
Malaysian Journal of Mathematical Sciences 13(3): 359�371 (2019)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

A Mathematical Proof of Explicit Formulas for

the Coe�cients of Finite Di�erence

Approximations of Second Derivatives

Syafwan, H.1, Sutra, Y. Y.2, Alkhairi, R.2, Syafwan, M. ∗2,

Ramdhan, W.1, and Yusda, R. A.1

1Department of Informatics Management, The Higher College of

Management, Informatics and Computer of Royal, Indonesia
2Department of Mathematics, Faculty of Mathematics and Natural

Sciences, Andalas University, Indonesia

E-mail: mahdhivan@sci.unand.ac.id
∗ Corresponding author

Received: 6 November 2018

Accepted: 16 August 2019

ABSTRACT

Explicit formulas for the coe�cients of �nite di�erence approximations of

�rst and higher derivatives in any order of accuracy have been presented

by Khan and Ohba. They also have provided a mathematical proof of

the formulas for �rst derivatives. In this paper, the proof is extended

for second derivatives. The proof is constructed based on Taylor series,

and employs some properties of Vandermonde determinant which are not

found in the proof for �rst derivatives.
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1. Introduction

There are numerous phenomena in the nature which can be modeled by
di�erential equations. In more realistic problems, the exact solutions of dif-
ferential equations are sometimes di�cult to �nd, thus a numerical approach
is reasonable to use. In such cases, one needs to discretize the problem's do-
main and construct the approximation of the derivative terms appearing in the
di�erential equations. This method will convert a linear (non-linear) di�eren-
tial equation into a system of linear (non-linear) equations, which can then be
solved by a matrix algebra technique.

One of the most popular and easy-to-use numerical methods in computing
the approximation of derivatives is �nite di�erence. In this method, the domain
of a function is partitioned in a number of points and the approximation formula
for derivatives is obtained from Taylor series at one or more partition points
(Mathews and Fink (1992)). Based on the location of the partition points
used, �nite di�erence method consists of three types, i.e. forward di�erence,
backward di�erence, and central di�erence.

The general formula of �nite di�erence for p-th degree of derivative andN -th
order of accuracy can be generated recursively. One of the recursive algorithm
was developed in Fornberg (1988) from which a table containing coe�cients of
forward, backwards, and central di�erence up to some degree of derivative and
order of accuracy can be made. In practice, the recursive algorithm requires
an increasingly large computational memory to compute the derivatives with
higher degree and order accuracy, as it deals with a growing amount of data
(partition points). To resolve this problem, one needs an explicit formula for
a �nite di�erence scheme of which the coe�cients can be determined directly
without recursive process.

Khan and Ohba (1999) have developed the explicit formulas for the coe�-
cients of �nite di�erence approximation based on Taylor series. A mathematical
proof of the explicit formula for �rst derivative has been presented by Khan
et al. (2003). In this paper, we will extend the proof of the explicit formula
for second derivatives. Following the ideas in Khan et al. (2003), our proof is
also constructed based on Taylor series but employs some properties of Van-
dermonde determinant which are not found in the proof for �rst derivatives.

Our presentation in this paper is organized as follows. In Section 2, we
present the explicit formulas of �nite di�erence approximations for second
derivatives that will be proved. Next, in Section 3 we discuss the determi-
nant of Vandermonde matrices which will be used in our proof. In Section 4 we
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derive the explicit formulas mathematically. Finally, in Section 5 we summarize
our results and address current problem which is being under consideration.

2. The Explicit Formulas

By observing the solutions of equation system which is constructed based on
Taylor series, Khan and Ohba (1999) gave explicit formula of �nite di�erence
approximations for second derivative of a function f(x) at x = x0 as follows

f ′′0 ≈
1

T 2

∑
k

gkfk, (1)

where T indicates the grid length with partition points xk = x0 + kT, fk =
f(xk), and the coe�cient gk and iterator k are de�ned based on the order and
the type of the �nite di�erence approximations as follows:

• For forward di�erence approximation, k ∈ {0, 1, ..., N} where N−1 is the
order of accuracy, and

gk ≡ gFk =


(−1)k2N !

k(N − k)!k!
N∑

m=1,m6=k

1
m , k = 1, 2, ..., N,

−
N∑

m=1
gm, k = 0.

(2)

• For backward di�erence approximation, k ∈ {−N,−N + 1, ...,−1, 0}
where N − 1 is the order of accuracy, and

gk ≡ gBk = −gF−k, k = −N,−N + 1, ...,−1, 0. (3)

• For central di�erence approximation, k ∈ {−N, ...,−1, 0, 1, ..., N} where
2N represents the order of accuracy, and

gk ≡ gCk =


−2

N∑
m=1

gm, k = 0,

(−1)k+12!(N !)2

k2(N − k)!(N + k)!
, k = ±1,±2, ...,±N.

(4)

Note that the explicit formula uses the sample values directly to �nd the
derivative at a mesh point, thus it requires less computational time and storage
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to approximate the derivatives. As example, for order of accuracy N − 1 = 1
(i.e. N = 2), the coe�cient gk for forward di�erence of second derivative is

gFk =


1, k = 0,

−2, k = 1,

1, k = 2,

which in turn gives

f ′′0 ≈ 1

T 2
(g0f0 + g1f1 + g2f2)

=
1

T 2
(f0 − 2f1 + f2) .

The above expression agrees with the known formula for forward di�erence of
second derivative.

3. Determinant of Vandermonde Matrices

Determinant of Vandermonde matrices plays important role in the proof
of explicit formulas of �nite di�erence approximations. The de�nition of a
Vandermonde matrix is provided as follows.

De�nition 3.1. (Meyer (2000)) A matrix V with size M ×N of the form

VM×N =



1 λ1 λ21 · · · λN−11

1 λ2 λ22 · · · λN−12

1 λ3 λ23 · · · λN−13

...
...

...
. . .

...

1 λM λ2M · · · λN−1M


, (5)

where λi 6= λj for all i 6= j, is called Vandermonde matrix.

By applying column elementary operations and cofactor expansions at each
row, the determinant |VN×N | can be computed according to the following the-
orem.

Theorem 3.1. (Meyer (2000)) The determinant of a Vanderrmonde matrix
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with size N ×N is

|VN×N | =



1 λ1 λ21 · · · λN−11

1 λ2 λ22 · · · λN−12

1 λ3 λ23 · · · λN−13

...
...

...
. . .

...

1 λN λ2N · · · λN−1N


=

∏
1<i≤N
1≤j<N

j<i

(λi − λj). (6)

For a special case λi = i, where i = 1, 2, ..., N , the determinant of the
resulting Vandermonde matrix can be written as

αN =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 2 22 · · · 2N−1

1 3 32 · · · 3N−1

...
...

...
. . .

...

1 N N2 · · · NN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

N∏
i=1

(N − i)!. (7)

From Theorem 3.1, we have the following corollary.

Corollary 3.1. The determinant of a Vandermonde matrix with size (N −
1)× (N − 1) which is obtained by removing k-th row and second column of αN

is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1

1 22 23 · · · 2N−1

...
...

...
. . .

...

1 (k − 1)2 (k − 1)3 · · · (k − 1)N−1

1 (k + 1)2 (k + 1)3 · · · (k + 1)N−1

...
...

...
. . .

...

1 N2 N3 · · · NN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
N !

k(k − 1)!(N − k)!

N∏
i=1

(N − i)!
N∑

m=1,m 6=k

1

m
.

Proof. The proof follows the idea in Heineman (1929). Let a polynomial

P0x
N + P1x

N−1 + · · ·+ PN = 0, P0 6= 0, (8)
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has roots λ1, λ2, ..., λN . From Vieta's formula in Gellert (1975), we obtain

PN−1

P0
= (−1)N−1

N∑
m=1

λ1λ2 · · ·λN
λm

. (9)

By substituting each root λ1, λ2, ..., λN into Eq. (8) and then dividing the
resulting equations with P0, we arrive at the following system of equations:

P1

P0
λN−11 +

P2

P0
λN−21 + · · ·+ PN

P0
= −λN1 ,

P1

P0
λN−12 +

P2

P0
λN−22 + · · ·+ PN

P0
= −λN2 ,

...

P1

P0
λN−1N +

P2

P0
λN−2N + · · ·+ PN

P0
= −λNN .

(10)

By reversing the order of sum of terms in each equation, the system (10)
can be rewritten in the matrix form as

1 λ1 · · · λN−11

1 λ2 · · · λN−12

...
...

. . .
...

1 λN · · · λN−1N





PN

P0

PN−1

P0

...

P1

P0


= −



λN1

λN2

...

λNN


. (11)

Note that the coe�cient matrix in (11) is indeed a matrix Vandermonde
VN×N whose determinant is given by Theorem 3.1. By using Cramer's rule,

the solution for PN−1

P0
is given by

PN−1

P0
=
|VN×N,2|
|VN×N |

, (12)

where VN×N,2 is the matrix VN×N with second column replaced by
[
λN1 , λ

N
2 , · · · , λNN

]T
.

By applying the column interchange, the determinant |VN×N,2| can be calcu-
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lated as

|VN×N,2| = (−1)N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 λ21 λ31 · · · λN1

1 λ22 λ32 · · · λN2

1 λ23 λ33 · · · λN3

...
...

...
. . .

...

1 λ2N λ3N · · · λNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (13)

By writing the matrix expression in (13) as

WN×N =



1 λ21 λ31 · · · λN1

1 λ22 λ32 · · · λN2

1 λ23 λ33 · · · λN3

...
...

...
. . .

...

1 λ2N λ3N · · · λNN


,

then Eq. (12) becomes

PN−1

P0
= (−1)N−1 |WN×N |

|VN×N |
. (14)

From Eqs. (9) and (14), and by Theorem 3.1, we have

|WN×N | =
∏

1<i≤N
1≤j<N

j<i

(λi − λj)
N∑

m=1

λ1λ2 · · ·λN
λm

. (15)

Now consider a matrix W ′N×N which is obtained by replacing the entries of
matrix WN×N with λi = i, where i = 1, 2, ..., N , i.e.

W ′N×N =


1 1 1 · · · 1
1 22 23 · · · 2N

1 32 33 · · · 3N

...
...

...
. . .

...
1 N2 N3 · · · NN

 . (16)

By comparing with Eq. (15), the determinant of matrix W ′N×N can be written
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as

|W ′N×N | =
∏

1<i≤N
1≤j<N

j<i

(i− j)
N∑

m=1

N !

m
. (17)

If the k-th row and last column of matrix W ′N×N are removed, the resulting
determinant will be given by (17) but for i, j,m 6= k. By performing the product
and the sum calculations, we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 22 23 · · · 2N−1

...
...

...
. . .

...
1 (k − 1)2 (k − 1)3 · · · (k − 1)N−1

1 (k + 1)2 (k + 1)3 · · · (k + 1)N−1

...
...

...
. . .

...
1 N2 N3 · · · NN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∏
1<i≤N,i6=k
1≤j<N,j 6=k

j<i

(i− j)
N∑

m=1,m 6=k

N !

km

=
N !

k(k − 1)!(N − k)!

N∏
i=1

(N − i)!
N∑

m=1,m 6=k

1

m
.

which complete the proof.

4. Proof of the Explicit Formulas

In this section, we provide a proof of the explicit formulas of �nite di�erence
approximations for second derivative as already presented in Section 2. Our
proof is constructed from Taylor series, and follows the idea in Khan et al.
(2003). We will �rst prove for the case of forward di�erence.

Let a function f(x) be N -times di�erentiable (N > 2) at x = x0. The
Taylor series for f(x) at x ≈ x0 is

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2!
f ′′(x0) + · · ·+

(x− x0)N

N !
f (N)(x0)

+O((x− x0)N+1). (18)

If the domain of f is partitioned with grid length T and the points of partition
are given by

xk = x0 + kT, k = 1, 2, · · · , N,
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then the Taylor series (18) for x = xk can be rewritten as

fk − f0 = (kT )f ′0 +
(kT )2

2!
f ′′0 + · · ·+ (kT )N

N !
f
(N)
0 +O(TN+1), (19)

where f0 = f(x0), fk = f(xk) and f
(p)
0 = f (p)(x0), where p indicates the order

of derivative.

After truncating up to N terms, series (19) for k = 1, 2, ..., N can be ex-
pressed in a matrix form as

f ≈ Ad, (20)

where

f = [f1 − f0, f2 − f0, · · · , fN − f0]T ,

d =
[
f ′0, f

′′
0 , · · · , f

(N)
0

]T
,

A =



T
T 2

2!
· · · TN

N !

2T
(2T )2

2!
· · · (2T )N

N !

...
...

. . .
...

NT
(NT )2

2!
· · · (NT )N

N !


.

By using Cramer's rule, we have

f ′′0 ≈
|Ab|
|A|

, (21)

where Ab is obtained by replacing the second column of matrix A with the
column vector f, i.e.

Ab =



T f1 − f0 · · · TN

N !

2T f2 − f0 · · · (2T )N

N !

...
...

. . .
...

NT fN − f0 · · · (NT )N

N !


.
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The determinants in numerator and denominator of Eq. (21) can be written
without T by taking out the common terms in each column of Ab and A, i.e.

f ′′0 ≈
TT 3 · · ·TN

TT 2T 3 · · ·TN

|Ab|T=1

|A|T=1
=

1

T 2

|Ab|T=1

|A|T=1
. (22)

Next, by taking out the common terms in each row and column of |A|T=1, and
by using Vandermonde determinant as given by Eq. (7), one can easily check
that |A|T=1 = 1. Thus Eq. (22) now becomes

f ′′0 ≈
1

T 2
|Ab|T=1, (23)

Eq. (23) can be further expressed as

f ′′0 ≈
1

T 2

N∑
k=1

gk(fk − f0) =
1

T 2

(
N∑

k=1

gkfk −
N∑

k=1

gkf0

)
, (24)

where gk is the minor of |Ab|T=1 corresponding to k-th element of second
column, i.e.

gk = (−1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1

3!
· · · 1

N !

2
23

3!
· · · 2N

N !

...
...

. . .
...

(k − 1)
(k − 1)3

3!
· · · (k − 1)N

N !

(k + 1)
(k + 1)3

3!
· · · (k + 1)N

N !

...
...

. . .
...

N
N3

3!
· · · NN

N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (25)

By de�ning

g0 = −
N∑

k=1

gk, (26)

the expression of Eq. (24) can be simpli�ed into

f ′′0 ≈
1

T 2

N∑
k=0

gkfk.
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Again, by taking out the common terms in each row and column of the
corresponding matrix in (25), the value of gk for k 6= 0 can be calculated as

gk = (−1)k (2)(3) · · · (N)

(k)(3!)(4!) · · · (N !)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 · · · 1
1 22 23 · · · 2N−1

...
...

...
. . .

...
1 (k − 1)2 (k − 1)3 · · · (k − 1)N−1

1 (k + 1)2 (k + 1)3 · · · (k + 1)N−1

...
...

...
. . .

...
1 N2 N3 · · · NN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(27)
Note that the determinant which appears in Eq. (27) has been given by Corol-
lary 3.1. Thus, the value of gk for k = 1, 2, ..., N becomes

gk = (−1)k (22)(32) · · · (N2)

(k2)(3!)(4!) · · · (N !)

(N − 1)!(N − 2)! · · · (3!)(2!)(1!)
(k − 1)!(N − k)!

N∑
m=1,m6=k

1

m

= (−1)k (22)(32) · · · (N2)(2!)

(k2)(N !)(k − 1)!(N − k)!

N∑
m=1,m6=k

1

m

= (−1)k (2)(3) · · · (N)(2)(3) · · · (N)(2!)

k(k!)(N − k)!N !

N∑
m=1,m 6=k

1

m

=
(−1)k2N !

k(N − k)!k!

N∑
m=1,m 6=k

1

m
. (28)

From Eqs. (26) and (28), we �nally have

gk =


(−1)k2N !

k(N − k)!k!
N∑

m=1,m 6=k

1

m
, k = 1, 2, ..., N,

−
N∑

m=1
gm, k = 0,

which proves the explicit formula of forward di�erence approximation given by
(2). �

The proof for explicit formula of backward and central di�erence approxi-
mations given respectively by Eqs. (3) and (4) can be performed accordingly
in a similar way by simply replacing k = −N,−N + 1, ...,−1, 0 (for backward)
and k = 0,±1,±2, ...,±N (for central), and then calculating the determinants
of the resulting matrices.
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5. Conclusion

In this paper we have proved mathematically the explicit formulas for the
coe�cients of �nite di�erence approximations of second derivatives. The proof
was constructed based on Taylor series from which a system of equation ap-
pears. The system was then solved by calculating the determinant of the re-
sulting Vandermonde matrices and performing some algebraic manipulations.
Khan and Ohba (1999) also provide a more general explicit formula of �nite
di�erence for the p-th derivative and the N -th order of accuracy. The mathe-
matical proof of the latter formula is being under consideration.
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