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Abstract

The main objective of this article is to define and study a kind of weak open sets called weakly
bI-open sets with respect to an ideal in bitopological spaces. Additionally, we introduce some
basic features of this notion.
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1 Introduction and Preliminary

Kelly (1963) [9] established the theory of bitopological spaces (X,=1,=2), to deal with two
topologies =1 and =2 equipped with a non-empty set X . Since then many aspects of bitopology
were investigated by severalmathematician. Ideals and local functionswith topologieswere intro-
duced by Kuratowski (1966) [10], Vaidyanathaswamy (1944) [13], Jankovic and Hamlett (1990)
[7], Abd El-Monsef et al. (1992) [5] andmany others. An ideal I is a family of all subsetsX which
will satisfy (i) P ∈ I andQ ⊂ P impliesQ ∈ I and (ii) P ∈ I andQ ∈ I implies P ∪Q ∈ I . We call
(X,=1,=2, I) as an ideal bitopological space. The concept of b-open sets has established by An-
drijevic (1996) [2] and with this concept together with an ideal, another open set called bI-open
sets has been introduced by Caksu Guler and Aslim (2005) [6] in topological spaces. Further this
notion has been studied by Akdag (2007) [1] and Ekici (2012) [4]. After that Sarma (2015) [12]
has introduced bI-open sets in an ideal bitopological spaces. Several characterisations, properties
and the connection between this and other corresponding notions are studied. Recently , Mustafa
et al. (2013) [11] has definedweakly bI-open sets with the help of ideals in topological spaces and
established several characterizations.

Formore convenient, we can specify the interior (respectively, closure) of a subsetP in an ideal
bitopological spaces (X,=1,=2, I) due to the topology =i by =i-Int(P ) (respectively, =i-Cl(P )),
for i, j = 1, 2 in which i 6= j.

Now, we recall some known definitions those will be used in this article.

If P (X) denote the power set of X in (X,=, I) , then the operator (.)∗ : P (X) −→ P (X) is
defined as a local function (1966) of a subset Q due to the topology = and an ideal I which is
defined as

Q∗(=, I) = {y ∈ X : R ∩Q /∈ I ,R ∈ =(y)},

forQ ⊂ X and =(y) = {R ∈ = : y ∈ R}. Instead ofQ∗(=, I), we can simply writeQ∗ in such cases
where there is no chance for confusion. For =∗(I) finer than =, a Kuratowski closure operator is
defined by Cl∗(Q) = Q ∪Q∗. Also, =i-Int∗(Q) denotes the interior of Q in =∗i (I) and =i-Int(Q∗j )
denotes the interior of Q∗j due to the topology =i, where

Q∗j = {y ∈ X : R ∩Q /∈ I , for every R ∈ =j(y)}.

Definition 1.1. Sarma(2015) [12] A subset P in (X,=1,=2, I) is called (=i,=j)-bI-open if P ⊂ =i-
Int(=j-Cl∗(P )) ∪ =j-Cl∗(=i-Int(P )).

Definition 1.2. Jelic (1990) [8] A subset P in (X,=1,=2) is called (=i,=j)-preopen if P ⊂ =i-Int(=j-
Cl(P )).
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2 (=i,=j)-Weakly bI-Open Sets

Definition 2.1. A subset P in (X,=1,=2, I) is called (=i,=j)-weakly bI-open(in short, (=i,=j)-WbI-
open) if P ⊂ =j-Cl(=i-Int(=j-Cl∗(P ))) ∪ =j-Cl∗(=i-Int(=j-Cl(P ))).
Here we shall denote the family of all (=i,=j)-WbI-open sets in (X,=1,=2, I) by (=i,=j)-WBIO(X).

Remark 2.1. If I and J are any two ideals in (X,=1,=2, I) in which I ⊂ J , then (=i,=j)-WBJO(X) ⊂
(=i,=j)-WBIO(X).

Remark 2.2. Each (=i,=j)-bI-open set in (X,=1,=2, I) is (=i,=j)-WbI-open. The converse may not
be true as discussed below.

Example 2.1. Suppose X = {r, s, t}, =1 = {∅, {r}, X}, =2 = {∅, {r}, {r, s}, X} and I = {∅, {r}}.
Then {r, t} is (=1,=2)-WbI-open but not (=1,=2)-bI-open.

Remark 2.3. Intersection of any two (=i,=j)-WbI-open sets of (X,=1,=2, I)may not be (=i,=j)-WbI-
open set as discussed below.

Example 2.2. Suppose X = {u, v, w, s}, =1 = {∅, {u}, {v}, {u, v}, {u, v, w}, X}, =2 = {∅, X} and
I = {∅, {w}, {s}, {w, s}}. Then the sets {u,w} and {v, w} are (=1,=2)-WbI-open sets but {u,w} ∩
{v, w} = {w} is not (=1,=2)-WbI-open set.

Theorem 2.1. Let P,Q ⊂ X . If P is (=i,=j)-WbI-open and Q ∈ =1 ∩=2, then P ∩Q is also (=i,=j)-
WbI-open.

Proof. Let P be a (=i,=j)-WbI-open set. So,

P ⊂ =j − Cl(=i − Int(=j − Cl∗(P ))) ∪ =j − Cl∗(=i − Int(=j − Cl(P ))).

Now P ∩Q ⊂ {=j-Cl(=i-Int(=j-Cl∗(P ))) ∪ =j-Cl∗(=i-Int(=j-Cl(P )))} ∩Q.

⊂ {=j-Cl(=i-Int((P ∩ Q) ∪ (P ∗j ∩ Q)))} ∪ {(=i-Int(=j-Cl(P )) ∩ Q) ∪ (=i-Int(=j-
Cl(P )) ∩Q)∗j}

⊂ {=j-Cl(=i-Int((P ∩ Q) ∪ (P ∩ Q)∗j ))} ∪ {(=i-Int(=j-Cl(P ∩ Q)) ∪ (=i-Int(=j-
Cl(P ∩Q))∗j}

= =j-Cl(=i-Int(=j-Cl∗(P ∩Q))) ∪ =j-Cl∗(=i-Int(=j-Cl(P ∩Q))).

Hence P ∩Q is (=i,=j)-WbI-open.

Theorem 2.2. Let (X,=1,=2, I) is an ideal bitopological space. If Pδ ∈ (=i,=j)-WBIO(X) for each
δ ∈ ∧, then

⋃
{Pδ : δ ∈ ∧} ∈ (=i,=j)-WBIO(X) where ∧ an index set.

Proof. Let Pδ ∈ (=i,=j)-WBIO(X). Then,

Pδ ⊂ =j − Cl(=i − Int(=j − Cl∗(Pδ))) ∪ =j − Cl∗(=i − Int(=j − Cl(Pδ))),

for each δ ∈ ∧.
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Thus,⋃
δ∈∧

Pδ ⊂
⋃
δ∈∧

{=j − Cl(=i − Int(=j − Cl∗(Pδ))) ∪ =j − Cl∗(=i − Int(=j − Cl(Pδ)))}

⊂
⋃
δ∈∧

{=j − Cl(=i − Int(Pδ ∪ (Pδ)
∗
j ))

∪{(=i − Int(=j − Cl(Pδ))) ∪ (=i − Int(=j − Cl(Pδ)))∗j}

⊂ {=j − Cl(=i − Int((
⋃
δ∈∧

Pδ) ∪ (
⋃
δ∈∧

Pδ)
∗
j ))}

∪{=i − Int(=j − Cl(
⋃
δ∈∧

Pδ)) ∪ (=i − Int(=j − Cl(
⋃
δ∈∧

Pδ))
∗
j )}

⊂ =j − Cl(=i − Int(=j − Cl∗(
⋃
δ∈∧

Pδ))) ∪ =j − Cl∗(=i − Int(=j − Cl(
⋃
δ∈∧

Pδ))).

Hence,
⋃
δ∈∧ Pδ is (=i,=j)-WbI-open.

Lemma 2.1. Sarma(2015) [12] Let P,Q ⊂ X in which Q ⊂ P . Then, Q∗i (=i|P , I|P ) = Q∗i (=i, I) ∩ P ,
for i = 1, 2.

For any subset P of (X,=1,=2, I), =i|P denote the relative topology on the subset P in which i = 1, 2.
Also, I|P = {P ∩ I : I ∈ I} be an ideal on P .

Theorem 2.3. If P ∈ (=i,=j)-WBIO(X) in (X,=1,=2, I) and Q ∈ =1 ∩ =2, then

P ∩Q ∈WBIO(Q,=1|Q,=2|Q, I|Q).

Proof. Since Q ∈ =1 ∩ =2, therefore =i-IntQ(W ) = =i-Int(W ), whereW is a subset of Q and i =
1, 2. Then, by using Lemma 2.1, we get

P ∩ Q ⊂ {=j-Cl(=i-Int(=j-Cl∗(P ))) ∪ =j-Cl∗(=i-Int(=j-Cl(P )))} ∩ Q ⊂ {((=j-Cl(=i-
Int(P ∪ P ∗j ))) ∩Q) ∩Q} ∪ {((=i-Int(=j-Cl(P ))) ∩Q) ∪ ((=i-Int(=j-Cl(P )))∗j ∩Q)) ∩Q}

⊂ {((=j-Cl(=i-Int(P ∪P ∗j )))∩Q)∩Q}∪{((=i-Int(=j-Cl(P )))∩Q)∪((=i-Int(=j-Cl(P )))∩
Q)∗j ) ∩Q}

⊂ {((=j-Cl(=i-Int((P ∩Q)∪ (P ∩Q)∗j )))∩Q)}∪{((=i-IntQ(=j-ClQ(P ∩Q)))∩Q)∪ ((=i-
IntQ(=j-ClQ(P ∩Q)∗j )) ∩Q}

⊂ {((=j-Cl(=i-Int((P∩Q)∪(P∩Q)∗j )))∩Q)}∪{((=i-IntQ(=j-ClQ(P∩Q)))∪(=i-IntQ(=j-
ClQ(P ∩Q))∗j ))(=1|Q,=2|Q,I|Q)}

= {=j-ClQ(=i-IntQ(=j-Cl∗Q(P ∩Q))} ∪ {=j-Cl∗Q(=i-IntQ(=j-ClQ(P ∩Q)))}.

Hence P ∩Q ∈WBIO(Q,=1|Q,=2|Q, I|Q).

Theorem 2.4. A subset P ⊂ X is (=i,=j)-WBIO(X) iff for all y ∈ X , there exists Q ∈ (=i,=j)-
WBIO(X) such that y ∈ Q ⊂ P .

Proof. Obvious.
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Theorem 2.5. If P ∈ (=i,=j)-WBIO(X), then =j-Cl(P ) = =j-Cl(=i-Int(=j-Cl(P ))).

Proof. Since P ∈ (=i,=j)-WBIO(X), so we have

P ⊂ =j − Cl(=i − Int(=j − Cl∗(P ))) ∪ =j − Cl∗(=i − Int(=j − Cl(P )))
⊂ =j − Cl(=i − Int(=j − Cl(P ))) ∪ =j − Cl∗(=i − Int(=j − Cl(P )))
= =j − Cl(=i − Int(=j − Cl(P ))).

Therefore, P ⊂ =j-Cl(=i-Int(=j-Cl(P ))).

Now,

=j − Cl(P ) ⊂ =j − Cl(=j − Cl(=i − Int(=j − Cl(P ))))
= =j − Cl(=i − Int(=j − Cl(P )))
⊂ =j − Cl(=j − Cl(P )) = =j − Cl(P ).

Hence =j-Cl(P ) = =j-Cl(=i-Int(=j-Cl(P ))).

Theorem 2.6. LetP,Q ⊂ X . IfP ∈ (=i,=j)-WBIO(X) andP ⊂ Q ⊂ =j-Cl∗(P ), thenQ ∈ (=i,=j)-
WBIO(X).

Proof. Since P is (=i,=j)-WbI-open set of X, therefore

P ⊂ =j − Cl(=i − Int(=j − Cl∗(P ))) ∪ =j − Cl∗(=i − Int(=j − Cl(P ))).

Also,

Q ⊂ =j − Cl∗(P ) ⊂ =j − Cl∗{=j − Cl(=i − Int(=j − Cl∗(P ))) ∪ =j − Cl∗(=i − Int(=j − Cl(P )))}
⊂ =j − Cl∗(=j − Cl(=i − Int(=j − Cl∗(P )))) ∪ =j − Cl∗(=j − Cl∗(=i − Int(=j − Cl(P ))))
= =j − Cl(=i − Int(=j − Cl∗(P ))) ∪ =j − Cl∗(=i − Int(=j − Cl(P ))).

Hence,
Q ⊂ =j − Cl(=i − Int(=j − Cl∗(Q))) ∪ =j − Cl∗(=i − Int(=j − Cl(Q)))

and consequently Q is (=i,=j)-WbI-open.

Theorem 2.7. Let (X,=1,=2, I) be an ideal bitopological space such that P ⊂ Y ⊂ X and Y ∈ =1 ∩=2.
If P ∈ (=i,=j)-WBIO(Y ) , then P ∈ (=i,=j)-WBIO(X).

Proof. Since P ∈ (=i,=j)-WBIO(Y ), therefore

P ⊂ =j − ClY (=i − IntY (=j − Cl∗Y (P ))) ∪ =j − Cl∗Y (=i − IntY (=j − ClY (P )))
= [=j − Cl(=i − IntY (=j − Cl∗Y (P ))) ∪ =j − Cl∗(=i − IntY (=j − ClY (P )))] ∩ Y
= [=j − Cl(=i − IntY (=j − Cl∗Y (P ))) ∩ Y ] ∪ [=j − Cl∗(=i − IntY (=j − ClY (P ))) ∩ Y ]

⊂ =j − Cl(=i − Int(=j − Cl∗Y (P ))) ∪ =j − Cl∗(=i − Int(=j − ClY (P )))
= =j − Cl(=i − Int(=j − Cl∗(P ) ∩ Y )) ∪ =j − Cl∗(=i − Int(=j − Cl(P ) ∩ Y ))

⊂ =j − Cl(=i − Int(=j − Cl∗(P ))) ∪ =j − Cl∗(=i − Int(=j − Cl(P ))).
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Hence, P ∈ (=i,=j)-WBIO(X).

Definition 2.2. Balasubramanian (1991) [3] A space (X,=1,=2) is said to be pairwise extremally dis-
connected if =j-closure of every =i-open set in X is =i-open.

Theorem 2.8. If P is (=i,=j)-WbI-open set in (X,=1,=2, I), where X is pairwise extremally discon-
nected then P is (=i,=j)-pre open.

Proof. Since X is pairwise extremally disconnected, therefore for P ∈ =i we have =j-Cl(P ) ∈ =i.
So =i-Int(=j-Cl(P )) ∈ =i and hence =j-Cl(=i-Int(=j-Cl(P ))) ∈ =i.

Also, since P is (=i,=j)-WbI-open, therefore we have

P ⊂ =j-Cl(=i-Int(=j-Cl∗(P ))) ∪ =j-Cl∗(=i-Int(=j-Cl(P )))

⊂ =j-Cl(=i-Int(=j-Cl(P ))) ∪ =j-Cl(=i-Int(=j-Cl(P )))

= =j-Cl(=i-Int(=j-Cl(P )))

⊂ =i-Int(=j-Cl(=j-Cl(P ))) = =i-Int(=j-Cl(P )).

Hence, P is (=i,=j)-pre open.

Definition 2.3. A subsetP in (X,=1,=2, I) is called (=i,=j)-WbI-closed ifX\P is (=i,=j)-WbI-open.

Theorem 2.9. A subset P ⊂ X is (=i,=j)-WbI-closed if =j-Int(=i-Cl(=j-Int∗(P ))) ∩ =j-Int∗(=i-
Cl(=j-Int(P ))) ⊂ P .

Proof. Follows from the definition.

Theorem 2.10. If P ⊂ X is (=i,=j)-WbI-closed, then =j-Int(=i-Cl(=j-Int(P )) ⊂ P .

Proof. Since P is (=i,=j)-WbI-closed, therefore X \ P is (=i,=j)-WbI-open. So, by definition we
have

X \ P ⊂ =j-Cl(=i-Int(=j-Cl∗(X \ P ))) ∪ =j-Cl∗(=i-Int(=j-Cl(X \ P )))

⊂ =j-Cl(=i-Int(=j-Cl(X \ P ))) ∪ =j-Cl(=i-Int(=j-Cl(X \ P )))

= X \ =j-Int(=i-Cl(=j-Int(P ))).

Hence, =j-Int(=i-Cl(=j-Int(P )) ⊂ P .

Definition 2.4. A subsetN of (X,=1,=2, I) is called a (=i,=j)-weakly bI-neighbourhood of a point y of
X if there exists a (=i,=j)-WbI-open set P of X such that y ∈ P ⊂ N .

Theorem 2.11. A subset P of (X,=1,=2, I) is (=i,=j)-WbI-open if and only if P is a (=i,=j)-weakly
bI-neighbourhood of each of its points in X .

Proof. First, suppose that P be (=i,=j)-WbI-open. Now, for all y ∈ P , we have y ∈ P ⊂ P and
P is (=i,=j)-WbI-open. This implies thatP is a (=i,=j)-weakly bI-neighbourhood for each points.
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Conversely, let P be a (=i,=j)-weakly bI-neighbourhood for each points. Thus, for all y ∈ P , there
exists a (=i,=j)-WbI-open setUy of (X,=1,=2, I) such that y ∈ Uy ⊂ P . ThenP =

⋃
{Uy : y ∈ P}.

So, by Theorem 2.2 we have P is (=i,=j)-WbI-open in X .

Definition 2.5. A point y in (X,=1,=2, I) is called (=i,=j)-weakly bI-limit point of a subset P of X if
for all (=i,=j)-WbI-open set V in X containing y such that V ∩ (P \ {y}) 6= ∅.

The set of every (=i,=j)-weakly bI-limit points of P is called (=i,=j)-weakly bI-derived set of P and
we denote it by (=i,=j)-WbI-D(P ).

Theorem 2.12. A subset P ⊂ X is (=i,=j)-WbI-closed iff it contains all of its (=i,=j)-weakly bI-limit
points .

Proof. Let P be (=i,=j)-WbI-closed. Suppose if possible, y is (=i,=j)-weakly bI-limit point of P
such that y ∈ X \ P . Then X \ P is (=i,=j)-WbI-open in X containing y. So P ∩ (X \ P ) 6= ∅, a
contradiction.

Conversely, suppose that P contains all of its (=i,=j)-weakly bI-limit points. Then, for all y ∈ X \
P , there exists a (=i,=j)-WbI-open set V containing y such that P ∩V = ∅. That is y ∈ V ⊂ X \P .
Therefore, by Theorem 2.4,X\P is (=i,=j)-WbI-open and henceP is (=i,=j)-WbI-closed set.

Theorem 2.13. For any two subsets P andQ of (X,=1,=2, I), the conditions stated below are equivalent:

(a) (=i,=j)-WbI-D(∅) = ∅.

(b) If P ⊂ Q, then (=i,=j)-WbI-D(P ) ⊂ (=i,=j)-WbI-D(Q).

(c) (=i,=j)-WbI-D(P ∩Q) ⊂ (=i,=j)-WbI-D(P ) ∩ (=i,=j)-WbI-D(Q).

(d) (=i,=j)-WbI-D(P ) ∪ (=i,=j)-WbI-D(Q) ⊂ (=i,=j)-WbI-D(P ∪Q).

Proof. Proofs are easy, so omitted.

Definition 2.6. Let P be a subset of (X,=1,=2, I). The (=i,=j)-WbI-interior of P is the union of every
(=i,=j)-WbI-open sets contained in P and we denote it by (=i,=j)-WbI-Int(P ).
The (=i,=j)-WbI-closure of P is the intersection of every (=i,=j)-WbI-closed sets containing P and we
denote it by (=i,=j)-WbI-Cl(P ).

Theorem 2.14. For a subset P of (X,=1,=2, I),

(a) (=i,=j)-WbI-Int(P ) is (=i,=j)-WbI-open.

(b) (=i,=j)-WbI-Cl(P ) is (=i,=j)-WbI-closed.
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(c) P is (=i,=j)-WbI-open if and only if P = (=i,=j)-WbI-Int(P ).

(d) P is (=i,=j)-WbI-closed if and only if P = (=i,=j)-WbI-Cl(P ).

Proof. Obvious.

Theorem 2.15. Let P ⊂ X . A point y ∈ (=i,=j)-WbI-Cl(P ) if and only if P ∩Q 6= ∅, for all (=i,=j)-
WbI-open set Q of X containing y.

Proof. Let y ∈ (=i,=j)-WbI-Cl(P ) and Q be (=i,=j)-WbI-open such that y ∈ Q. Also, suppose
that P ∩Q = ∅. Therefore P ⊂ X \Q and X \Q is (=i,=j)-WbI-closed, which shows that

y ∈ (=i,=j)−WbI − Cl(P ) ⊂ (=i,=j)−WbI − Cl(X \Q) = X \Q.

So, we have y ∈ X \Q, a contradiction. Hence P ∩Q 6= ∅.

Conversely, let P ∩Q 6= ∅, for all (=i,=j)-WbI-open set Q in X containing y.

Again, let y /∈ (=i,=j)-WbI-Cl(P ). So, there exists a (=i,=j)-WbI-closed set U of X such that
P ⊂ U and y /∈ U . Nowwehave y ∈ X\U , inwhichX\U is (=i,=j)-WbI-open and (X\U)∩P = ∅,
a contradiction to our supposition. Hence, y ∈ (=i,=j)-WbI-Cl(P ).

Theorem 2.16. For a subset P of (X,=1,=2, I),

(a) (=i,=j)-WbI-Cl(X \ P ) = X \ (=i,=j)-WbI-Int(P ).

(b) (=i,=j)-WbI-Int(X \ P ) = X \ (=i,=j)-WbI-Cl(P ).

Proof. (a) Suppose y /∈ (=i,=j)-WbI-Cl(X \P ). Therefore, there exists a (=i,=j)-WbI-open setQ
inX such that y ∈ Q andQ∩ (X \P ) = ∅. Since y ∈ Q, so we have y /∈ X \P and so y ∈ P . Thus,
we get y ∈ Q ⊂ P and so y ∈ (=i,=j)-WbI-Int(P ). This shows that y /∈ X \ (=i,=j)-WbI-Int(P ).
Consequently, X \ (=i,=j)-WbI-Int(P ) ⊂ (=i,=j)-WbI-Cl(X \ P ).

Conversely, suppose that y /∈ X \ (=i,=j)-WbI-Int(P ). Then we have y ∈ (=i,=j)-WbI-Int(P )
and therefore there exists a (=i,=j)-WbI-open set Q in X containing y such that y ∈ Q ⊂ P .
Thus, we get Q ∩ (X \ P ) = ∅ and y /∈ (=i,=j)-WbI-Cl(X \ P ). Thus (=i,=j)-WbI-Cl(X \ P ) ⊂
X \ (=i,=j)-WbI-Int(P ). Hence (=i,=j)-WbI-Cl(X \ P ) = X \ (=i,=j)-WbI-Int(P ).

(b) It is similar to the proof of (a).
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3 Conclusion

The bitopological spaces was first introduced by Kelly in [9], then later was studied by many
researchers. The ideals and local functions with topologies were also introduced and related open
sets were defined and several related properties and characterization studied by several mathe-
maticians. In this present work we extended the work in the literature by defining a new weak
open sets and called them weakly bI-open sets with respect to an ideal in bitopological spaces.
Further, we introduced and proved some basic related properties.
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