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ABSTRACT

In this paper, sharp radii constants are obtained for the analytic functions
satisfying some coefficient inequalities. For such functions, growth and
distortion estimates are determined. In addition, it is proved that func-
tions in these classes are closed under Hadamard product with convex
functions.

Keywords: Coefficient inequality; starlike functions; α-convex function;
radius of univalence; convolution; convex combination.



Kumar, S. and Ravichandran, V.

1. Introduction

Let D := {z ∈ C : |z| < 1} be the open unit disk. The well-known Bieber-
bach conjecture of 1916, proved by Branges (1985) states that an analytic
univalent function f : D→ C of the form

f(z) = z +

∞∑
n=2

anz
n (1)

satisfies the sharp inequality |an| ≤ n for all n ≥ 2. The converse does not
hold. For example, the function f(z) = 2z − z/(1 − z)2 = z −

∑∞
n=2 nz

n is
non-univalent. Therefore, the inequality |an| ≤ n for n ≥ 2 is not a sufficient
condition for a function f to be univalent. In 1970, for the analytic functions
f of the form (1), satisfying the coefficient inequality |an| ≤ n, Gavrilov (1970)
has shown that the radius of univalence is r0, where r0 is the real root of the
equation 2(1 − r)3 − (1 + r) = 0. This result is sharp for function f(z) =
2z − z/(1 − z)2. In addition, Gavrilov showed that the radius of univalence
of the function f satisfying |an| ≤ M (M > 0) is 1 −

√
M/(1 +M). In 1982,

Yamashita (1982) proved that the radius of univalence, obtained by Gavrilov is
equal to radius of starlikeness for the corresponding function. Kalaj et al. (2014)
determined the radius of univalence, starlikeness, and convexity for harmonic
functions. For 0 ≤ b ≤ 1, let Ab denote the class of functions given by (1)
with fixed second coefficient |a2| = 2b. Ravichandran (2014) obtained the
sharp radius of starlikeness and convexity of order α for the functions f ∈ Ab,
satisfying the coefficient inequalities |an| ≤ n, M, orM/n (M > 0) for n ≥ 3.
Nargesi et al. (2014) obtained similar sharp radius constants for function f ∈ Ab
satisfying the coefficient inequality |an| ≤ cn+ d and c/n (c > 0). Sharma and
Ankita (2015) also determined radius estimates for functions in a Janowski
type class, satisfying certain coefficient inequalities. Recently, Mendiratta et al.
(2015) determined the sharp radii of starlikeness of order α, convexity of order
α (0 ≤ α ≤ 1), parabolic starlikeness and uniform convexity when |an| ≤M/n2

or Mn2 (M > 0) for n ≥ 3.

A function f of the form (1) is α-convex (see Goodman (1983)) if it is
analytic, f(z)f ′(z)/z 6= 0 and satisfies the inequality

Re

(
α

(
1 +

zf ′′(z)

f ′(z)

)
+ (1− α)zf

′(z)

f(z)

)
> 0

for all z ∈ D. In particular, for α = 1 and α = 0, α-convex functions become
convex and starlike respectively. For details of α-convex functions, see Miller
et al. (1973), Mocanu and Reade (1975), Noor (1996).
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In the present paper, we consider the class Sk of analytic functions defined
as

Sk :=

{
f : f(z) = z +

∞∑
n=2

anz
n is analytic in D and |an| ≤ cnk

}
, (2)

for k = 0,±1,±2 and some c > 0. The radius of α-convexity is determined
for the class Sk. For any value of β, the sharp radii constants are obtained
for a function f ∈ Sk that satisfies the inequality Re(f ′(z) + βzf ′′(z)) > 0.
For functions f ∈ Sk, bounds for |f(z)/z| and |f ′(z)| are determined. Further,
closure properties of the class Sk under convolution with convex function are
investigated.

2. Radius constants

First, the sharp radius of α- convexity is determined for analytic functions
f of the form (1) to be in the classes Sk, for k = 0,±1,±2.

Theorem 2.1. Let 0 ≤ α ≤ 1 and let the function f be defined by (1).

(a) If f ∈ S1, then f is α-convex in the disk |z| < r1, where r1 is a real root
of the equation

−1 + 2(αc+ 4c+ 3)r −
(
16c2 + 30c+ 15

)
r2 + 2(−3αc2 − 3αc+ 12c2 + 22c

+10)r3 +
(
4αc2 + 4αc− 17c2 − 32c− 15

)
r4 + (c+ 1)

2
(6− r)r5 = 0

(b) If f ∈ S0, then f is α-convex in the disk |z| < r0, where r0 is a real root
of the equation

1− r((3α+ 2)c+ 5) + r2
(
4αc2 + 5(α+ 2)c+ 10

)
− r3(c+ 1)((α+ 6)c+ 10)− (c+ 1)r4((α− 5)c− 5)− (c+ 1)2r5 = 0

(c) If f ∈ S−1, then f is α-convex in the disk |z| < r−1, where r−1 is a real
root of the equation

(1− r) + c(1− α)(r + (1− r) log(1− r))
(1 + c)r + c log(1− r)

+
cαr

(c+ 1)(1− r)− c
= 0.

(d) If f ∈ S2, then f is α-convex in the disk |z| < r2, where r2 is a root of
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the equation

−1 + 4((α+ 4)c+ 2)r − 2((37− 2α)c+ 32c2 + 14)r2 − 4((9α− 20)c2

+4(2α− 9)c− 14)r3 + ((32α− 89)c2 + 2(16α− 79)c− 70)r4 − 4(c+ 1)

((α− 14)c− 14)r5 − 2(c+ 1)((2α+ 13)c+ 14)r6 + 8(c+ 1)2r7

− (c+ 1)2r8 = 0.

(e) If f ∈ S−2, then f is α-convex in the disk |z| < r−2, where r−2 is a real
root of the equation

(1−r)+c(1− α)(1− r)(log(1− r) + Li2(r))
(1 + c)r − cLi2(r)

−cα(r + (1− r) log(1− r))
(1 + c)r + c log(1− r)

= 0

where Li2 : D→ C is the polylogarithm function of order 2 given by

Li2(z) =
∞∑
n=1

zn/n2. (3)

The results are sharp.

Proof. Set QαST = α(1 + zf ′′(z)/f ′(z)) + (1 − α)zf ′(z)/f(z) and D(a,R) =
{ z ∈ C : |z − a| < R }. In particular, D(0, 1) = D.

(a) Since f ∈ S1, we have

|QαST − 1| ≤ (1− α)
∑∞
n=2(n− 1)|an||z|n−1

1−
∑∞
n=2 |an||z|n−1

+ α

∑∞
n=2 n(n− 1)|an||z|n−1

1−
∑∞
n=2 n|an||z|n−1

≤ (1− α)
c
∑∞
n=2 n

2rn−1 − c
∑∞
n=2 nr

n−1

1− c
∑∞
n=2 nr

n−1

+ α
c
∑∞
n=2 n

3rn−1 − c
∑∞
n=2 n

2rn−1

1− c
∑∞
n=2 n

2rn−1

= (1− α) 2cr

(1− r)[(1 + c)r2 − (2 + 2c)r + 1]

+ α
2cr2 + 4cr

(1− r)[(−1− c)r3 + 3(1 + c)r2 + (−3− 4c)r + 1]
= R1(r).

Therefore, it follows that Re (QαST ) > 1 − R1(r1) = 0 for 0 ≤ r ≤ r1.
The result is sharp for the function defined by

f0(z) = (1 + c)z − cz

(1− z)2
. (4)
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For the function f0(z), we have QαST = 1 − R1(z) and so, at z = r1,
Re (QαST ) = QαST = 1−R1(r1) = 0 and hence the radius of α- convexity
is sharp.

(b) Since f ∈ S0, QαST ∈ D(1, R0), where

R0 =
c(1− α)r

(1− r)((1− r(1 + c))
+

2crα

(1− r)((1− r)2 − cr(2− r))
,

we see that Re(QαST ) > 1− R0 = 0 for 0 ≤ r ≤ r0. This result is sharp
for the function

f(z) = z − cz2

1− z
.

(c) Since f ∈ S−1, QαST ∈ D(1, R−1), where

R−1 =
c(1− α)(r + (1− r) log(1− r))
(1− r)((1 + c)r + c log(1− r))

+
αcr

(1− r)((1 + c)(1− r)− c)
,

it is easily seen that Re(QαST ) > 1 − R−1 = 0 for 0 ≤ r ≤ r−1. The
result is sharp by considering the function defined by

f0(z) = z − cz − c log(1− z). (5)

(d) Since f ∈ S2, QαST ∈ D(1, R2), where

R2 =
2c(1− α)r(r + 2)

(1− r)((1 + c)(1− r)3 − c(1 + r))

+
cα(2r3 + 14r2 + 8r)

(1− r)((1 + c)(1− r)4 − c(1 + 4r + r2))
,

it is easily seen that Re(QαST ) > 1− R2 = 0 for 0 ≤ r ≤ r2. The result
is sharp by considering the function defined by

f0(z) = z − cz2(z2 − 3z + 4)/(1− z)3. (6)

(e) Since f ∈ S−2, QαST ∈ D(1, R−2), where

R−2 = −c(1− α)(log(1− r) + Li2(r))
((1 + c)r − cLi2(r))

+
cα(r + (1− r) log(1− r))

(1− r)((1 + c)r + c log(1− r))
,

it is easy to deduce that Re(QαST ) > 1 − R−2 = 0 for 0 ≤ r ≤ r2. The
result is sharp for the function

f0(z) = z − c(Li2(z)− z). (7)
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Motivated by the work of Mendiratta et al. (2015), we close this section by
radii constants for functions belonging to Sk for k = 0,±1,±2.

Theorem 2.2. Let the function f be defined by (1).

(a) If f ∈ S1, then f satisfies the inequality Re(f ′(z) + βzf ′′(z)) > 0 in the
disk |z| < rβ1

, where rβ1
is a real root of the equation

(1 + c(|β|+ |1− β|))(1− r)4 − c|β|(1 + 4r + r2)− c|1− β|(1− r2) = 0.

(b) If f ∈ S−1, then f satisfies the inequality Re(f ′(z) + βzf ′′(z)) > 0 in the
disk |z| < rβ−1

, where rβ−1
is a real root of the equation

(1 + c(|β|+ |1− β|))(1− r)2 − c|1− β|(1− r)− c|β| = 0.

(c) If f ∈ S2, then f satisfies the inequality Re(f ′(z) + βzf ′′(z)) > 0 in the
disk |z| < rβ2 , where rβ2 is a real root of the equation

(1 + c(|β|+ |1− β|))(1− r)5 − c|β|(1 + 11r + 11r2 + r3)

− c|1− β|(1− 3r − 3r2 − r3) = 0.

(d) If f ∈ S−2, then f satisfies the inequality Re(f ′(z) + βzf ′′(z)) > 0 in the
disk |z| < rβ−2 , where rβ−2 is a real root of the equation

(1 + c|1− β|r(1− r)− c|β|r2 + c|1− β|(1− r) log(1− r)) = 0.

The results are sharp.

Proof. Set Fβ = f ′(z) + βzf ′′(z).

(a) If f ∈ S1, then a simple calculation yields |Fβ − 1| ≤ Rβ1
where

Rβ1
= −c(|β|+ |1− β|) + c|β|(1 + 4r + r2)

(1− r)4
+
c|1− β|(1 + r)

(1− r)3
,

so that Re(Fβ) > 1 − Rβ1
= 0 for 0 ≤ r ≤ rβ1

. The result is sharp for
the function defined by (4).
Let f ∈ S1. Then f is univalent in the disk |z| < r0, where r0 is a root of
the equation (1 + c)(1− r)3 − c(1 + r) = 0 and f satisfies the inequality
Re(f ′(z) + βf ′′(z)) > 0 in the disk |z| < r∗0 , where r∗0 is a root of the
equation (1+ c)(1− r)4− c(1+ 4r+ r2) = 0. If we take β = 0 and c = 1,
Theorem 2.2(a) simplifies to (Yamashita, 1982, Theorem 1, p. 454).
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(b) If f ∈ S−1, then a simple computation gives Fβ ∈ D(1, Rβ−1
) where

Rβ−1 = −c(|β|+ |1− β|) + c|β|
(1− r)2

+
c|1− β|
(1− r)

.

Therefore it is easily seen that Re(Fβ) > 1−Rβ−1
= 0 for 0 ≤ r ≤ rβ−1

.
Sharpness follows from the function defined by (5).
Further, a calculation shows if f ∈ S−1, then function f is univalent in
the disk |z| < 1/(1 + c).

(c) If f ∈ S2, then a calculation gives Fβ ∈ D(1, Rβ2
) where

Rβ2 = −c(|β|+|1−β|)+ c|β|(1 + 11r + 11r2 + r3)

(1− r)5
+
c|1− β|(1 + 4r + r2)

(1− r)4
,

and, therefore, Re(Fβ) > 1−Rβ2
= 0 for 0 ≤ r ≤ rβ2

. Sharpness follows
from the function defined by (6).

(d) If f ∈ S−2, we have Fβ ∈ D(1, Rβ−2
) where

Rβ−2
=

c|β|
(1− r)

− c|1− β| log(1− r)
r

− c|1− β|,

and therefore it is easy to deduce that Re(Fβ) > 1 − Rβ−2 = 0 for
0 ≤ r ≤ rβ−2 . For sharpness, we consider the function defined by (7).

If f ∈ S2, then f is univalent in the disk |z| < r0 where r0 is a real root
of the equation (1 + c)(1 − r)4 − c(1 + 4r + r2) = 0 and if f ∈ S−2, we note
that f is univalent in the disk |z| < r∗0 where r∗0 is a real root of the equation
r + c(r + log(1 − r)) = 0. Similarly it is easily seen that if f ∈ S0, then f
satisfies the inequality Re(f ′(z) + f ′′(z)) > 0 in the disk |z| < rc, where rc is a
real root of the equation (1+ c)(1− r)3− c(1+ r) = 0. This result is sharp and
we observe that the radius rc is equal to the radius of univalence, obtained by
Gavrilov (1970) for the function f with coefficient inequality |an| ≤ n.

3. Growth and distortion estimates

In this section, for the analytic function f in the the class Sk, we compute
sharp estimates of |f(z)/z| and |f ′(z)|.

Theorem 3.1. Let |z| = r < 1 and the function f be given by (1).

(a) If f ∈ S1, then
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(i) (1 + c)− c

(1− r)2
≤ Re

(
f(z)

z

)
≤
∣∣∣∣f(z)z

∣∣∣∣ ≤ (1− c) + c

(1− r)2
;

(ii)

((c+ 1)r3 − 3(c− 1)r2 + (4c+ 3)r − 1)/(r − 1)3 ≤ Re(f ′(z))

≤ |f ′(z)| ≤ ((1− c)r3 + 3(c− 1)r2 + (3− 4c)r − 1)/(r − 1)3.

(b) If f ∈ S−1, then

(i) (1+c)+
c

r
log(1−r) ≤ Re

(
f(z)

z

)
≤
∣∣∣∣f(z)z

∣∣∣∣ ≤ (1−c)− c
r
log(1−r);

(ii) (1− (1 + c)r)/(1− r) ≤ Re (f ′(z)) ≤ |f ′(z)| ≤ (1 + (c− 1)r)/(1− r).

(c) If f ∈ S2, we have

(i) (1 + c)− c(1 + r)

(1− r)3
≤ Re

(
f(z)

z

)
≤
∣∣∣∣f(z)z

∣∣∣∣ ≤ (1− c) + c(1 + r)

(1− r)3
;

(ii) (1+c)−c (1 + 4r + r2)

(1− r)4
≤ Re(f ′(z)) ≤ |f ′(z)| ≤ (1−c)+c (1 + 4r + r2)

(1− r)4
.

(d) If f ∈ S−2, we have the following estimates in terms of polylogarithm
function of order 2 defined by (3):

(i) (1 + c)− cLi2(r)/r ≤ Re (f(z)/z) ≤ |f(z)/z| ≤ (1− c) + cLi2(r)/r;

(ii) (1+c)+c log(1− r)/r ≤ Re(f ′(z)) ≤ |f ′(z)| ≤ (1−c)−c log(1− r)/r.

(e) If f ∈ S0, then

(i) (1 + c)− c/(1− r) ≤ Re (f(z)/z) ≤ |f(z)/z| ≤ (1− c) + c/(1− r);
(ii) (1 + c)− c/(1− r)2 ≤ Re (f ′(z)) ≤ |f ′(z)| ≤ (1− c) + c/(1− r)2.

All the estimates are sharp.

Proof. Let |z| = r < 1.

(a) If f ∈ S1, then the upper bound for |f(z)/z| is given by∣∣∣∣f(z)z
∣∣∣∣ ≤ 1 + c

∞∑
n=2

nrn−1 = (1− c) + c

(1− r)2
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and the lower bound for Re(f(z)/z) is given by

Re

(
f(z)

z

)
≥ 1− c

∞∑
n=2

nrn−1 = (1 + c)− c

(1− r)2
,

which completes part (i). Similarly, |f ′(z)| ≤ (1 − c) + c(1 + r)/(1− r)3
and |f ′(z)| ≥ Re (f ′(z)) ≥ (1 + c)− c(1 + r)/(1− r)3 prove second part.
For the upper bound, the sharpness follows for the function f0(z) =
(1− c)z + cz/(1− z)2 and for the lower bound, the sharpness follows for
the function defined by (4).

(b) If f ∈ S−1, then |f(z)/z| ≤ 1+c
∑∞
n=2(r

n−1/n) = 1+c(−1−log(1− r)/r)
and Re(f(z)/z) ≥ 1 − c(−1 − log(1− r)/r) prove part (i). Similarly
|f ′(z)| ≤ 1 + cr/1− r and |f ′(z)| ≥ Re(f ′(z)) ≥ 1 − cr/(1− r) prove
part (ii). For the lower bound, the result is sharp for the function defined
by (5) and for upper bound, result is sharp for the function g0(z) =
z + cz + c log(1− z).

(c) If f ∈ S2, then |f(z)/z| ≤ 1 + c(−1 + 1 + r/(1− r)3) and Re(f(z)/z) ≥
1− c(−1 + 1 + r/(1− r)3) yield part (i). Similarly

|f ′(z)| ≤ 1 + c

(
1 + 4r + r2

(1− r)4
− 1

)
and |f ′(z)| ≥ Re(f ′(z)) ≥ 1 − c(1 + 4r + r2/(1− r)4 − 1) give the part
(ii). For upper bound, sharpness follows for the function f0(z) = z +
cz2(z2 − 3z + 4)/(1− z)3 and for lower bound, sharpness follows for the
function defined by (6).

(d) If f ∈ S−2, we have |f(z)/z| ≤ 1 + c(Li2(r)/r − 1) and Re(f(z)/z) ≥
1 − c(Li2(r)/r − 1), part (i) follow. A similar calculation leads to the
upper and lower bounds for |f ′(z)|. For upper bound, sharpness follows
for the function f0(z) = z+ c(Li2(z)− z) and for lower bound, sharpness
follows for the function defined by (7).

(e) Proof is similar to previous parts.

4. Closure theorems

For two analytic functions f(z) = z+
∑∞
n=1 anz

n and g(z) = z+
∑∞
n=2 bnz

n,
the Hadamard product or convolution of f and g, is defined by (f ∗g)(z) = z+∑∞
n=2 anbnz

n, z ∈ D (see Ruscheweyh (1982)). The following theorem proves
that the class Sk is closed under Hadamard product with convex functions.
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Theorem 4.1. Let f ∈ Sk and g(z) = z +
∑∞
n=2 bnz

n satisfy the coefficient
inequality |bn| ≤ 1 for n ≥ 2. Then f ∗ g ∈ Sk. In particular, if f ∈ Sk and g
belongs to the class of convex functions, then f ∗ g ∈ Sk.

Proof. If f ∈ Sk, then |an| ≤ cnk. Since (f ∗ g)(z) = z +
∑∞
n=2 anbnz

n where
|anbn| ≤ cnk, it follows that f ∗ g ∈ Sk.

The last theorem shows that the class Sk is closed under convex combina-
tions of its members.

Theorem 4.2. Let 0 ≤ λj ≤ 1 for j = 1, 2, 3, . . .m and
∑m
j=1 λj = 1. Let the

functions fj defined by fj(z) = z +
∑∞
n=2 an,jz

n (j = 1, 2, 3, . . .m) belong to
the class Sk. Then

∑m
j=1 λjfj ∈ Sk.

Proof. Since fj ∈ Sk, |an,j | ≤ cnk for j = 1, 2, 3, . . .m, then

m∑
j=1

λjfj(z) =

m∑
j=1

λj

(
z +

∞∑
n=2

an,jz
n

)

= z +

∞∑
n=2

(λ1an,1 + λ2an,2 + · · ·+ λman,m)zn

where |λ1an,1 +λ2an,2 + · · ·+λman,m| ≤ λ1|an,1|+λ2|an,2|+ · · ·+λm|an,m| ≤
cnk.

Corollary 4.1. The class Sk is closed under convex combinations.

Acknowledgement: The authors are thankful to the referee for the useful
suggestions.
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