed at the begining of the talk and by many others in Condensed Matter
and Solid State Physics. Its importance in Physics is that it is the Hamiltonian
that occurs in the discrete model in the study of the integer quantum Hall
effect. The qualitative aspects of the spectrum of the operator are now quite
well known.

• Back to the general discrete group Γ and Harper operator Hσ and DML ∆σ.

Since the set of generators {gi}
N
i=1 is symmetric, it follows that Hσ and

∆σ are bounded self-adjoint operators on �
2(Γ). Therefore its spectrum

spec(Hσ) is a closed and bounded subset of R. It follows that the comple-
ment R\ spec(Hσ) is an open subset of R, so in particular, it is the countable
union of disjoint open intervals. Each such interval is called a gap in the
spectrum of Hσ.

Caveat The spectrum of Hσ and ∆σ is rarely discrete.



Thus one can ask the following fundamental questions:

� How many gaps are there in the spectrum of Hσ or ∆σ?

� More generally, how many gaps are there in the spectrum of ∆σ + V ?

Here V ∈ C(Γ, σ) is an electric potential, and C(Γ, σ) denotes the twisted
group algebra, that is finitely supported functions f : Γ → C with (twisted)
convolution product,

f1 ∗ f2(γ) =
�

γ1γ2=γ

f1(γ1)f2(γ2)σ(γ1, γ2)

We will show that a Γ-invariant magnetic field B on H gives rise to a multiplier
on Γ. Remarkably, the answer to the questions above depends on whether or
not the flux θ = �[σ], [Γ]� = 1

2π
�
H/ΓB is a rational number.



Theorem[MM2]. Let Γ be a cocompact Fuchsian group of signature
(g : ν1, . . . , νn), where g is the genus and νj are the cone angles (which
integers ≥ 1).

If θ is rational, then there are only a finite number of gaps in the spectrum of
DMS ∆σ + V .

In fact, if θ =
p

q
, then there are at most (q +1)

�
n
j=1(νj +1) gaps.

Here Γ = Γ(g : ν1, . . . , νn) is defined in terms of generators & relations as,

�Ai,Bi, Cj, i = 1, . . . g, j = 1, . . . n
��

g�

i=1

[Ai,Bi]C1 . . . Cn = 1,1 = C
νj

j
, j = 1, . . . n�

Geometrically, it is the orbifold fundamental group of a compact 2D orbifold.



Eg. � Γ(1 : 0) ∼= Z
2 is the fundamental group of a 2D torus.

� Γ(g : 0) is the fundamental group of a genus g compact Riemann surface.

This orbifold has (orbifold) fundamental group, Γ(1 : 3,3,3).
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Harper operator on the Cayley graph of Fuchsian group.



Rieffel established these results when Γ = Z
2 and [CHMM] when the Fuch-

sian group is torsion-free. My goal in this lecture series is to explain some of
the ingredients of the proof. But before that, let me state a conjecture;

Conjecture (Generalized Ten Martini Problem [CHMM], [MM])
Let Γ be a cocompact Fuchsian group of signature (g : ν1, . . . , νn).

If the flux θ is an irrational number, then there is a V such that the DMS ∆σ+V

has infinite number of gaps in its spectrum.

Remarks/Open problems
� Not known if any gaps exist!
� Perhaps V = 0?
� Perhaps DMS ∆σ + V has Cantor like spectrum for some V ?



Hofstadter butterfly spectrum

In the genus 1 case (and n=0), the spectrum has the beautiful shape of the
Hofstadter butterfly,



von Neumann algebras versus C
∗ algebras

W
∗(Γ, σ) =

�
A ∈ B(�2(Γ)) : [Lσ̄

γ, A] = 0 ∀γ ∈ Γ
�

i.e. W
∗(Γ, σ) is the commutant of the left σ̄-regular representation. By gen-

eral theory, it is a von Neumann algebra, and it is called the twisted group
von Neumann algebra. It can also be realized in the following manner: the
right σ-regular representation of Γ extends to a ∗ representation of the twisted
group algebra, C(Γ, σ) → B(�2(Γ)).

Now the weak closure (which coincides with the strong closure) of C(Γ, σ)
also yields the twisted group von Neumann algebra W

∗(Γ, σ), by the com-
mutant theorem of von Neumann. If Γ = Z

2 & σ = 1, then W
∗(Γ,1) ∼=

L
∞(T2) by the Fourier transform.

The norm closure of C(Γ, σ) yields the (reduced) twisted group C
∗ algebra

C
∗
r(Γ, σ). If Γ = Z

2 and σ = 1, then C
∗(Γ,1) ∼= C(T2).



Key properties of W ∗(Γ, σ) and C
∗
r(Γ, σ)

• W
∗(Γ, σ) is generated by its projections; and it is also closed under the

measurable functional calculus i.e. if A ∈ W
∗(Γ, σ) and A = A

∗,
A > 0, then f(A) ∈ W

∗(Γ, σ) for all essentially bounded measurable
functions f defined in a neighbourhood of spec(A).

• On the other hand, C∗
r(Γ, σ) has only at most countably many projections;

and is only closed under the continuous functional calculus.

Examples. When Γ = Z
2 and σ as before, then the twisted group C

∗ algebra
can be identified with the non commutative tori’ i.e.

C
∗
r(Z

2
, σ) = Aθ .

where σ and θ are identified as before. If θ = α2 − α1, then

σ((m�
, n

�), (m,n)) = exp(−i(α1m
�
n+ α2n

�
m))



Back to the general case. Note that

∆σ ∈ C(Γ, σ) ⊂ C
∗
r(Γ, σ) ⊂ W

∗(Γ, σ).

In particular, ∆σ + V and its spectral projections

Pλ = χ(−∞,λ](∆σ + V ) ∈ W
∗(Γ, σ) .

for any V ∈ C(Γ, σ).

Lemma E �∈ spec(∆σ + V ) ⇒ PE ∈ C
∗
r(Γ, σ).

Proof. Suppose that, spec(∆σ + V ) ⊂ [A,B] and that the open interval
(a, b) is a spectral gap of ∆σ + V . Suppose that E ∈ (a, b) i.e. E /∈

spec(∆σ + V ).



Then there is a holomorphic function φ on a neighbourhood of spec(∆σ+V )
such that

PE = χ(−∞,E](∆σ + V ) = φ(∆σ + V ) =
�

C

dλ

λ− (∆σ + V )

where C is a closed contour enclosing the spectrum of ∆σ + V to the left of
E, and is the Riesz projection.

Since C
∗
r(Γ, σ) is closed under the continuous functional calculus, it follows

that PE ∈ C
∗
r(Γ, σ).



Thus estimating the number of gaps in the spectrum of DMS ∆σ + V

essentially reduces to estimating the traces of projections in C
∗
r(Γ, σ).

Quantitatively, this is done via the Kadison constant, defined below.

Two projections P,Q ∈ Proj(C∗
r(Γ, σ)⊗K) are said to be

Murray-von Neumann (MvN) equivalent if there is an element
V ∈ C

∗
r(Γ, σ)⊗K such that P = V

∗
V and Q = V V

∗.

Two pairs of projections (P,Q) and (P �
, Q

�) are said to be stably equivalent
if P ⊕Q

� ⊕G is MvN equivalent to P
� ⊕Q⊕G,

for some projection G ∈ C
∗
r(Γ, σ)⊗K.

The Grothendieck (or K-)group K0(C∗
r(Γ, σ))) consists of stable equivalence

classes of pairs (P,Q) of projections in C
∗
r(Γ, σ)⊗K.



Now the von Neumann algebra W
∗(Γ, σ) and C

∗ algebra C
∗
r(Γ, σ) have a

canonical faithful finite trace tr, where

tr(A) = �Aδ1, δ1��2(Γ).

If Tr denotes the standard trace on bounded operators in an ∞-dim separable
Hilbert space H, then

tr = tr⊗Tr: Proj(C∗
r(Γ, σ)⊗K) −→ R

is well defined, where Proj(C∗
r(Γ, σ)⊗K) denotes the semigroup of all pro-

jections in C
∗
r(Γ, σ)⊗K and K denotes the C

∗ algebra of compact operators
on H.

The trace tr extends linearly to K-theory,

[tr] : K0(C∗

r
(Γ, σ))) → R & tr(Proj(C∗

r
(Γ, σ))) = [tr](K0(C∗

r
(Γ, σ))) ∩ [0,1]



The Kadison constant is Cσ(Γ) = inf{tr(P ) : P ∈ Proj(C∗
r(Γ, σ))}

Lemma If the Kadison constant Cσ(Γ) > 0, then there are only finitely many
gaps in the spectrum of the Harper type operator ∆σ + V .

Proof. By contradiction. Suppose there are infinitely many gaps in the spec-
trum of (∆σ + V ). Then there is an increasing sequence a1 < a2 < .....

such that each number ai is in a gap of the Harper operator, and the intervals
(ai, ai+1) intersects the spectrum of the Harper type operator. But

tr(χ(ai,ai+1)
(∆σ + V )) ≥ Cσ(Γ)

for all i, so that 2||∆σ+V || ≥
�

i tr(χ(ai,ai+1)
(∆σ+V )) > ∞ - contradict-

ing the boundedness of ∆σ + V .



Theorem [MM2]. Let Γ be a cocompact Fuchsian group of signature

(g : ν1, . . . , νn). Then the range of the trace on K-theory is,

[tr](K0(C
∗
r(Γ, σ))) = Z+ θZ+

�

j

1

νj

Z ∀θ .

Here θ is the flux of σ.

Corollary. If the flux θ is a rational number, then there are only a finite
number of projections in C

∗
r(Γ, σ) (up to Murray-von Neumann equivalence).

More precisely, if θ =
p

q
, then there are at most (q + 1)

�
n
j=1(νj + 1)

projections in C
∗
r(Γ, σ), up to Murray-von Neumann equivalence.
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building on earlier fundamental work by Avron, Seiler, Simon, Thousless, Bel-
lissard and collaborators, who established a noncommutative geometry Eu-
clidean model for the integer QHE.


