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ABSTRACT

Detection of outliers in gene expression data has drawn a great deal of
attention in recent years. Although a variety of outlier detection meth-
ods is available in the literature Tomlins et al. (2005) argued that they
are not readily applicable to gene expression data. They developed the
"cancer outlier profile analysis (COPA)" method to detect cancer genes
and outliers. Following their way several methods are proposed in the
literature for detecting outliers. Most of these methods are based on
t-type tests which are basically nonrobust and hence fail to identify mul-
tiple outliers. In this paper we propose a robust version of the t-test that
we call expressed robust ¢ (ERT) test. The usefulness of the proposed
methods is then investigated by Monte Carlo simulation and real cancer
data.

Keywords: Gene expression, Outlier, Cancer outlier profile, Robust
statistics.
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1. Introduction

Statistical data analysis usually begins with the gathering of observations
from a certain population. However, this process of accumulating the data
is subject to numerous sources of error. Therefore, the data collected may
comprise with some unusually small or large observations, so-called outliers.
Determining whether a data set contains one or more outliers is a challenge
commonly faced in applied statistics. This is a mostly difficult mission if the
properties of the underlying population are not known. However, in many
empirical investigations, the assumption that the data come from a particular
population is too restrictive or unrealistic. Although outliers are often consid-
ered as an error or noise, they may convey important information. Detected
outliers are candidates for peculiar data that may otherwise adversely lead to
model misspecification, biased parameter estimation and incorrect results. It
is therefore important to identify them prior to modeling and analysis. Out-
lier detection methods have been suggested for numerous applications, such
as credit card fraud detection, clinical trials, voting irregularity analysis, data
cleansing, network intrusion, severe weather prediction, geographic informa-
tion systems, athlete performance analysis, and other data-mining tasks [see
Hawkins (1980), Barnett and Lewis (1994), Hadi, Imon and Werner ( 2009)].

The rapid developments of technologies that generate arrays of gene data
enable a global view of the transcription levels of hundreds of thousands of
genes simultaneously. The outlier detection problem for gene data has its im-
portance but together with the difficulty of high dimensionality. The scarcity
of data in high-dimensional space makes each point a relatively good outlier in
the view of traditional distance-based definitions. Thus, finding outliers in high
dimensional data is more complex. Microarray technology is used in a wide va-
riety of settings for detecting differential gene expression. Classic statistical
issues such as appropriate test statistics, sample size, replicate structure, sta-
tistical significance, and outlier detection enter into the design and analysis of
gene expression studies. Adding to the complexity is the fact that the number
of samples [ in a microarray experiment is inevitably much less than the num-
ber of genes J under investigation and that J is often on the scale of tens of
thousands, thus creating a tremendous multiple testing burden.

Fundamental to the task of analyzing gene expression data is the need to
identify genes whose patterns of expression differ according to phenotype or ex-
perimental condition. Gene expression is a well-coordinated system, and hence
measurements on different genes are in general not independent. Given more
complete knowledge of the specific interactions and transcriptional controls, it
is conceivable that meaningful comparisons between samples can be made by
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considering the joint distribution of specific sets of genes. However, the high di-
mension of gene expression space prohibits a comprehensive exploration, while
the fact that our understanding of biological systems is only in its infancy
means that in many cases we do not know which relationships are important
and should be studied. In current practice, differential expression analysis will
therefore at least start with a gene-by-gene approach, ignoring the dependen-
cies between genes. A simple approach is to select genes using a fold-change
criterion. This may be the only possibility in cases where no, or very few repli-
cates, are available. An analysis solely based on fold change however does not
allow the assessment of significance of expression differences in the presence
of biological and experimental variation, which may differ from gene to gene.
This is the main reason for using statistical tests to assess differential expres-
sion. Generally, one might look at various properties of the distributions of a
genes expression levels under different conditions, though most often location
parameters of these distributions, such as the mean is considered. Parametric
test, such as the t-test, is commonly used. Parametric tests usually have a
higher power if the underlying model assumptions, such as normality in the
case of the t test, are at least approximately fulfilled. Presence of outliers may
often destroy normality pattern so it is essential to identify outliers in gene
expression data before any further statistical analysis.

We organize this paper in the following way. In section 2, we introduce
different concepts regarding gene expression. We also introduce the real data
which we analyze later for outlier detection. In section 3 we introduce the
concept of outliers, its consequences. We also introduce some commonly used
outlier detection techniques here. In section 4, we consider outlier detection
methods which are suggested exclusively for gene expression data. The most
widely used method for detecting differential gene expression in comparative
microarray studies is the two-sample ¢-statistic. A gene is determined to be
significant if the absolute t-value exceeds a certain threshold ¢, which is usually
determined by its corresponding p-value or false discovery rate. Recently, Tom-
lins et al (2005) introduced the cancer outlier profile analysis (COPA) method
for detecting cancer genes which are differentially expressed in a subset of dis-
ease samples. Heterogeneous patterns of oncogene activation were observed in
the majority of cancer types considered in their studies. Thereafter, several fur-
ther studies in this direction have been proposed. Tibshirani and Hastie (2007)
introduced the outlier sums (OS) method, Wu (2007) proposed the outlier ro-
bust t-statistic (ORT), Lian (2008) introduced the maximum ordered subset
t-statistics (MOST) for detecting cancer outlier differential gene expression. In
this section we investigate the performance of the existing methods and in-
troduced a new robust method by robustifying a t-test that we call expressed
robust ¢ (ERT) test. The effectiveness of our proposed method together with
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the existing methods is then investigated through a Monte Carlo simulation
and also for tumor colon cancer data.

2. Gene Expression and its Pattern

In this section we briefly discuss gene expression and its pattern and intro-
duce the cancer data that we use in our study. Gene expression is the process by
which genetic instructions are used to synthesize gene products. These products
are usually proteins, which go on to perform essential functions as enzymes,
hormones and receptors, for example. Genes that do not code for proteins such
as ribosomal RNA or transfer RNA code for functional RNA products. Gene
expression analysis is the determination of the pattern of genes expressed at
the level of genetic transcription, under specific circumstances or in a specific
cell.

For this study we use the data pertaining to the article "Broad patterns
of gene expression revealed by clustering of tumor and normal colon tissues
probed by oligonucleotide arrays" by Alon et al. (1999). The matrix hitp :
//genomics—pubs.princeton.edu/oncology/af fydata/I2000.html contains the
expression of the 2000 genes with highest minimal intensity across the 62 tis-
sues. The genes are placed in order of descending minimal intensity. Each entry
in 12000 is a gene intensity derived from the 20 feature pairs that correspond to
the gene on the chip, derived using the filtering process. The data is otherwise
unprocessed (for example it has not been normalized by the mean intensity of
each experiment). The file hitp : //genomics — pubs.princeton.edu/oncology/
af fydata/names.html contains the EST number and description of each of the
2000 genes, in an order that corresponds to the order in 12000. Note that some
ESTs are repeated which means that they are tiled a number of times on the
chip, with different choices of feature sequences. The identity of the 62 tissues is
given in file http : //genomics—pubs.princeton.edu/oncology/af fydata/tissue
s.html. The numbers correspond to patients, a positive sign to a normal tis-
sue, and a negative sign to a tumor tissue. There were 22 tissues from normal
sample 40 tissues from tumor sample.

Gene expression in 40 tumor and 22 normal colon tissue samples was taken
from Gene expression in 40 tumor and 22 normal colon tissue samples was an-
alyzed with an Affymetrix oligonucleotide array complementary to more than
6,500 human genes. An efficient two-way clustering algorithm was applied to
both the genes and the tissues, revealing broad coherent patterns that sug-
gest a high degree of organization underlying gene expression in these tissues.
Coregulated families of genes clustered together, as demonstrated for the ribo-
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somal proteins. Clustering also separated cancerous from noncancerous tissue
and cell lines from in vivo tissues on the basis of subtle distributed patterns of
genes even when expression of individual genes varied only slightly between the
tissues. For the study the 2,000 genes with highest minimal intensity across the
tissues were used. To get an idea about the gene expression in normal sample
and tumor sample we construct an index plot of the genes for normal, tumor
and all samples which is below. It seems from the figures that tumor samples
have higher intensities than normal samples. The ranges of normal genes are
5.82 to 14173.05 whereas for tumor samples these values are 5.89 to 20903.18.

10000

normal

Figure 1: Plot of the gene intensities for normal samples (Horizontal-gene index, vertical intensities)

20000

12000

Figure 2: Plot of the gene intensities for tumor samples (Horizontal-gene index, vertical intensities)
The index plots of the genes according to different group indicate that the

intensity level in the tumor samples usually much higher than that of normal
samples. This indication is clearly a good sign to doubt that there must be
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Figure 3: Plot of the gene intensities for all samples (Horizontal-gene index, vertical intensities)

some unusual pattern of heterogeneity in the tumor samples. Our attempt to
detect outlier has got a strong background to proceed on.

[ D
Random Unclustared Panderm Clustared
. T 2

Figure 4: Matrix of gene expression

We have taken Figure 4 from "Broad patterns of gene expression revealed by
clustering analysis of tumor and normal colon tissues probed by oligonucleotide
arrays" by A Ulon, a proceedings of the National Academy of Sciences of the
United States of America. The vertical axis corresponds to genes, and the
horizontal axis to tissues. Each gene was normalized so its average intensity
across the tissues is 0, and its SD is 1. The color code used is indicated
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in the adjoining scale. (A) Unclustered data set. (B) Clustered data. The
62 tissues are arranged on the vertical axis according to the ordered tree of
Figure 4. The 2,000 genes are arranged on the horizontal axis according to
their ordered tree. (C) Unclustered randomized data, where the original data
set was randomized (the location of each number in the matrix was randomly
shifted). (D) Clustered randomized data, subjected to the same clustering
algorithm as in B.

3. Outliers and their Identification

Given a data set, outlier detection aims at finding data points which are
very different from the remainder.

3.1 Outliers

The term ’outlier’ was used in astrophysics to distinguish planets which
are ’outlying’ in our solar system. This field has received a large attention
in the last decades because outliers often represent critical information about
an abnormal behavior of the system described by the data. Outliers are also
called: event, novelty, anomaly, noise, deviation or exception. However there
is no formal definition of an outlier because this intuitive notion varies with
the context and the desired characteristics of outliers. In a statistical perspec-
tive, Grubbs (1969) defined that "an outlying observation, or outlier, is one
that deviates markedly from other members of the sample in which it occurs".
Hawkins (1980) defines an outlier as "an observation which deviates so much
from other observations as to arouse suspicions that it was generated by a
different mechanism", while Barnett and Lewis (1994) call an outlier "an ob-
servation (or subset of observations) which appears to be inconsistent with the
remainder of that set of data". They also mentioned "Even before the formal
development of statistical method, argument raged over whether, and on what
basis, we should discard observations from a set of data on the grounds that

they are 'unrepresentative’, 'spurious’, or 'mavericks’ or 'rogues’."

Outliers do not inevitably ’perplex’ or 'mislead’; they are not necessarily
’bad’ or ’erroneous’, and the experimenter may be tempted in some situations
not to reject an outlier but to welcome it as an indication of some unexpect-
edly useful industrial treatment or surprisingly successful agricultural variety.
Sometimes it is a matter of subjective judgment on the part of the observer
whether or not some observations are genuine members of the main population.
If they are contaminants (arising from some other distribution), they may frus-
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trate attempts to draw inferences about the original population. Of course, any
contaminants which occur in the midst of the data set will not be conspicuous.
We call contaminants to be outliers when they appear surprisingly extreme.
Outliers may or may not be contaminants; contaminants may or may not be
outliers.

Hampel et al. (1986) claim that a routine data set typically contains about
1-10% outliers, and even the highest quality data set cannot be guaranteed free
of outliers. One immediate consequence of the presence of outliers is that they
may cause apparent non-Normality and the entire classical inferential procedure
might breakdown in the presence of outliers.

3.2 Detection of Outliers

Observations arising from large variation of the inherent type are called
outliers, while observations subjected to large measurement error or execution
errors are termed spurious observations. When we order the sample, the small-
est and the largest ordered observations are known as extremes. Whether we
declare either of them to be an outlier depends on consideration of how they
appear in relation to the postulated model. Extreme values may or may not be
outliers. To quote Barnett and Lewis (1994) ’Any outliers, however, are always
extreme values in the sample.’

As we mentioned before a large body of literature is outlier detection meth-
ods is available. Here we consider those which have most applications in prac-
tice.

3.2.1 The three sigma Rule

If we assume a normal distribution, a single value may be considered as an
outlier if it falls outside a certain range of the standard deviation. A traditional
measure of the ’outlyingness’ of an observation with respect to a sample is the
ratio between its distance to the sample mean and the sample SD:

T, — X

t; = i=1,2,...n (1)

Observations with || > 3 are traditionally deemed as suspicious (the three-
sigma rule), based on the fact that they would be very unlikely under normality,
since P(|t| > 3) = 0.003 for a random variable ¢ with a standard normal
distribution.
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3.2.2 Grubbs’ Test

Grubbs (1969) proposed a test to detect outliers in a univariate data set.
It is based on the assumption of normality. Grubbs’ test is also known as the
maximum normed residual test. The Grubbs test statistic is the largest absolute
deviation from the sample mean in units of the sample standard deviation.
Grubb’s Test is a test based on normal distribution, the effects of which are
that the data analyzed with this method should have normal distribution. This
test should be performed as long as all outliers will be detected. In this test we
have two hypotheses: the null-hypothesis (Hy) and the alternative hypothesis
(H1):
Hy: There are no outliers in the data set.
H;y: There is at least one outlier in the data set.

The general formula for Grubbs’ Test can be presented as follows:

_ Mazx|x; — x|

G . (2)

The calculated value of G is compared with the critical value for Grubbs’ Test.
For the two-sided test, the hypothesis of no outliers is rejected if

2
n—1 t((a/Qn),n—Q)
2
Vi \ =24 1 jany n2)

G> (3)

with « denoting the critical value of the t distribution with n — 2 degrees of
freedom and a significance level of «/(2n). When the calculated value is higher
or lower than the critical value for the chosen statistical significance, then the
calculated value can be accepted as an outlier.

3.2.3 Dixon’s Q-test

This method was proposed by Dean and Dixon(1951). This test has some
restrictions - it is impossible to use this test with a big data set. The Dixon’s Q-
test is a very simple test for outliers when we suspect that outliers are extreme
observations in the data set. Q-test is based on the statistical distribution
of ’subrange ratios’ of ordered data samples, drawn from the same normal
population. Hence, a normal distribution of data is assumed whenever this
test is applied.

The test is very simple and it is applied as follows:
1. The n values comprising the set of observations under examination are
arranged in ascending order: x(1) < x(g) < ... < T(y).
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2. The statistic Q is a ratio defined as the difference of the suspect value from
its nearest one divided by the range of the values. Thus, for testing (1) or z(,)
(as possible outliers) we use the following values:

_ T) — %

1) or x(n) - x(n—l) (4)
T(n) — T(1) T(n) = 2(1)
3. The obtained Q,ps value is compared to a critical Q-value (Q.pi¢) found in

tables. 4. If Qups > Qcrit, then the suspect value can be characterized as an
outlier.

3.3 Robust Outlier Detection Methods

In many cases, presence of outliers may make the diagnostic procedure
unreliable for which masking and/or swamping can occur. So we need detection
methods which are not affected by outliers. The word ’robust’ literary means
something ’very strong.” So robust statistics are those statistics which do not
breakdown easily. The term robustness signifies insensitivity to small deviations
from the assumption. That means a robust procedure is nearly as efficient as the
classical procedure when classical assumptions hold strictly but is considerably
more efficient over all when there is a small departure from them. One objective
of robust techniques is to cope with outliers by trying to keep small the effects
of their presence. Consequently, we should require resistant estimators. The
analogous term used in the literature: resistant statistics.

Here we introduce several statistics which are robust in the presence of
outliers. Median and trimmed mean are robust measures of location. For the
measure of dispersion we can use the normalized median absolute deviation
(MADN). For a set of data the median absolute deviation (MAD) is defined as

MAD(z) = Med|z — Med(x)] (5)

To make the MAD comparable to the SD in terms of efficiency, we consider the
normalized MAD defined as

MADN (z) = Mad(z)/0.6745 (6)
Two other well-known dispersion estimates are the range defined as
R =2 —x) (7)
and the inter-quartile range (IQR) defined as
IQR(x) = Qs — @1 (®)

Both of them are based on order statistics; (7) is clearly very sensitive to
outliers, while (8) is not.
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3.3.1 Robust ¢ like Statistic

Let us now use the robust plug-in technique to obtain a robust t-like statis-
tic by replacing mean by median and SD by the normalized median absolute
deviation (MADN). Thus the modified statistic becomes

< x; — Median(x)
"= TMADN(x) )

Observations with |t;| > 3 are identified as outliers.

3.3.2 Test Based on the Interquartile Range

The above-mentioned strategies for identifying outliers are probably most
appropriate for symmetric unimodal distributions. If a distribution is skewed,
it is recommended to calculate the threshold for outliers from the interquartile
distance:

Q1 —15IQR < z; < Q3+ 1.5IQR (10)

3.3.3 Hampel’s Test

In recent years Hampel et al. (1986)’s test for outliers has become very
popular in data mining and knowledge discovery. According to this rule an
observation is identified as an outlier if

x; —median(z) > 4.5MAD(z) (11)

It is interesting to note that Hampel’s test is equivalent to robust t test. Recall
that according to the robust t test an observation is identified as an outlier
according to (9) which yields x; —median(z) > 3M ADN (z) = 4.4474AM AD(z)

3.4 Masking and Swamping Effects

We often observe that identification methods fail to identify potential out-
liers or the methods identify cases as outliers which are actually not. In masking
it is said that one outlier masks a second outlier, if the second outlier can be
considered as an outlier only by itself, but not in the presence of the first out-
lier. Thus, after the deletion of the first outlier the second instance is emerged
as an outlier. Masking occurs when a cluster of outlying observations skews
the mean and the covariance estimates toward it, and the resulting distance of
the outlying point from the mean is small.
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In describing the swamping effect it is said that one outlier swamps a second
observation, if the latter can be considered as an outlier only under the presence
of the first one. In other words, after the deletion of the first outlier the second
observation becomes a non-outlying observation. Swamping occurs when a
group of outlying instances skews the mean and the covariance estimates toward
it and away from other non-outlying instances, and the resulting distance from
these instances to the mean is large, making them look like outliers.

4. Detection of Outliers in Gene Expression
Data

A gene expression measurement which differs surprisingly from the other
measurements obtained for the same gene on other samples of the same class.
The outlying principle assumes that the data, with the possible exception of
any outlier, form a sample of a given distribution |here the normal distribution.
We will use a reasonable test statistical to decide whether or not the suspect
measurement is an outlier.

Here we introduce the existing outlier detection methods for gene expres-
sion data. Assuming case-control microarray data were generated for detect-
ing differentially expressed genes consisting of n samples from a normal group
and m samples from a cancer group. Let be the expression value for gene
1 = (1,2,...,p) and sample j = (1,2,...,n) in the normal group and be the
expression value for gene i = (1,2,...,p) and sample j = (1,2,...,m) in the
cancer group. In this study, and without loss of generality, we are only in-
terested in one-sided tests where the activated genes from cancer samples are
over-expressed or up-regulated.

4.1 t-statistic

The two-condition t-statistic for gene i is defined by:

Yi — %
Si

t; = (12)
where g; is the mean expression value in cancer samples, Z; is the mean ex-
pression value in normal samples for gene ¢ and s; is the pooled standard error
estimate given by:
— 2 —
&2 Yoi<i<n (@i = Ti)* + D201 <iam Wig — i)
’ n+m-—2

The t—statistics is powerful when most cancer samples are activated.

2

(13)
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4.2 Cancer Outliers Profile Analysis (COPA)

Tomlins et al (2005) defines the COPA statistic as

_ qr(yi 1< j <m) —med;
copa; =

(14)

madi

Where ¢, (.) is the r*" percentile of the expression data, and med; is the median
expression value for all samples

med; = median((z;; : 1 <j<n),(yi; : 1 <j <m))

and mad; is the median absolute deviation of expression values in all samples
and is given by:

mad; = 1.4826 x median(((z;; —med;) : 1 < j <n), ((y;; —med;) : 1 < j < m))

The COPA statistic uses a fixed 7" sample percentile, which is determined by
users.

4.3 Outliers Sums Statistics (OS)

COPA statistic uses a fixed 7" sample percentile, which is determined by
users. This limitation was overcome by the OS statistic defined by Tibshirani
and Hastie (2007) as

EuJ ER; (yij — med;)
mad;

08, =

where

and IQR(.) is the inter-quantile range of the expression data

IQR((wij : 1 <j<m),(yij : 1 <j<m)) =qrs((wij : 1 <j<m)(yij : 1<
Jj=m)) —qas((ws : 1< j<n),(yij : 1 <j<m))
4.4 Outliers Robust t-statistics (ORT)

Wu (2006) modified the OS statistic by proposing the ORT statistic which
consists mainly in changing the definition of R; as:

Ri= (yij 1 vij > qrs((vij 1 1 < j <)) + IQR((ws5 : 1 < j<m)))  (17)
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and replacing med; in OS by med;;, which is the median expression value
in normal samples. Further, mad; was replaced by

mad; = 1.4826 Xmedian(((x;j—med;;) : 1 < j <n), ((y;j—med;y) : 1 < j <m))

where med;, is the median expression value in cancer samples.

COPA and OS statistics were derived from the t-statistic by replacing the mean
and standard errors used in the ¢-statistic with the median and median absolute
deviations, respectively. ORT has been proposed as a more robust statistic that
utilizes the absolute difference of each expression value from the median instead
of the squared difference of each expression value from the average.

4.5 Maximum Ordered Subset t-statistics (MOST)

Lian (2008) argued that OS and ORT statistics used arbitrary outliers
and proposed the MOST statistic which consider all possible values for out-
lier thresholds. The MOST procedure requires cancer sample expression data
be sorted in descending order and the following statistic calculated:

Zlgjgk (yij — mediy)
mad

MOST; = mazi<k<m — 1| /o (18)
where py and Jy are obtained from the order statistics of m samples generated
from a standard normal distribution and are used to make different values of
the statistic comparable for different values of k.

4.6 The Proposed Outlier Detection Method: Expressed
Robust ¢ statistic(ERT)

We observe that most of the outlier detection techniques defined in the
previous section contains some non-robust components such as the mean and
standard deviations and consequently they may become ineffective in doing
their jobs. In our study we propose a new outlier technique modifying one of
the existing methods. The proposed technique which we call expressed robust
t (ERT) statistic is described below.

We have seen in (12) that the two-condition t-statistic for gene i is defined
by: t; = “=2¢ Since both ¥;,T; and s; are non-robust, we propose the expressed

S5

robust t-statistic as:

g med;y — med;y

K2

(19)

mad;
where
med;y = median|(z;; : 1 < j < n)]
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mediy = median|(y;; : 1 < j < m)]
mad; = 1.4826Xmedian(((z;; —med;) : 1 < j < n), ((yi; —med;) : 1 < j < m))

5. Results on Monte Carlo Study and Cancer
Data

Before applying to real data we tested the performance of our newly pro-
posed method by simulation studies. Here we report a Monte Carlo experiment
which is designed to assess the performance of the proposed outlier detection
methods for gene expression data in comparison with the existing ones. Sim-
ulation studies are conducted to compare the performance of newly proposed
ERT method with the t-statistic, COPA, OS, ORT and MOST methods. The
simulation was conducted in different situations. To test and check the consis-
tency of the test statistic, we generate gene expression for two groups of sample
with different sizes in different simulation.

In all simulation we generated g = 40 genes. Out of 40 genes we generated
20 genes considering no differences between normal and tumor group. We
generated these 20 genes with uniform condition for both groups. Further, we
generated another 20 genes with two different situations. To distinguish the
two groups, for normal sample and tumor sample we used different ranges. We
assume outliers do exist in later 20 genes. The process is done 5 times by
changing the number of normal and tumor sample sizes. For the first set of
simulation we generated n = 75 and m = 25 as number of samples from normal
and tumor group respectively. For other simulations we chose (n = 60,m =
40), (n = 55,m = 45), (n = 80,m = 20)and(n = 90, m = 10). We applied all
the existing methods and our new methods to these simulated data. The results
of the number of genes detected as outliers in this simulation experiment are
given in Table 1.

Results presented in Table 1 show that among the existing methods, the ¢
test performs well but on a couple of occasions it fail to identify the genuine out-
liers. The performances of COPA, OS and ORT are not very satisfactory. But
the performance of the newly proposed method give better results in compari-
son with the existing methods and the ERT performs the best. The methods
give consistent results over different simulations.

Now we apply the outlier detection methods in cancer data. In the study
data we have the data set of intensities of 2,000 genes in 22 normal and 40
tumor colon tissues. The genes chosen are the 2,000 genes with highest minimal
intensity across the samples. We try to find out the possible responsible genes

Malaysian Journal of Mathematical Sciences 131



for

Md. Manzur Rahman Farazi & A.H.M. Rahmatullah Imon

Table 1: Sample table.

Parameter Simu-1 Simu-2 Simu-3 Simu-4 Simu-5

n 75 60 55 80 90
m 25 40 45 20 10
g 40 40 40 40 40
t 20 13 15 20 20
COPA 6 5 4 5 2
0S 17 15 9 6
ORT 7 5 5 2 4
ERT 19 20 20 20 20

tumor. We believe genes with high expressions might be guilty for tumor.

Considering this we applied the existing outlier detection methods and also the
newly proposed ERT method to find out the possible genes.

Figure 5 gives a graphical display of the performances of the existing and

proposed outluier detection methods with their respective cut-off points. Table
2 demonstrates the number of outliers detected by different methods.
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Figure 5: Index plot of genes with cut-off points for different outlier detection

The above figure and table show that the traditional ¢-test can successfully
identify 46 genes as outliers. The COPA, OS, ORT, MOST and LSSOS statistic
identify 49, 38, 58 and 78 genes respectively. In turn, our newly proposed
statistic ERT can identify 5, 69 and 118 genes. It is worth mentioning that for
the real data we do not definitely know which observations are genuine outliers
or not so we cannot say which method masks or swamps which observations.
Another thing we need to mention here is that the real data contains 2000
genes but in our simulation we consider 40 genes. The reason is even with 40
genes and 100 observations the computation is huge so we did not go for cases
like 2000 genes in our simulation experiment.
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Table 2: Sample table.

Parameter Number of Outliers(n = 22, m = 40, g = 2000)

t-test 46
COPA 49
0S 38
ORT 58
LSSOS 72
ERT 5

6. Conclusion

In our study we propose a new technique for finding outliers in gene ex-
pression data. The simulation results suggest that the performance of the
proposed ERT statistic outperforms all the existing methods. When evaluat-
ing ERT based on tumor cancer data, we studied how many genes among the
2000 genes selected separately by different statistical approaches. The numbers
of tumor cancer related genes identified by existing methods were 46, 49, 38,
58, and 78 for the t-statistics, COPA, OS, ORT and MOST respectively. How-
ever, our proposed method ERT has identified 5 tumor cancer related genes.
Disentanglement the heterogeneous designs of cancer samples is an important
goal in medical research, especially for clinical diagnosis and the molecular un-
derstanding of cancer mechanisms. The diverse patterns of oncogene activation
have been well studied and several useful statistical tools have been proposed.
ERT is reasonable model to detect cancer outlier differential gene expression.
For each gene, ERT distinguish the expression values of normal and tumor
samples. If any gene is expressed heterogeneously in cancer samples, the mean
and variance of gene expression values in cancer samples are overemphasized by
the classical t-statistic while ERT used the robust statistic Median and MAD
in replace of them which gives a reasonable estimate. Our proposed scheme
could be useful tool to separate the patterns of tumor cancer with specific gene
signatures. In addition, these heterogeneous gene activation patterns may be
regarded as the signatures for subtypes of tumor cancer. Thus, the proce-
dure presented could also be useful in detecting and classifying tumor cancer
subtypes. Our approach, however, differed from previous studies mainly in
that the classification is based on different combinational activation patterns
of candidate genes instead of clustering their expression values.
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