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ABSTRACT

The discrete Schrödinger operator Hλµ on the subspace of even functions
of the Hilbert space `2(Zn), with finite potential depending on λ, µ ∈ R>0,
is considered.

The dependence of the threshold resonance and eigenvalues on the
parameters λ, µ and n are explicitly derived.

Keywords: Discrete Schrödinger operators, threshold resonance, eigen-
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1. Introduction

In (Albeverio et al., 2006) an explicit example of a −∆−V on the possesses
both a threshold resonance and a threshold eigenvalue, where −∆ stands for the
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standard discrete Laplacian and V is a multiplication operator by the function
V (x) = µδx0 + λ

∑
|s|=1 δxs, where λ, µ ∈ R2

>0 and δxs is the Kroneker delta.

Beyond, the authors of (Lakaev and Bozorov, 2009) considered the restric-
tion of this operator to the Hilbert space `2e(Z3) of all even functions in `2e(Z3).
They investigated the dependence of the number of eigenvalues of Hλµ, on λ, µ
(λ > 0, µ > 0), and they showed that all eigenvalues arise either from a thresh-
old resonance or from threshold eigenvalues under a variation of the interaction
energy.

Moreover, they also proved that the first eigenvalue of the Hamiltonian
H arises only from a threshold resonance under a variation of the interaction
energy.

This result for the continuous two-particle Schrödinger operator was re-
vealed by Newton (see p.1353 in (Newton, 1977)) and proved by Tamura
(Tamura, 1993, Lemma 1.1) using a result by Simon (Simon, 1981).

In case λ = 0, Hiroshima et.al. (Hiroshima et al., 2012) showed that an
embedded eigenvalue does appear for n ≥ 5 but does not for 1 ≤ n ≤ 4.

Our aim here is to investigate the spectrum of Hλµ , specifically, embedded
eigenvalues and resonances at the edges of the continuous spectrum for any
dimension n ≥ 1.

2. The Dicrete Schrödinger Operator

2.1 The Discrete Laplacian

Let Zn be the n–dimensional lattice, i.e. n–dimensional integer set. The
Hilbert space of `2 sequences on Zn is denoted by `2(Zn), and we use `2e(Zn)
to denote its subspace of all even functions.

On the Hilbert space `2e(Zn), the discrete Laplacian ∆ is usually associ-
ated with the following self-adjoint (bounded) multidimensional Toeplitz-type
operator (see, e.g., (Mattis, 1986)):

∆ =
1

2

∑
s∈Zn

|s|=1

(T (s)− T (0)),

where T (y) is described as a sum of the two shift operators by y, and −y,
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y ∈ Zn:

(T (y)f)(x) =
1

2
(f(x+ y) + f(x− y)), f ∈ `2e(Zn), x ∈ Zn.

Let a notation Tn = (R/2πZ)n = (−π, π]n means the n-dimensional torus
(the first Brillouin zone, i.e., the dual group of Zn) equipped its Haar measure,
and let L2

e(T
n) denote the subspace of all even functions of L2(Tn)-the Hilbert

space of L2 functions on Tn.

The Laplacian ∆, in the momentum representation, i.e. in the Fourier
representation, is introduced as

∆̂ = F−1∆F ,

where F stands for the standard Fourier transform F : L2(Tn) −→ `2(Zn), and
∆̂ acts as the multiplication operator

(∆̂f)(p) = −e(p)f̂(p), f̂ = Ff, p ∈ Tn,

where

e(p) =

n∑
j=1

(1− cos pj), p ∈ Tn.

In the physical literature, the function e(·) being a real valued-function on
Tn, is called the dispersion relation of the Laplace operator.

2.2 The Discrete Schrödinger Operator

The discrete Schrödinger operator in `2e(Zn) is defined as

Hλµ = −∆− V̂ (x),

where the potential V̂ (x) depends on two parameters λ, µ ∈ R>0 and satisfies

V̂ (x) =

 µ, if x = 0
λ, if |x| = 1
0, if |x| > 0

, x ∈ Zn,

which provides Hλµ to be a bounded self-adjoint operator.
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2.3 The Discrete Schrödinger Operator in Momentum
Representation

The operatorHλµ in the momentum representation acts in the Hilbert space
L2
e(T

n) as
Hλµ = H0 − V,

where H0 acts as the multiplication operator

(H0f)(p) = e(p)f(p), f ∈ L2
e(T

n), p ∈ Tn

and V is an integral operator convolution type

(V f)(p) = (2π)−
n
2

∫
Tn

v(p− s)f(s)ds, f ∈ L2
e(T

n), p ∈ Tn.

Here v(·) is the Fourier transform of V̂ (·) computed as

v(p) =
1

(2π)
n
2

(
µ+ λ

n∑
i=1

cos pi

)
,

and it gives for the potential operator V the following representation

V = µ〈·, c0〉c0 +
λ

2

n∑
j=1

〈·, cj〉cj ,

where {c0, cj : j = 1, . . . , n} is the following orthonormal system in L2
e(T

n)

c0(p) =
1

(2π)
n
2

= const, cj(p) =

√
2

(2π)
n
2

cos pj , j = 1, . . . , n, p ∈ Tn,

and 〈·, ·〉 means the inner product on L2
e(T

n).

2.4 The Essential Spectrum

The perturbation V of the operator Hλµ is a finite operator and, therefore,
in accordance with the Weyl theorem on the stability of the essential spectrum
the equality σess(Hλµ) = σess(H0) holds, and moreover σess(Hλµ) = σ(H0),
and hence the essential spectrum σess(Hλµ) fills in the following interval on the
real axis:

σess(Hλµ) = [em, eM ],

where
em = min

p∈Tn
e(p) = 0, eM = max

p∈Tn
e(p) = 2n.
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Theorem 2.1. The essential spectrum is a pure absolute continuous spectrum,
i.e. σess(Hλµ) = σac(Hλµ) = [em, eM ].

Proof. For the proof see (Bellissard and Schulz-Baldes, 2012).

3. The Birman-Schwinger Principle

The Birman-Schwinger principle allows us to reduce the problem to study
of the compact (finite) operators.

Denote by (H0 − z)−1 the resolvent of H0, where z ∈ C \ [em, eM ].

Let us write the following equality

(H0 − z)−1Vλµ = B1B2, (1)

where B1, B2 are vector valued operators defined by

B1 =
(√
µ(H0 − z)−1/2c0,

√
λ

2
(H0 − z)−1/2c1, . . . ,

√
λ

2
(H0 − z)−1/2cn

)
: Cn+1 → L2

e(T
n),

(2)

B2 =
(√
µ〈·, (H0 − z)−1/2c0〉,

√
λ

2
〈·, (H0 − z)−1/2c1〉, . . . ,

√
λ

2
〈·, (H0 − z)−1/2cn〉

)T
: L2

e(T
n)→ Cn+1.

Note that aij(z) := 〈(H0 − z)−1cj , ci〉, i, j = 0, 1, . . . , n, is a multiplication
map on C, and hence

G(z) = B2B1 : Cn+1 → Cn+1

is described as an (n+ 1)× (n+ 1) matrix operator.

Lemma 3.1. The number z ∈ C \ [em, eM ] is an eigenvalue of Hλµ iff ν = 1
is an eigenvalue of G(z).

Proof. The relation

Hf = zf ⇔ f = (H0 − z)−1V f (3)

gives that the number z ∈ C \ [em, eM ] is an eigenvalue of H iff ν = 1 is an
eigenvalue of (H0 − z)−1V in (1).
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Due to spectrum of the product operators both operators (H0 − z)−1V =
B1B2 and G(z) = B2B1 : Cn+1 → Cn+1 have the same nonzero eigenvalues
with the same multiplicities, a fact that completes the proof.

Lemma 3.2. Let z ∈ C\ [emin, emax]. The vector ~Z = (w0, w1, . . . , wn) ∈ Cn+1,
is an eigenvector of G(z) associated to ν = 1, iff f = B1

~Z, i.e.

f(p) =
(2π)−n

e(p)− z

(
µw0 +

λ√
2

n∑
j=1

wj cos pj

)
(4)

is an eigenfunction of Hλµ corresponding to z.

Proof. Due to spectrum of the product operators G(z)~Z = ~Z, i.e. B2B1
~Z = ~Z

iff f = (H0 − z)−1V f = B1B2f , where f = B1
~Z. Since (2), the function f

coincides with (4). This fact together f = (H0−z)−1V f , i.e. ((H0−z)−V )f =
0 ends the proof.

Since Hλµ is self-adjoint and V is positive, further it is enough to study the
discrete spectrum Hλµ in (−∞, em].

3.1 The Determinant of G(z)− En+1

Since the function e(q) = e(q1, . . . , qn) is invariant with respect to the per-
mutations of its arguments q1, . . . , qn, the integrals

a(z) : = 〈c0, (H0 − z)−1c0〉 =
1

(2π)n

∫
Tn

dq

e(q)− z
,

b(z) : =
1√
2
〈c0, (H0 − z)−1cj〉 =

1√
2
〈cj , (H0 − z)−1c0〉 =

1

(2π)n

∫
Tn

cos qjdq

e(q)− z
,

j = 1, . . . , n

c(z) : =
1

2
〈cj , (H0 − z)−1cj〉 =

1

(2π)n

∫
Tn

cos2 qjdq

e(q)− z
,

j = 1, . . . , n,

d(z) : =
1

2
〈ci, (H0 − z)−1cj〉 =

1

2
〈cj , (H0 − z)−1ci〉 =

1

(2π)n

∫
Tn

cos qi cos qjdq

e(q)− z
,

i, j = 1 . . . , n, i 6= j,

do not depend on the particular choice of the indices i, j.
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From the definition of G(z), it’s coefficients gij are described as

g00(z) = µa(z), g0j(z) =
λ√
2
b(z), j = 1, . . . , n,

gi0(z) =
√

2µb(z), gii(z) = λc(z), gij(z) = λd(z), j = 1, . . . n, j 6= i,

Hence the matrix G(z) has the form

G(z) =



µa(z) λ√
2
b(z) . . . . . . λ√

2
b(z)√

2µb(z) λc(z) λd(z) . . . λd(z)
... λd(z)

. . . . . .
...

...
... . . .

. . . λd(z)√
2µb(z) λd(z) . . . λd(z) λc(z)

 . (5)

Using the assertions on the calculation of determinants we take

det(G(z)− En+1) = δ1(λ, µ : z) · δ0(λ : z),

where En+1 is the identity (n+ 1)× (n+ 1) matrix and

δ1(λ, µ : z) = (1−µa(z))(1−λ(c(z)+(n−1)d(z)))−nµλb2(z), δ0(λ : z) = (λ(c(z)−d(z))−1)n−1.

Lemma 3.3. The number z ∈ C \ [em, eM ] is an eigenvalue of Hλµ iff δ1(λ, µ :
z) = 0 or δ0(λ : z) = 0.

Proof. This lemma is a corollary of Lemma 3.1.

Let N(z) be the number of eigenvalues of Hλµ smaller than z, z ≤ em
counted with their multiplicities.

Now for self-adjoint upper bounded operatorA in the abstract Hilbert space,
we define n(ν,A) -the number of eigenvalues of A larger than ν (counted with
their multiplicities), where ν > supσess(A).

Lemma 3.4. Let z ≤ em. Then

N(z) = n(1, G(z)) (6)

and
N(z) ≤ n+ 1. (7)
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Proof. The equality (6) follows using the variational principle.

The relation

〈Hf, f〉 < z〈f, f〉 ⇔ 〈g, g〉 < 〈(H0 − z)−1/2V (H0 − z)−1/2g, g〉, g = (H0 − z)−1/2f,
(8)

and Ker(H0 − z) = {0} give that

N(z) = n(1, (H0 − z)−1/2V (H0 − z)−1/2).

Due to spectrum of the product operators both operators (H0 − z)−1V =
B1B2 and G(z) = B2B1 : Cn+1 → Cn+1 have the same nonzero eigenvalues
with the same multiplicities, a fact that completes the proof of (6), where
B1, B2 are vector valued operators defined by (2).

Since G(z) has rank less than or equal n+ 1 and (6), we get (7).

4. Properties of det(G(z)− En+1)

Set

α(z) := c(z) + (n− 1)d(z), γ(z) := a(z)(c(z) + (n− 1)d(z))− nb2(z) (9)

Lemma 4.1. For any z < 0 we have

a(z) + b(z) =
1

n
+
z

n
a(z),

α(z) = (n− z)b(z),
γ(z) = b(z)

Proof. See Appendix 1.

4.1 Zeroes of δ0(λ : z)

Let us write δ0(λ : z) = (%0(λ : z))n−1 where

%0(λ : z) = λ(c(z)− d(z))− 1.

Set
λc = (c− d)−1,

396 Malaysian Journal of Mathematical Sciences
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where
c− d := lim

z→0−
c(z)− d(z).

Lemma 4.2. (a) For any λ ≤ λc the function %0(λ : . . . ) has no zero in
(−∞, em).

(a’) If λ = λc then %0(λ : em) = 0.

(b) For any λ > λc the function %0(λ : . . . ) has a unique zero in (−∞, em)
with multiplicity one.

Proof. Since ∂
∂z%0(λ : z) > 0, z ∈ (−∞, em), the function %0(λ : . . . ) is strictly

monotone increasing in (−∞, em).

Then %0(λ : z) ≤ %0(λc : z) < %0(λc : em) = 0 proves (a) and (a’).

b) Since %0(λ : em) > %0(λc : em) = 0 and limz→−∞ %0(λ : z) = −1 there
exists zeros of %0(λ : ·) in the interval (−∞, em)

Due to monotonicity of %0(λ : ·) this zero is a unique and has multiplicity
one.

Corollary 4.1. (a) For any λ ≤ λc the function δ0(λ : . . . ) has no zero in
(−∞, em).

(a’) If λ = λc then δ0(λ : em) = 0.

(b) For any λ > λc the function δ0(λ : . . . ) has a unique zero in (−∞, em)
with multiplicity n− 1.

This corollary and (7) give

Corollary 4.2. The function δ1(λ, µ : ·) may have at most two zeros.

Proof. Since \{z ∈ (−∞, em) : δ0(λ : z) = 0} = 0 or \{z ∈ (−∞, em) : δ0(λ :
z) = 0} = n− 1 and N(z) <= n+ 1 we get the proof of the lemma.
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4.2 The zeros of δ1(λ, µ : z)

4.2.1 Case n ≥ 3

The δ1(λ, µ : z) is had the view

δ1(λ, µ : z) = 1− µa(z)− λα(z) + λµγ(z)

Since e(·) has a unique non-degenerate minimum at the origin, in case n ≥ 3,
the integrals a(z), b(z), c(z) and d(z) have continuation at z = em, and we
denote them a, b, c and d, respectively.

According to the two equalities Lemma 4.1 and (9) we have

δ1(λ, µ : em) = 1− µa− λnb+ λµb = 0, δ1(λ, µ : em) = (1− µa− λα+ λµγ)

which is hyperbola with asymptotic λ = a
b and µ = n in the quarter (λ, µ) ∈

R2
>0.

Then the brunches of this hyperbola

∂G0 = {(λ, µ) ∈ R2
>0 : δ1(λ, µ : em) = 0, λ =

a

b
},

∂G2 = {(λ, µ) ∈ R2
>0 : δ1(λ, µ : em) = 0, λ =

a

b
},

split R2
>0 into three areas

G0 = {(λ, µ) ∈ R2
>0 : δ1(λ, µ : em) > 0, λ <

a

b
},

G1 = {(λ, µ) ∈ R2
>0 : δ1(λ, µ : em) < 0},

G2 = {(λ, µ) ∈ R2
>0 : δ1(λ, µ : em) > 0, λ >

a

b
},

Let 1− µa(em) < 0 resp. 1− λα(em) < 0. Then as the proof of Lemma 4.2
we can show that there exist their unique zeroes in (−∞, em) of the functions
1− µa(·) < 0 and 1− λα(·) < 0, and we denote them as zµ resp. zλ.

Lemma 4.3. (a) Let (λ, µ) ∈ G0. Then δ1(λ, µ : z) has no zero in (−∞, em).
(b) Let (λ, µ) ∈ G1. Then δ1(λ, µ : z) has unique zero in (−∞, em).
(c) Let (λ, µ) ∈ G2. Then δ1(λ, µ : z) has two zeroes z1(λ, µ) and z2(λ, µ) in
(−∞, em). Moreover z1(λ, µ) < z2(λ, µ).
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Proof. (a) Let (λ, µ) ∈ G0. Then according to the monotonicity of a(z), α(z), b(z)
we get

1− µa(z) > 1− µa(em), 1− λα(z) > 1− λα(em), −λµb2(z) > −λµb2(em)

for any z in (−∞, em).

And hence

δ1(λ, µ : z) =
(
1− µa(z)

)(
1− λα(z)

)
− λµnb2(z) >(

1− µa(em)
)(

1− λα(em)
)
− λµb2(em) = δ1(λ, µ : em) = 0

Then according Lemma 3.3 the assertion a) is correct.

(b) Let (λ, µ) ∈ G1. Then δ1(λ, µ : em) < 0 implies there exists z0 in
(−∞, em), such that δ1(λ, µ : z0) = 0.

In that case if z0 is not unique then due to properties of analytic functions
δ1(λ, µ : ·) has at lest three zeroes (with multiplicity). This fact is contradiction
to Corollary 4.2, and hence z0 is unique.

(c) Let (λ, µ) ∈ G2. Then 1− µa(em) < 0 and 1− λα(em) < 0.

Setting ζmin = min{zλ, zµ}, ζmax = max{zλ, zµ} we see that δ1(λ, µ :
ζmin) = −λµb2(ζmin) < 0, δ1(λ, µ : ζmax) = −λµb2(ζmax) < 0 which prove
δ1 has two zeros z1 and z2 satisfying

z1 < ζmin ≤ ζmax < z2 < em.

4.3 Case n = 1, 2

Using Lemma 4.1 we write

δ1(λ, µ : z) = (−nλ−µ+λµ)a(z)+1+λ− λµ
n

+
(
λ(2z− z

2

n
)− λµ

n
z
)
a(z)− λ

n
z.

(10)

In case n = 1. Elementary calculations give

a(z) =
1√

−z
√

2− z
and hence from 10 we get
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Lemma 4.4. For any µ, λ ≥ 0 the asymptotics

∆1(µ, λ; z) = C− 1
2
(µ, λ)(−z)− 1

2 + C0(µ, λ) +O((−z) 1
2 ), z → 0−, (11)

is valid, where

C− 1
2
(µ, λ) =

µλ− (µ+ λ)√
2

, C0(µ, λ) = 1− λ(µ− 1).

This lemma helps to receive the following assertion

Proposition 4.1. Let µ, λ > 0. Further

(a) if µλ < µ+ λ, then lim
z→0−

∆1(µ, λ; z) = −∞;

(a′) in case µλ > µ+ λ, we have lim
z→0−

∆1(µ, λ; z) = +∞;

(b) when µλ = µ+ λ, the limit lim
z→0−

∆1(µ, λ; z) = 1− µ < 0 holds.

In case n = 2. The asymptotics

a(z) = −
√

2

2π
ln(−z) + (

1

2
−
√

2

π
) +O(−z),

can be found in (Lakaev and Tilovova, 1994), and since it’s proof is long we
refer to this paper for the proof.

The last asymptotics and (10) lead

Lemma 4.5. Let λ, µ ≥ 0. Then

δ1(µ, λ; z) = C(µ, λ) ln(−z) + C0(µ, λ) +O(−z), z → 0−,

as z → 0−, where

C(µ, λ) =
1√
2π

(
(µ+2λ)−µλ

)
, C0 = (

1

2
−
√

2

π
)
(
−(µ+2λ)+µλ

)
+1+λ+

λµ

2

Hence we get

Proposition 4.2. Let λ, µ ≥ 0. Then
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(a) limz→0− δ1(µ, λ; z) = −∞, if µ+ 2λ− µλ < 0

(b) limz→0− δ1(µ, λ; z) = +∞, if µ+ 2λ− µλ > 0

(c) limz→0− δ1(µ, λ; z) = 1− 2λ < 0, if µ+ 2λ− µλ = 0

We use the notation P (λ, µ) for hyperbolas µ + 2λ − µλ = 0 when n = 2
and µ+ λ− µλ = 0 when n = 1.

Only one brunche of this hyperbola

∂G2 = {(λ, µ) ∈ R2
>0 : P (λ, µ) = 0},

exists in R2
>0 and then we split R2

>0 into two areas

G1 = {(λ, µ) ∈ R2
>0 : P (λ, µ) > 0},

G2 = {(λ, µ) ∈ R2
>0 : P (λ, µ) < 0}.

We have the following lemma

Lemma 4.6. Assume n = 1, 2. (a) Let (λ, µ) ∈ G1 ∪ ∂G2. Then δ1(λ, µ : z)
has unique zero in (−∞, em).

(b) Let (λ, µ) ∈ G2. Then δ1(λ, µ : z) has two zeroes z1(λ, µ) and z2(λ, µ)
in (−∞, em). Moreover z1(λ, µ) < z2(λ, µ).

Proof. The proof could be taken as Lemma 4.3.

5. The View of Eigenfunctions

When δ0(λ; z) = 0 then the solutions of G(z)u = u, u ∈ Cn+1, has form

u1 = (0, 1,−1, 0, . . . , 0), u2 = (0, 1, 0,−1, 0, . . . , 0), un−1 = (0, 1, 0, . . . , 0, 1)

and hence by Lemma 3.2 corresponding eigenfunctions of Hλµ have the forms

gj(p) = (H0 − z)−1(cos p1 − cos pj), j = 2, . . . , n.

Due to Lemma 4.3, the function δ1(z) may have at most two zeroes in
(−∞, em).
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Without of loss generality, we assume z1 and z2 be zeroes of δ1. Then the
corresponding equation has form

ui =
( nλ√

2
b(zi)(1− µa(zi))

−1, 1, . . . , 1
)
, i = 1, 2,

and by virtue of Lemma 3.2, corresponding eigenfunction of Hλµ has the forms

gi(p) = (H0 − z)−1
( nλ√

2
b(zi)(1− µa(zi))

−1 +
λ√
2

n∑
j=1

cos pj

)
, i = 1, 2.

6. The Resonance and Embedded Eigenvalues

Definition 6.1. If the solution of the equation Hλµf = emf belong to `2e(Zn)
(does not belong to `2e(Z

n)) then we say that Hλµ has threshold eigenvalues
(threshold resonance).

6.1 The Resonance and Embedded Eigenvalues Corre-
sponding to δ1

In case n = 2, the integrals a(z), b(z), c(z) and d(z) have no continuation
at z = em, but we can define

c− d := lim
z→em−0

c(z)− d(z),

and then we get the continuation of δ1 at z = em, when n ≥ 2.

Using the similar procedure in Section 5 and Lemma 4.1 we get

Lemma 6.1. Let λc = (a− c)−1 then the threshold em = 0 is an eigenvalue of
Hλµ with eigenfunctions

g(p) =
cos p1 − cos pj

e(p)
, j = 2, . . . , n.

If λ 6= λc, the operator Hλµ has no threshold resonance and embedded eigen-
value.

6.2 The Resonance and Embedded Eigenvalues correspond-
ing to δ1

Since Lemmas 4.1, 4.2 the function δ1 has no continuation at z = em, when
n = 1, 2.
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Lemma 6.2. Let δ1(λ, µ; 0) = 0. Then Hλµ has a threshold resonance (embed-
ded eigenvalue with multiplicity one) if n = 3, 4 (n ≥ 5) with eigenvector

gλ,µ(p) =
1

e(p)
Φi(p), Φ(p) =

nλ√
2
b(1− µa)−1 +

λ√
2

n∑
j=1

cos pj . (12)

Proof. Let
δ1(λ, µ; 0) = 0.

Using the similar procedure in Section 5 and Lemma 4.3 we get Hλµf = 0
has a solution having view (12).

Since µ = n is asymptotics of the hyperbola δ1(λ, µ : em) = 0 we have

Φ(0) =
nλ√
23
b(1− µa)−1(n− µ) 6= 0.

Then due to
∫

Tn
dp

e2(p) = ∞ as n = 3, 4 and
∫

Tn
dp

e2(p) < ∞ as n ≥ 5 the
eigenfunction gλ,µ(p) does not belong to L2

e(T
n), but does to L1

e(T
n), as n =

3, 4, while it belongs to L2
e(T

n) as n ≥ 5.

7. Main Theorem

Note that all the theorems in this section are derived from Corollary 4.1
and Lemmas 4.3, 4.6, 6.1 and 12.

Introduce half planes and their boundary

Glc = {(λ, µ) ∈ R2
>0 : λ < λc}, Grc = {(λ, µ) ∈ R2

>0 : λ > λc},
∂Gc = {(λ, µ) ∈ R2

>0 : λ = λc},

and set

D0 = G0, D1 = G1 ∩Glc, D2 = G2 ∩Glc,
Dn+1 = G1 ∩Grc , Dn+2 = G2 ∩Grc .

The sets G0,G2, ∂G0,∂G2 G
l
c,Grc create non intersecting five lines such that

B0 = ∂G0, B1 = ∂G2 ∩Glc, Bn = ∂G2 ∩Grc ,
E1 = ∂Gc ∩G1, E2 = ∂Gc ∩G2,
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and one point set
E = ∂G2 ∩ ∂Gc.

And the union of these sets are equal to ∂G2 ∪ ∂Gc.

Figure 1: Case n ≥ 3

Theorem 7.1. Let n ≥ 3. a) Assume (λ, µ) ∈ Dk, k ∈ {0, 1, 2, n, n+ 1}, then
Hλµ has k eigenvalues below the essential spectrum.

b) Assume (λ, µ) ∈ Bk, k ∈ {0, 1, n} and n = 3, 4 (n ≥ 5). Then em is a
threshold resonance (embedded eigenvalue with multiplicity one) and Hλµ has
k eigenvalues below the essential spectrum.

c) Assume (λ, µ) ∈ Ek, k ∈ {1, 2} and n ≥ 3. Then em is a embedded
eigenvalue with multiplicity n− 1 and Hλµ has no threshold resonance and has
k eigenvalues below the essential spectrum.

d) Assume (λ, µ) ∈ E and n = 3, 4 (n ≥ 5). Then em is a threshold
resonance and embedded eigenvalue with multiplicity n−1 (embedded eigenvalue
with multiplicity n) and Hλµ has one eigenvalues below the essential spectrum.
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7.1 Case n = 2

We know in case n = 2 the sets Glc, Grc exists while this type sets do not in
case n = 1, and set

D1 = G1 ∪ ∂G2 ∩Glc, D2 = G2 ∩Glc, D2 = G1 ∩Grc , D3 = G2 ∩Grc ,
and non intersecting two lines

E1 = ∂Gc ∩ (G1 ∪ ∂G2), E2 = ∂Gc ∩G2,

and one point set
E = ∂G2 ∩ ∂Gc.

And the union of the last sets are equal to ∂G2 ∪ ∂Gc.

Figure 2: Case n = 2

Theorem 7.2. (a) Assume (λ, µ) ∈ Dk, k ∈ {1, 2, 3}, then Hλµ has k eigen-
values below the essential spectrum.
(b) Assume (λ, µ) ∈ Ek, k ∈ {1, 2}. Then em is a embedded eigenvalue with
multiplicity 1 and Hλµ has no threshold eigenvalue and has k eigenvalues below
the essential spectrum.

7.2 Case n = 1

Set

D1 = G1 ∪ ∂G2, D2 = G2.
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Figure 3: Case n = 1

Theorem 7.3. Assume (λ, µ) ∈ Dk, k ∈ {1, 2}, then Hλµ has k eigenvalues
below the essential spectrum, and moreover Hλµ has no threshold resonance
and embedded eigenvalue.

7.3 The proof of Lemma 4.1

a(z)− b(z) =
1

(2π)n

∫
Tn

(1− cos q1)dq

e(q)− z
=

1

n

1

(2π)n

∫
Tn

∑n
j=1(1− cos qj)dq

e(q)− z
=

1

n

1

(2π)n

∫
Tn

(e(z)− z + z)dq

e(q)− z
=

1

n

1

(2π)n

∫
Tn

dq +
z

n

∫
Tn

dq

e(q)− z
=

1

n
+
z

n
a(z);

c(z) + (n− 1)(z)d =
1

(2π)n

∫
Tn

cos q1
∑n
j=1 cos qjdq

e(q)− e
=

1

(2π)n

∫
Tn

cos q1(z − e(z))dq

e(q)− e
+
n− z
(2π)n

∫
Tn

cos q1
∑n
j=1 1dq

e(q)− e
= (n− z)b(z)

From the last equalities we get the proof of third equality of the lemma.
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