
Malaysian Journal of Mathematical Sciences 14(3): 335�349 (2020)

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES

Journal homepage: http://einspem.upm.edu.my/journal

Existence of Triple Positive Solutions for

Nonlinear Second Order Arbitrary Two-point

Boundary Value Problems

Asaduzzaman, M. ∗1 and Ali, M. Z.2

1Department of Mathematics, Islamic University, Kushtia-7003,

Bangladesh
2Department of Mathematics, University of Rajshahi,

Rajshahi-6205, Bangladesh

E-mail: asad@math.iu.ac.bd
∗ Corresponding author

Received: 30 December 2019

Accepted: 1 August 2020

ABSTRACT

In this paper, we establish the criteria for existence of triple positive

solutions to the nonlinear second order ordinary di�erential equation

u′′(t) + f(t, u(t), u′(t)) = 0, t ∈ [a, b], with the arbitrary two-point

boundary value conditions u(a) = u(b) = 0, where, a, b are two ar-

bitrary non-negative constants and f ∈ C ([a, b]× [0, ∞)×R, [0, ∞)).
The analysis of this paper is based on a �xed point theorem of functional

type in a cone due to Bai and Ge. The result of this paper generalizes

the results of several authors in literature. Finally, we give an illustrative

example to support our analytic proof.

Keywords: Nonlinear second order arbitrary two-point boundary value

problem, Triple positive solutions, Fixed point theorem.
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1. Introduction

Literature may contain a huge number of applications of boundary value
problems for ordinary di�erential equations and di�erent kinds of physical, bi-
ological and chemical phenomena has been explained by these boundary value
problems. For instance, we may revise the works of Love (1944), Prescott
(1961), and Timoshenko and Gere (1961) on elasticity, the monographs by
Mans�eld (1964) and Soedel (1993) on deformation of structures and the work
of Dulacska (1992) on the e�ects of soil. In the last few decades, the existence
of positive solutions of two-point, three-point and four-point boundary value
problems for second order nonlinear ordinary di�erential equations has exten-
sively been studied by using various techniques, see for instance the works of
Agarwal and O'Regan (2005), Agarwal et al. (1999), Bai and Du (2007), Bai
and Ge (2004), Bai et al. (2004), Guezane-Lakoud and Kelaiaia (2010), Guo
and Lakshmlkantham (1988), Henderson and Wang (1997), Ji (2017), Leggett
and Williams (1979), Lian et al. (1996), Sun et al. (2009) and Krasnosel'skii
(1964). Gue-Krasnosel'skii �xed point theorem given in Guo and Lakshmlka-
ntham (1988), Krasnosel'skii (1964) and Leggett-Williams �xed point theorem
of Leggett and Williams (1979) has widely been used to establish the existence
criteria of positive solutions for second order ordinary di�erential equation with
di�erent point boundary value problems, see for instance the monographs of
Agarwal and O'Regan (2005), Bai and Du (2007), Bai and Ge (2004) and Bai
et al. (2004). Using the Leggett-Williams �xed point theorem of Leggett and
Williams (1979), Agarwal et al. (1999) established the principle for the exis-
tence of three positive solutions to a class of second order impulsive di�erential
equations.

From the works of Avery (1998),Avery and Henderson (2000), Avery and
Henderson (2001), Anderson and Avery (2002) and Avery and Peterson (2001)
it is clear that �ve functional �xed point theorem given by Avery (1998), Avery
and Henderson (2000), �xed point theorem of cone expansion and compression
of functional type given by Avery and Henderson (2001), twin �xed point the-
orem given by Anderson and Avery (2002) and generalized Leggett-Williams
�xed point theorem given by Avery and Peterson (2001) all are extension of
Gue-Krasnosel'skii �xed point theorem given in Guo and Lakshmlkantham
(1988), Krasnosel'skii (1964) and Leggett-Williams �xed point theorem given
in Leggett and Williams (1979). In 2004, Bai and Ge (2004) established a
new �xed point theorem (Theorem 2.1 of Bai and Ge (2004)) by generalizing
Leggett-Williams �xed point theorem given in Leggett and Williams (1979) and
using this new �xed point theorem (Theorem 2.1 of Bai and Ge (2004)) they
established some new multiplicity results for the following nonlinear second
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order two-point boundary value problem:{
x′′(t) + f(t, x(t), x′(t)) = 0, 0 < t < 1,

x(0) = x(1) = 0,
(1)

where, f ∈ C ([0, 1]× [0, ∞)×R, [0, ∞)).

To the best of our knowledge there is no any work on the existence of positive
solutions for nonlinear second order boundary value problem with arbitrary
point boundary value conditions. From this context, in this paper we establish
the criteria for existence of three positive solutions to the following nonlinear
second order ordinary di�erential equation:

u′′(t) + f(t, u(t), u′(t)) = 0, t ∈ [a, b], (2)

under the following arbitrary two-point boundary value conditions:

u(a) = u(b) = 0, (3)

where, a, b are two arbitrary non-negative constants and

f ∈ C ([a, b]× [0, ∞)×R, [0, ∞)) ,

applying the �xed point theorem due to Bai and Ge (2004). The rest of this
paper is furnished as follows:
In Section 2, we provide some basic de�nitions, a lemma and the �xed point
theorem due to Bai and Ge (2004). In Section 3, we state and prove our
main results, which provide us the techniques to check the existence of three
positive solutions of second order arbitrary non-negative two-point boundary
value problem (2) and (3) under some certain assumptions. In Section 4, we
give an example which helps us to illustrate our main result.

2. Preliminary Notes

In this section we recall some basic de�nitions, the �xed point theorem in
a cone due to Bai and Ge (2004) and establish a lemma which are needed to
prove our main results.

De�nition 2.1 : Let (B, ‖.‖) be a real Banach space and P be a nonempty
closed convex subset of B. Then we say that P is a cone on B if it is satis�es
the following properties:
(i) ηc ∈ P for c ∈ P, η ≥ 0;
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(ii) c, c ∈ P implies c = θ,
where θ denotes the null element of B.

De�nition 2.2 : A mapping γ is said to be a non-negative continuous concave
functional on the cone P if γ : P → [0, +∞) is continuous and

γ(δx+ (1− δ)y) ≥ δγ(x) + (1− δ)γ(y),

for all x, y ∈ P, δ ∈ [0, 1].

De�nition 2.3 : A mapping α is said to be a non-negative continuous convex
functional on the cone P if α : P → [0, +∞) is continuous and

α(δx+ (1− δ)y) ≤ δα(x) + (1− δ)α(y),

for all x, y ∈ P, δ ∈ [0, 1].

De�nition 2.4 : Suppose α, β : P → [0, +∞) are two non-negative continuous
convex functionals satisfying

‖u‖ ≤Mmax {α(u), β(u)} , for each u ∈ P, (4)

where M is a positive constant, and

Ω = {u ∈ P : α(u) < r, β(u) < L} 6= Φ, for r > 0, L > 0. (5)

From (4) and (5), we have Ω is a bounded nonempty open subset in P .

De�nition 2.5 : Let r > a1 > 0, L > 0 be given, α, β : P → [0, +∞) are two
non-negative continuous convex functionals satisfying (4) and (5), and α be a
non-negative continuous concave functional on the cone P . De�ne the following
bounded convex sets:

P (α, r; β, L) = {u ∈ P : α(u) < r, β(u) < L} ,
P̄ (α, r; β, L) = {u ∈ P : α(u) ≤ r, β(u) ≤ L} ,
P (α, r; β, L; γ, a1) = {u ∈ P : α(u) < r, β(u) < L, γ(u) > a1} ,
P̄ (α, r; β, L; γ, a1) = {u ∈ P : α(u) ≤ r, β(u) ≤ L, γ(u) ≥ a1} .

Now, we state a �xed point theorem on the cone P due to Bai and Ge
(2004).

Theorem 2.1. (Theorem 2.1 of Bai and Ge (2004)) Let B be a Banach space,
P ⊂ B be a cone and r2 ≥ c1 > b1 > r1 > 0, L2 ≥ L1 > 0 be given. Assume
that α, β are two non-negative continuous convex functionals on P , such that
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(4) and (5) are satis�ed, γ is a non-negative continuous concave functional on
P , such that γ(u) ≤ α(u), for all u ∈ P̄ (α, r2; β, L2) and let

A : P̄ (α, r2; β, L2)→ P̄ (α, r2; β, L2)

be a completely continuous operator. Suppose

(C1)
{
u ∈ P̄ (α, c1; β, L2; γ, b1) : γ(u) > b1

}
6= Φ, γ(Au) > b1,

for u ∈ P̄ (α, c1; β, L2; γ, b1),

(C2) α(Au) < r1, β(Au) < L1, for all u ∈ P̄ (α, r1; β, L1),

(C3) γ(Au) > b1, for all u ∈ P̄ (α, r2; β, L2; γ, b1)with α(Au) > c1.

Then A has at least three �xed points u1, u2 and u3 in P̄ (α, r2; β, L2). Further,

u1 ∈ P (α, r1; β, L1), u2 ∈
{
P̄ (α, r2; β, L2; γ, b1) : γ(u) > b1

}
,

and

u3 ∈ P̄ (α, r2; β, L2) \
(
P̄ (α, r2; β, L2; γ, b1) ∪ P̄ (α, r1; β, L1)

)
.

De�nition 2.6 : A solution u(t) of the boundary value problem given by (2) and
(3) is said to be a positive solution if u(t) > 0 for all t ∈ (a, b).

Lemma 2.1. Assume that 0 ≤ a < b. If h(t) ∈ C[a, b], for all t ∈ [a, b],
then the unique solution of following nonlinear second order arbitrary two-point
boundary value problem {

−u′′(t) = h(t), t ∈ [a, b],

u(a) = u(b) = 0,
(6)

is u(t) =
∫ b
a
G(t, s)h(s)ds, where, G(t, s) is the Green's function of the corre-

sponding homogeneous second order arbitrary two-point boundary value problem{
−u′′(t) = 0, t ∈ [a, b],

u(a) = u(b) = 0,
(7)

that is,

G(t, s) =
1

(b− a)

{
(t− a)(b− s); a ≤ t ≤ s ≤ b,
(s− a)(b− t); a ≤ s ≤ t ≤ b.

(8)

De�nition 2.7 : Let B = C[a, b] be processed with the ordering u ≤ v if
u(t) ≤ v(t), for all t ∈ [a, b], and the maximum norm,

‖u‖ = max {maxa≤t≤b | u(t) |, maxa≤t≤b | u′(t) |} .
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From the fact that u′′(t) = −f(t, u(t), u′(t)) ≤ 0, we obtain that u is concave
on [a, b]. Thus, we de�ne a cone P ⊂ B by

P = {u ∈ C[a, b] : u(t) ≥ 0, u is concave on [a, b], t ∈ [a, b]} ⊂ B. (9)

Furthermore, for u ∈ P if we de�ne the functionals

α(u) = maxa≤t≤b | u(t) |, β(u) = maxa≤t≤b | u′(t) |,
γ(u) = min 3a+b

4 ≤t≤ a+3b
4
| u(t) |,

then α, β, γ : P → [0, +∞) are three continuous non-negative functionals such
that ‖u‖ = max {α(u), β(u)} , and (4) and (5) hold; α, β are convex, γ is
concave and γ(u) ≤ α(u) holds for all u ∈ P .
Remark 2.1. By Lemma 2.1, we can convert the boundary value problem given
by (2) and (3) as in the following integral equation

u(t) =

∫ a

b

G(t, s)f(s, u(s), u′(s))ds, for all t ∈ [a, b], (10)

where G(t, s) is the Green's function given by (8). It is also noted that, the
Green's function G(t, s) have the following properties:
(i) G(t, s) is continuous on [a, b]× [a, b],
(ii) G(a, s) = G(b, s) = G′(a, s) = G′(b, s), for all s ∈ [a, b] and
(ii) G(t, s) ≥ 0, for all t, s ∈ [a, b].

Obviously, u = u(t), for all t ∈ [a, b] is a solution of the boundary value
problem given by (2) and (3), if and only if it is a solution of the integral
equation (10). Furthermore, if we consider a cone P on C[a, b]and de�ne an
integral operator A : P → P by

Au(t) =

∫ a

b

G(t, s)f(s, u(s), u′(s))ds, for all u ∈ P, (11)

then it is easy to see that the boundary value problem given by (2) and (3) has
a solution u = u(t) if and only if u is a �xed point of the operator A de�ned by
(11).

3. Main Results

In this section, we present and prove our main results.

Throughout this paper, we suppose that

λ = min

{∫ a+3b
4

3a+b
4

G

(
3a+ b

4
, s

)
ds,

∫ a+3b
4

3a+b
4

G

(
a+ 3b

4
, s

)
ds

}
=

(b− a)3

16
.
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Theorem 3.1. If there exist some constants r2 ≥ 4
3a+b · b1 > b1 > r1 >

0, L2 ≥ L1 > 0 such that b1
λ ≤ min

{
8

(b−a)2 · r2,
2

(b−a)2 · L2

}
and the following

conditions are satis�ed:

(H1) f(t, u, v) < min

{
8

(b− a)2
· r1,

2

(b− a)2
· L1

}
,

for (t, u, v) ∈ [a, b]× [a, r1]× [−L1, L1];

(H2) f(t, u, v) >
b1
λ
,

for (t, u, v) ∈
[

3a+ b

4
,
a+ 3b

4

]
×
[
b1,

4

3a+ b
· b1
]
× [−L2, L2];

(H3) f(t, u, v) ≤ min
{

8

(b− a)2
· r2,

2

(b− a)2
· L2

}
,

for (t, u, v) ∈ [a, b]× [a, r2]× [−L2, L2],

then the boundary value problem given by (2) and (3) has at least three positive
solutions, u1, u2 and u3 satisfying

maxa≤t≤bu1(t) ≤ r1, maxa≤t≤b‖u′1(t)‖ ≤ L1;

b1 < max 3a+b
4 ≤t≤ a+3b

4
u2(t) ≤ maxa≤t≤bu2(t) ≤ r2, maxa≤t≤b‖u′1(t)‖ ≤ L2;

maxa≤t≤bu3(t) ≤ 4

3a+ b
· b1, maxa≤t≤b‖u′3(t)‖ ≤ L2.

Proof. First, we de�ne the integral operator A : P → P by

u(t) = Au(t) :=

∫ a

b

G(t, s)f(s, u(s), u′(s))ds, for all t ∈ [a, b], u ∈ C[a, b].

(12)
Then, according to the Remark 2.1, the boundary value problem given by (2)
and (3) has a solution u = u(t) if and only if u = u(t) is a solution of the
integral equation (12).

By Arzela-Ascoli theorem given in Frechet (1906), it is obvious that A :
P → P is completely continuous. Now, we will prove that all the conditions of
Theorem 2.1 (�xed point theorem on cone due to Bai and Ge (2004)) satisfy.

If u ∈ P̄ (α, r2; β, L2), then we have α(u) ≤ r2, β(u) ≤ L2 and the condition
(H3) gives us

f(t, u(t), u′(t)) ≤ min
{

8

(b− a)2
· r2,

2

(b− a)2
· L2

}
.
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Accordingly,

α(Au) = maxa≤t≤b |
∫ a

b

G(t, s)f(s, u(s), u′(s))ds |

≤ 8

(b− a)2
· r2 ·maxa≤t≤b

∫ a

b

G(t, s)ds

=
8

(b− a)2
· r2 ·

(b− a)2

8
= r2.

Now, for u ∈ P, we have Au ∈ P . Thus Au is concave on [a, b], and

maxa≤t≤b | (Au)′(t) |= max {| (Au)′(a) |, | (Au)′(b) |} .

Consequently,

β(Au) = maxa≤t≤b | (Au)′(t) |

= maxa≤t≤b | −
∫ t

a

(s− a)f(s, u(s), u′(s))ds

+

∫ b

t

(b− s)f(s, u(s), u′(s))ds |

= max

{∫ b

a

(b− s)f(s, u(s), u′(s))ds,

∫ b

a

(s− a)f(s, u(s), u′(s))ds

}

≤ 2

(b− a)2
· L2 ·max

{∫ b

a

(b− s)ds,
∫ b

a

(s− a)ds

}

=
2

(b− a)2
· L2 ·

(b− a)2

2
= L2.

Hence,A maps P̄ (α, r2; β, L2) into itself. Similarly, if we consider u ∈
P̄ (α, r1; β, L1), then we have α(u) ≤ r1, β(u) ≤ L1 and the condition (H1)
gives us

f(t, u(t), u′(t)) ≤ min
{

8

(b− a)2
· r1,

2

(b− a)2
· L1

}
, for t ∈ [a, b],

and if we maintain the above procedure, then it is obvious that A maps
P̄ (α, r1; β, L1) into itself. Therefore, the condition (C2) of Theorem 2.1 is
satis�ed.
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To satisfy the condition (C1) of Theorem 2.1, we take u(t) = 4
3a+b · b1, for

t ∈ [a, b]. It is easy to see that

u(t) =
4

3a+ b
· b1 ∈ P̄

(
α,

4

3a+ b
· b1; β, L2; γ, b1

)
and

γ(u) = γ

(
4

3a+ b
· b1
)
> b1.

So,
{
u ∈ P̄

(
α, 4

3a+b · b1; β, L2; γ, b1

)
: γ(u) > b1

}
6= Φ.

Thus, if u(t) ∈ P̄
(
α, 4

3a+b · b1; β, L2; γ, b1

)
, then

b1 ≤ u(t) ≤ 4

3a+ b
· b1, for

3a+ b

4
≤ t ≤ a+ 3b

4
.

Now, from condition (H2), we have f(t, u(t), u′(t)) > b1
λ , for

3a+b
4 ≤ t ≤

a+3b
4 and by the de�nitions of γ and the cone P , we obtain following two cases:

(I) γ(Au) = (Au)
(
3a+b
4

)
and

(II) γ(Au) = (Au)
(
a+3b
4

)
.

In case (I), we have

γ(Au) =

∫ b

a

G

(
3a+ b

4
, s

)
f(s, u(s), u′(s))ds

>
b1
λ
·
∫ a+3b

4

3a+b
4

G

(
3a+ b

4
, s

)
ds

≥ b1
λ
· (b− a)3

16
= b1.

In case (II), we have

γ(Au) =

∫ b

a

G

(
a+ 3b

4
, s

)
f(s, u(s), u′(s))ds

>
b1
λ
·
∫ a+3b

4

3a+b
4

G

(
a+ 3b

4
, s

)
ds

≥ b1
λ
· (b− a)3

16
= b1.
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That is γ(Au) > b1, for all u ∈ P̄ (α, 4b1; β, L2; γ, b1). This proves that
the condition (C1) of Theorem 2.1 is satis�ed.

Finally, we prove that the condition (C3) of Theorem 2.1 also satis�es. If
we consider u ∈ P̄ (α, r2; β, L2; γ, b1) with α(Au) > 4

3a+b · b1, then by the
de�nition of γ and for Au ∈ P , we have

γ(Au) = min 3a+b
4 ≤t≤ a+3b

4
(Au)(t)

≥ 3a+ b

4
·maxa≤t≤b(Au)(t)

=
3a+ b

4
· α(Au)

>
3a+ b

4
· 4

3a+ b
· b1 = b1.

Thus, the condition (C3) of Theorem 2.1 is satis�ed. Hence, all conditions
of Theorem 2.1 are hold for the integral operator A de�ned by (11). Therefore,
according to the Theorem 2.1, we can say that the integral operator A has at
least three �xed points u1, u2 and u3 in P̄ (α, r2; β, L2) satisfying

u1 ∈ P (α, r1; β, L1), u2 ∈
{
P̄ (α, r2; β, L2; γ, b1) : γ(u) > b1

}
,

and

u3 ∈ P̄ (α, r2; β, L2) \
(
P̄ (α, r2; β, L2; γ, b1) ∪ P̄ (α, r1; β, L1)

)
.

(13)

In addition, since u3 satis�es α(u3) ≤ 4
3a+b · γ(u3), then

maxa≤t≤bu3(t) ≤ 4

3a+ b
· b1.

Hence, Lemma 2.1, Remark 2.1 and (13) con�rm that the boundary value
problem given by (2) and (3) has at least three positive solutions u1, u2 and
u3 satisfying

maxa≤t≤bu1(t) ≤ r1, maxa≤t≤b‖u′1(t)‖ ≤ L1;

b1 < max 3a+b
4 ≤t≤ a+3b

4
u2(t) ≤ maxa≤t≤bu2(t) ≤ r2, maxa≤t≤b‖u′1(t)‖ ≤ L2;

maxa≤t≤bu3(t) ≤ 4

3a+ b
· b1, maxa≤t≤b‖u′3(t)‖ ≤ L2.

This completes the proof.
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Furthermore, using Theorem 2.1, we obtain that

maxa≤t≤bu3(t) ≤ r2, min 3a+b
4 ≤t≤ a+3b

4
u3(t) < b1

and if for boundary value problem given by (2) and (3), the functionals α and
γ satisfy the following additional relation:

γ(u) = min 3a+b
4 ≤t≤ a+3b

4
u(t)

≥ 3a+ b

4
·maxa≤t≤bu(t)

=
3a+ b

4
· α(u), for u ∈ P,

then, we yield that maxa≤t≤bu3(t) ≤ 4
3a+b · b1.

In the above mentioned case Theorem 3.1 leads the following corollary:

Corollary 3.1. If there exist some constants

0 < r1 < b2 ≤
4

3a+ b
· b2 ≤ r2 < b3 <

4

3a+ b
· b3 ≤ · · · ≤ rn,

0 < L1 ≤ L2 ≤ L3 ≤ · · · ≤ Ln−1, n ∈ N,

such that bi+1

λ ≤ min
{

8
(b−a)2 · ri+1,

2
(b−a)2Li+1

}
and the following conditions

are satis�ed:

(H4) f(t, u, v) < min

{
8

(b− a)2
· ri,

2

(b− a)2
· Li
}
,

for (t, u, v) ∈ [a, b]× [a, ri]× [−Li, Li], 1 ≤ i ≤ n;

(H5) f(t, u, v) >
bi+1

λ
, for (t, u, v) ∈

[
3a+ b

4
,
a+ 3b

4

]
×
[
bi+1,

4

3a+ b
· bi+1

]
× [−Li+1, Li+1], 1 ≤ i ≤ n− 1,

then the boundary value problem given by (2) and (3) has at least 2n−1 positive
solutions.

Proof. We prove this corollary by using the Principle of mathematical induc-
tion.

For n = 1, from condition (H4) we get

A : P̄ (α, r1; β, L1)→ P (α, r1; β, L1) ⊂ P̄ (α, r1; β, L1),
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and hence by Schauder �xed point theorem, we yield at least one �xed point
u1 ∈ P (α, r1; β, L1) of A , i.e., the boundary value problem given by (2) and
(3) has at least one positive solution.

For n = 2, it is clear that the Theorem 3.1 holds, i.e., the boundary value
problem given by (2) and (3) has at least 2 · 2− 1 = 3 positive solutions u2, u3
and u4.

Proceeding in this way, if we consider that, for n = m the boundary value
problem given by (2) and (3) has at least 2m− 1 positive solutions, then it is
easy to prove that, for n = m+1 the boundary value problem given by (2) and
(3) has at least 2m+ 1 positive solutions.

This completes the proof.

Remark 3.1. Our Theorem 3.1 generalized Theorem 3.1 of Bai and Ge (2004)
in the case of arbitrariness of boundary points. It is because we established our
theorem under arbitrary two-point boundary value conditions, whereas Bai and
Ge (2004) used particular two-point boundary value conditions. Corollary 3.1
shows that the boundary value problem of type (2) and (3) have any number of
positive solutions under some additional conditions from our Theorem 3.1.

4. Applications

In this section, we provide an example to illustrate our main result.

Example 4.1 : Consider the following nonlinear second order two-point bound-
ary value problem:{

u′′(t) + f(t, u(t), u′(t)) = 0, t ∈ [0, 3],

u(0) = u(3) = 0,
(14)

with v = u′(t) and

f(t, u, v) =



sin t+ 9
2u

3 +
(
|v|
300

)3
; for t ∈ [0, 3], u ≤ 8,

sin t+ 9
2 (9− u)u3 +

(
|v|
300

)3
; for t ∈ [0, 3], 8 < u ≤ 9,

sin t+ 9
2 (u− 9)u3 +

(
|v|
300

)3
; for t ∈ [0, 3], 9 < u ≤ 10,

sin t+ 4500
9 +

(
|v|
2700

)3
; for t ∈ [0, 3], u > 10.
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Now, if we let r1 = 1, b1 = 2, r2 = 1000, L1 = 10, L2 = 3000, then we get

min

{
8

(b− a)2
· r1,

2

(b− a)2
· L1

}
=

8

9
,
b1
λ

=
32

9
,

min

{
8

(b− a)2
· r2,

2

(b− a)2
· L2

}
=

6000

9

and hence

f(t, u, v) <
8

9
, for 0 ≤ t ≤ 3, 0 ≤ u ≤ 1, −10 ≤ v ≤ 10;

f(t, u, v) >
32

9
, for

3

4
≤ t ≤ 9

4
, 2 ≤ u ≤ 8

3
, −3000 ≤ v ≤ 3000;

f(t, u, v) <
6000

9
, for 0 ≤ t ≤ 3, 0 ≤ u ≤ 1000, −3000 ≤ v ≤ 3000.

This means that all the assumptions of Theorem 3.1 are satis�ed. Therefore,
according to the Theorem 3.1, we can say that the boundary value problem
given by (14) has at least three positive solutions u1, u2 and u3 such that

max0≤t≤3u1(t) ≤ 1, max0≤t≤3‖u′1(t)‖ ≤ 10;

2 < max 3
4≤t≤

9
4
u2(t) ≤ max0≤t≤3u2(t) ≤ 1000, max0≤t≤3‖u′1(t)‖ ≤ 3000;

max0≤t≤3u3(t) ≤ 8

3
, max0≤t≤3‖u′3(t)‖ ≤ 3000.

5. Conclusions

In this study, we have established a general criterion for checking the exis-
tence of three positive solutions of nonlinear second order arbitrary two-point
boundary value problem given by (2) and (3) applying a �xed point theorem
due to Bai and Ge (2004). By using Theorem 3.1, we can easily checked the
existence of three positive solutions to the boundary value problem of type (2)
and (3). The result of this paper generalized the corresponding result of Bai
and Ge (2004). Our result also generalized the results of Agarwal and O'Regan
(2005), Bai and Du (2007) and Agarwal et al. (1999), but they used di�erent
�xed point theorems.

Acknowledgement

We would like to provide our sincere thanks to the honourable referees for
their valuable comments which help us to enriched the quality of this paper.

Malaysian Journal of Mathematical Sciences 347



Asaduzzaman, M. & Ali, M. Z.

References

Agarwal, R. P. and O'Regan, D. (2005). A multiplicity result for second order
impulsive di�erential equations via the leggett williams �xed point theorem.
Applied Mathematics and Computation, 161:433�439.

Agarwal, R. P., O'Regan, D., and Wong, P. J. (1999). Positive Solutions of
Di�erential, Di�erence and Integral Equations. Boston: Kluwer Academic.

Anderson, D. R. and Avery, R. I. (2002). Fixed point theorem of cone expansion
and compression of functional type. Journal of Di�erence Equations and
Applications, 8(11):1073�1083.

Avery, R. I. (1998). A generalization of leggett and williams �xed point theorem.
Mathematical Sciences Research Hot-line, 2(7):9�14.

Avery, R. I. and Henderson, J. (2000). Three symmetric positive solutions
for a second-order boundary value problem. Applied Mathematics Letters,
13(3):1�7.

Avery, R. I. and Henderson, J. (2001). Two positive �xed points of nonlinear
operators on ordered banach spaces. Communications on Applied Nonlinear
Analysis, 8:27�36.

Avery, R. I. and Peterson, A. C. (2001). Three positive �xed points of nonlin-
ear operators on ordered banach spaces. Computers and Mathematics with
Applications, 42(3-5):313�322.

Bai, Z. and Du, Z. (2007). Positive solutions for some second-order four-point
boundary value problems. Journal of Mathematical Analysis and Applica-
tions, 330:34�50.

Bai, Z. and Ge, W. (2004). Existence of three positive solutions for some
second-order boundary value problems. Computers and Mathematics with
Applications, 48:699�707.

Bai, Z., Wang, Y., and Ge, W. (2004). Triple positive solutions for a class
of two-point boundary-value problems. Electronic Journal of Di�erential
Equations, 2004(06):1�8.

Dulacska, E. (1992). The structures, soil settlement s�ects on buildings, devel-
opments in geotechnical engineering. Amsterdam: Elsevier.

Frechet, M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del
Circolo Matematico di Palermo, 22:1�74.

348 Malaysian Journal of Mathematical Sciences



Existence of Triple Positive Solutions for NL2NDO Arbitrary Two-point BVPs

Guezane-Lakoud, A. and Kelaiaia, S. (2010). Solvability of a three - point non-
linear boundary - value problem. Electronic Journal of Di�erential Equa-
tions, 139:1�9.

Guo, D. and Lakshmlkantham, V. (1988). Nonlinear Problems in Abstract
Cones. New York: Academic Press.

Henderson, J. and Wang, H. Y. (1997). Positive solutions for nonlinear eigen-
value problems. Journal of Mathematical Analysis and Applications, 208:252�
259.

Ji, H. (2017). Study on the existence of sign-changing solutions of case theory
based a class of di�erential equations boundary-value problems. Advances in
Pure Mathematics, 7:686�691.

Krasnosel'skii, M. A. (1964). Positive Solutions of Operator Equations. The
Netherlands: Noordho� LTD.

Leggett, R. W. and Williams, L. R. (1979). Multiple positive �xed points of
nonlinear operators on ordered banach spaces. Indiana University Mathe-
matics Journal, 28(4):673�688.

Lian, W. C., Wong, F. H., and Yeh, C. C. (1996). On the solutions of positive
nonlinear second order di�erential equations. Proceedings of the American
Mathematical Society, 124(4):1117�1126.

Love, A. E. H. (1944). A Treatise on the Mathematical Theory of Elasticity.
New York: Dover.

Mans�eld, E. H. (1964). The Bending and Stretching of Plates: International
Series of Monographs on Aeronautics and Astronautics: Solid and Structural
Mechanics. New York: Pergamon Press.

Prescott, J. (1961). Applied Elasticity. New York: Dover.

Soedel, W. (1993). Vibrations of Shells and Plates. Marcel, New York: Dekker
Incorporated.

Sun, Y., Liu, L., Zhang, J., and Agarwal, R. P. (2009). Positive solutions
of singular three-point boundary value problems for second-order di�erential
equations. Journal of Computational and Applied Mathematics, 230:738�750.

Timoshenko, S. P. and Gere, J. M. (1961). Theory of Elastic Stability. New
York: McGraw-Hill.

Malaysian Journal of Mathematical Sciences 349


	Introduction
	Preliminary Notes
	Main Results
	Applications
	Conclusions

