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ABSTRACT 

Adaptive cluster sampling (ACS) is appropriate for rare clustered populations with 
localization tendencies. Up to now, it has been used exclusively for investigating 
spatial-scale problems rather than temporal-scale such as this study is dealing with, i.e. 
sediment transport in rivers. Suspended sediment load is carried mostly during 
relatively short periods coincide with high flows otherwise negligible. In ACS, more 

samples from critical river stages can be taken with respect to the aggregation 
tendencies of sediment loads during transport; thus increasing the level of 
representativeness of samples. Adoption of ACS to this new area needs further 
verification and adaptation such as definition of the sampling unit, population frame, 
neighborhood relation, and threshold. In this study, several scenarios were defined for 
the purpose of evaluating the ACS in sediment estimation. Numerous sample sets were 
taken from intensive discharge-load records of Sg. Pangsun River, Malaysia.  These 
sample sets are different with respect to initial sample size, neighborhood relation, and 

discharge threshold. Total suspended sediment loads were then estimated using 
modified Horvitz-Thompson method. The comparison made between the symmetric 
neighborhood relation and the forward method suggested in this study showed that the 
latter could be used instead of the former in sediment studies without losing the 
accuracy. The findings also suggested the flow duration curve is a useful tool for 
ranking initial samples in order to determine an optimum discharge threshold. 
 
Keywords: Adaptive Cluster Sampling, Sediment load estimation, Sg. Pangsun, 

Accuracy, Flow Duration Curve. 
 
 

INTRODUCTION 

Most water quality monitoring programs are conducted in accordance 

with continuous recording of flow discharges and discrete fixed-interval 

(similar to systematic) sediment sampling plans. Based on the collected 

records for a study period, the total sediment load is estimated using flow 
duration and sediment rating curves (Vanoni 1980). Several studies have 

shown that this method most often significantly underestimates the long-term 

sediment transport rates as much as 50 to 60 % and even more (Walling and 
Webb 1981, Thomas 1985, Ferguson 1986, Koch and Smillie 1986, Thomas 
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1988, Walling and Webb 1988, Cohn, Delong, Gilroy, Hirsch and Wells 

1989, Asselman 2000, Cohn 2005).  
 

In response to the shortcomings of sediment rating method, the 
concept of using sampling techniques to improve sediment load estimation 

was largely proposed by Thomas (1985). Essentially, the survey sampling 

approach comprises of two parts. The first pertains to the design of selecting 

sample from the study population. The second deals with a special estimator 
for estimating population parameters such as total (load).  

 

Three approaches had been successfully employed in previous studies 

on this topic in the literature, including: Selection At List Time or SALT 

(Thomas 1985), time-stratified (Thomas and Lewis 1993), and flow-stratified 
(Thomas and Lewis 1995). With these designs, the inclusion probabilities of 

the sampling units from high flows are more than low flows. Cohn (1995) 

acknowledged these approaches as innovations in the river sediment 
estimation area. 

 

The uses of these sampling designs are only restricted to the sediment 
gauging stations on rivers with programmable sampling devices. On the other 

hand, the common feature in the majority of water quality monitoring 

programs is manual sampling (Degens and Donohue 2002). Thus, another 
sampling technique is required for such gauging sites.  
 

Adaptive Cluster Sampling 

Adaptive cluster sampling (ACS) was introduced by Thompson (1992). This 

design is appropriate when the population is rare and highly clustered. In 
ACS, the investigator selects a sample set from the population in two steps. 

First, an initial sample set is taken; then for important elements (samples with 

high load for river sediment), adjacent units (neighbors) are chosen in the 

next step based on a threshold. With this design, a final sample set is 
produced which constitutes of several networks; some of them have only one 

unit (do not meet the condition) and some have more. The ACS procedure 

requires continuous symmetric sampling in the neighborhood until the 
measured variable drops below the threshold.  

 

The application of ACS on spatial-scale populations such as wild animal, 

fish, forestry and soil was widely used in recent years. In these studies, higher 
efficiency of ACS was shown compared to conventional samplings when the 

study population is rare with high aggregation (Table 1). Arabkhedri et al. 

(2007) who conducted a study by the use of ACS on sediment load estimation 
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in Gorgan-Rood river, Iran showed that it produces a better result compared 

to the conventional sediment rating curve.  
 

TABLE 1: Some studies using adaptive cluster sampling 

Study discipline Reference 

Surveying pacific hake larvae Lo et al. (1997) 
Estimating three rare trees in forest with different aggregation Acharya et al. (2000) 
Estimating fish populations with different aggregation Su and Quinn (2003) 
Estimating number of workers earning from different single-
industries 

Chaudhuri et al. (2005)  

Mapping pollutant in soil Juang et al. (2005) 

 

Sediment concentration records are a temporal-scale population. For such a 

population, the use of symmetric neighborhood relation is not feasible in the 
field because the individual who samples cannot take preceding units. 

Therefore, in the case of temporal-scale population, an altered forward 

version of ACS is essential. The applicability of Symmetric Neighborhood 

Relation (SNR) was also reported problematic for some spatial-scale 
populations (Lo, et al. 1997, Salehi and Smith 2005). 

 

Conducting Adaptive Cluster Sampling Design for River Sediment 

For conducting an ACS in river suspended sediment as a temporal-scale 

study, some technical terms should be adapted (Table 2). In addition, ACS 

needs a condition or criteria, defined as a threshold for the variable of interest 
– sediment concentration values - as is the case of this study. However, 

sediment concentration is not known until the end of laboratory analysis. In 

this situation, discharge can be used as an auxiliary variable, because flow 

discharge is often used to correlate sediment, as in a sediment rating curve. 
 

Figure 1 shows the effect of using the magnitude of discharge threshold (DT) 

on the number of additional samples (cluster size) during a storm hydrograph 

schematically. Each unit on the x -axis comprises a sampling unit or a time 

interval (refer to Table 2). The flow hydrograph exceeded two DTs -140 and 
200 L/s.  
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TABLE 2: Adaptation of some survey sampling technical terms for river sediment study 

No Item Definition 

1 Population  
A time continuous measurement of sediment concentration 
or load in a study period. Population is divided into N time 
intervals or sampling units. 

2 Sampling unit  

Each sampling unit refers to a short interval with relatively 
constant suspended sediment load. It could vary from 
several minutes in small flashy basins to even days in very 

large ones (Thomas 1985).  

3 Observation unit  
An observation unit is a representative small water sample 
collected in a gauging site during a sampling unit (time 
interval).  

4 Variable(s) of interest  

Water samples are analyzed in laboratory for measuring 
sediment concentration. The concentration may be used to 
compute corresponding load. These two values represent 
interested variables most of the time. 

5 Auxiliary variable(s)  
Other recorded variables such as water stage, discharge 
and turbidity during sampling from river are auxiliary 
variables. 

6 Target population  
It means a complete collection of sediment concentration 
or sediment load records from all sampling units during the 
study period.  

7 Initial sample set 

All n chosen observation units with a sampling design is 

called sample in text books.  However, to prevent 
confusion with water sample, sample set substitutes this 
term in the current study. Fixed-interval sampling is 
suggested in this study because it is well known course for 
hydrologists. 

8 Final sample set  
The initial sample set and additional adaptive samples in 
the neighborhood constitute the final sample set.  

9 Sample size  
It refers to number of observations in corresponding initial 
or final sample set. 

 

In Figure 1 if the initial sample set intersects the flow hydrograph on the 15
th

 

day (by intersection a , an initial sampling unit), it can be seen that the lower 

discharge threshold requires significantly more additional units than the 

higher threshold with respect to neighborhood relation. The higher threshold 

(200 L/s) has shorter base-time of a storm hydrograph leading to a smaller 
cluster size - 17 units compared to 31. If the initial sample set intersects the 

hydrograph on the 30
th
 day (Intersection b ), no additional unit would be 

chosen for the threshold 2; but for threshold 1, the cluster size is still 31 units.  
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Figure 1: Effect of discharge threshold magnitude on cluster size in a storm hydrograph 

 

Figure 2 is a flowchart showing the process of ACS with forward 

neighborhood relation (FNR). The person-in-charge for sampling must visit 

the gauging site, takes sediment sample, and records the instantaneous 
discharge (ID) in accordance with a predetermined time schedule. Based on 

discharge observation and a predetermined DT, he then makes a decision, 

whether he should continue taking the sample in the next sampling unit (i.e. 
next time period or adjacent neighbor) or not.  

 

In other words, when the observed discharge exceeds the predetermined DT 

(Figure 2), he will take a sequence of samples in the subsequent time periods 
until the ID drops below the threshold. Otherwise, he will take the next 

sample according to the time schedule.  

 
 

 

 
 

 

 

 
 

 



Adaptive Cluster Sampling for a Temporal-Scale Population 

 

58 Malaysian Journal of Mathematical Sciences 

 

Start 

Time table for fixed-interval 

sampling, Discharge 

Threshold (DT)  

Take sediment sample and check Instantaneous 

Discharge (ID) 

ID > DT 

Take sample, go to the next 

sampling unit and check the ID 

ID > DT  

Yes 

Yes 

No 

No 

 

 

 

 

 

 

 

 

 

 

Figure 2: Flow chart of adaptive cluster sampling with forward neighborhood 

 

Although the symmetric ACS is not applicable in river sediment field 
sampling, it can be simulated based on available continuous data for 

evaluation purpose. The first three steps of sampling with SNR are similar to 

the FNR. If the observed instantaneous discharge exceeds the discharge 
threshold, then additional samples are taken from preceding units as well as 

follow-up units.     
 

 

Choosing Discharge Thresholds 

Choosing an appropriate threshold by ranking the values of all initial samples 

had been suggested to manage the number of additional samples in spatial-

scale studies (Thompson 1996). As stressed earlier, this method is not 
possible in river sediment study, since discharges of forthcoming days, which 

is time-scale based, are not known. Therefore, this study has made use of the 

flow duration curve (FDC) to determine the threshold. FDC is a plot showing 
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the percentage of time in historical record that flow in a stream is likely to 

equal or exceed any given magnitude. 
 

This study was designed to evaluate the performance of ACS in river 
suspended sediment load sampling and estimating –as a temporal-scale 

problem- including the following aspects:  
 

− how the ACS with SNR performs in sediment load estimation 

− how the ACS by FNR works compared with the SNR  

− the effect of DT magnitudes on load estimations 

− the effect of sampling frequency or sample size  
 

The study was performed in Sg. Pangsun (Figure 3), a small steep 

undisturbed upland catchment near Kuala Lumpur, which supplies water to a 

mini hydroelectric power station. The climate is equatorial characterized by 

high humidity, high rainfall and uniform annual temperature. The data used 
(including continuous records of river flow and sediment) had been collected 

in 1997 by Geoffery (1999). He had measured flow and sediment 

concentration using water level recorders and Total Suspended Solid 
Analyzer respectively for 8 months within every 15 minutes time interval.  

 

 

SAMPLING SIMULATION, LOAD ESTIMATION AND 

COMPARISON 

To extract required initial sample sets, calendar-based sampling from 

the entire population was simulated first under 10 different time schedules 

each in replicates of 50. In order to understand the performance of ACS, a 

wide range of sample sizes from 50 to around ¼ of population size were 
considered. 
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Figure 3: Location of study site (With small changes after Lai and Detphachanh 2006) 

 

We chose 3 different DTs for the evaluation of ACS using the FDC of 
study river (Figure 4). Prior choosing these DTs, several trials were carried 

out to understand the behavior of different levels. These trials demonstrated 

that the ratio of additional adaptive samples to the corresponding initial 

sample size vary from one sample set to another, but decreases by increasing 
the size of initial sample size.  Therefore, first a “reference” DT was chosen 

using the FDC. The selection of this DT was a little subjective, however it 

was chosen in a manner that it never produces additional adaptive samples 
more than around twice the corresponding initial sample size. A DT exceeded 

2.5% of time showed appropriate results. In the next step, two new DTs were 

also considered at twice and half the occurrence probability of the reference 
DT respectively (i.e. discharge exceeded 5 and 1.25% of time). Table 3 
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shows the selected DTs. They are called high, medium (or reference 

discharge) and low in this paper in accordance with their magnitudes. Table 3 
also shows all possible additional units for the selected DTs.  

 

 
 

Figure 4: Flow duration curve 

 

 

TABLE 3: Discharges exceeding selected thresholds using flow duration curve 

Discharge 

frequency 

Designation Discharge 

(L/s) 

Number 

of clusters 

Number of 

additional 
samples 

FDC 5 Low DT 142.5 19 1175 

FDC 2.5  Medium/Reference DT 170.7 16 587 

FDC 1.25 High DT 208.6 14 294 

Example: FDC5= Flow duration Curve exceeds 5% of time, DT= Discharge Threshold, 

 

Figure 5 shows the combination of parameters influencing the adopted 

ACS. The intersection of two neighborhood relationships (symmetric and 
forward) and the three DTs produced six combinations. All sample sets that 

were the same regarding these two parameters were grouped under a 

“scenario” in this study. As shown in Figure 5, each scenario was simulated 

with ten different sizes of initial sample sets creating 60 new combinations, 
which were essentially the “treatments”. The simulation for treatments each 

in replicates of 50 produced 3000 “final adaptive sample sets” which 

eventually resulted in 3000 “estimates” with the Horvitz-Thompson 
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2 Neighborhood 

relationships 

6 Scenarios 

3 Discharge 
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Estimator 

estimator. The suitability of this estimator compared to the Hansen-Hurwitz 

was reported by Salehi (2003). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5: Concepts of scenarios, treatments and estimations 

 

Thompson (1992) presented the modified Horvitz-Thompson 

estimator for ACS. If the initial sample set size n is taken by random 

sampling without replacement from a population size N and 
k

x denotes the 

number of units in the thk network, then the probabilities of intersecting 

initial sample set and networks can be calculated by:   
 

                                   1
k

k

N x N
a

n n

−   
= −    

   
                                          (1) 
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The total can be calculated by applying the modified Horvitz-Thompson 

estimator to the final sample set:  

                                            �
*

1

k k k
HT

k
k

y z
T

a=
=∑                                                 (2) 

where,  

�
HTT is the estimator of total 

k  is total number of distinct networks in the population  
*

k
y  is total of y  values in the network k . For every network with one unit 

*

k
y y=   

k
z  is an indicator equal one if any unit of the thk network is in the initial 

sample, equal zero otherwise. 
 

Computer codes written in MATLAB software were developed for 

extracting several thousand intended sample sets and estimating their 

corresponding total sediment load. Knowing the total observed load and total 
estimated sediment loads, treatments were compared with respect to the 

unbiasedness, precision and accuracy using the average percent error, 

coefficient of variation (CV), and normalized root mean square deviation 
(NRMSD) respectively. The NRMSD incorporates the effect of variance and 

bias into a single measure. It is calculated as:  
 

�

� �( )
2

s s

s
s

V Q Bias Q
NRMSD Q

Q

   +
     =

 
                              (3) 

where �
s

Bias Q 
 

and �
s

V Q 
 

are the bias and variance respectively and 
s

Q is 

the observed load. Treatments with small �
s

NRMSD Q 
 

were considered 

more accurate. Zamyadi et al. (2007) have recently employed root mean 

square error to compare different strategies of load estimation in Canada. 

 

RESULTS 

Sediment loads were estimated for 6 scenarios which are given in the 
following two subsections with respect to the neighborhood relation:  

Adaptive Cluster Sampling with Symmetric Neighborhood Relation 

Table 4 shows some experimental results for the treatments with SNR. From 

column 3, it is apparent that the number of clusters is a function of DT. For 
example, the average number of clusters for the largest initial sample (5000) 

of low DT (FDC5) is only 4763 about 169 less than the analogous number of 
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clusters for the high DT (FDC1.25). This is attributed to the higher possibility 

of merging nearby clusters in the low DT case.  
 

The fifth column of Table 4 and Figure 6A demonstrate that the discharge 

thresholds significantly affect the number of additional adaptive samples. 
These results show a sharp rising trend of additional adaptive samples for 

smaller initial sample sets (size 50 to 500) followed by a gentle rising for 

larger sample sets. In fact, several important units in the large size sample 

sets belong to initial samples rather than the additional adaptive samples. The 
number of additional adaptive samples in each low level discharge is twice of 

the next higher one, because of their occurrence probabilities.  

 
TABLE 4: Descriptive statistics for scenarios with SNR* 

Scenario ISS NC 
Mean 
FSS 

NAS 
MeanEr 

(%) 
CV 

NRMSD 
 

S
N

R
-F

D
C

5
 

50 50.00 779.04 729.04 26.53 16.41 0.34 
150 146.98 1021.32 874.34 6.64 7.54 0.10 
300 292.04 1252.24 960.20 5.05 5.28 0.08 
500 484.52 1518.18 1033.66 5.12 3.63 0.06 

1000 964.22 2086.22 1122.00 4.12 0.37 0.04 
1500 1439.68 2577.36 1137.68 1.84 0.31 0.02 
2000 1915.80 3061.96 1146.16 0.98 0.22 0.01 
3000 2866.46 4019.78 1153.32 0.29 0.21 0.00 
4000 3814.68 4969.12 1154.44 0.05 0.15 0.00 
5000 4762.86 5918.22 1155.36 -0.06 0.11 0.00 

S
N

R
-F

D
C

2
.5

 

50 49.98 154.32 104.34 2.80 42.41 0.44 
150 149.78 464.22 314.44 17.77 10.55 0.22 
300 298.38 717.68 419.30 9.89 6.34 0.12 
500 495.32 952.88 457.56 4.44 8.79 0.10 

1000 986.28 1515.04 528.76 6.71 1.02 0.07 
1500 1475.88 2033.12 557.24 4.53 0.55 0.05 
2000 1963.78 2531.16 567.38 3.10 0.29 0.03 
3000 2937.54 3507.16 569.62 1.72 0.22 0.02 
4000 3916.80 4487.20 570.40 1.32 0.20 0.01 
5000 4886.02 5456.40 570.38 1.07 0.12 0.01 

S
N

R
-F

D
C

1
.2

5
 

50 50.00 62.40 12.40 -24.77 46.77 0.43 
150 150.00 219.68 69.68 14.42 28.09 0.35 
300 299.84 411.40 111.56 0.56 23.41 0.24 
500 499.82 709.58 209.76 24.65 13.24 0.30 

1000 995.82 1236.86 241.04 10.29 2.98 0.11 
1500 1491.12 1754.22 263.10 6.59 0.61 0.07 
2000 1986.70 2256.00 269.30 3.69 0.41 0.04 
3000 2967.34 3245.40 278.06 1.36 0.29 0.01 
4000 3963.56 4242.78 279.22 0.53 0.25 0.01 
5000 4932.34 5211.66 279.32 0.12 0.25 0.00 

*SNR=Symmetric neighborhood relation, FDC5 & 2.5 & 1.25 are discharges exceed 5 & 2.5 & 1.25 % of 

time in flow duration curve,  ISS= Initial sample size, NC=Number of cluster, MeanFSS=Average final 

sample size, NAS= Number of additional adaptive samples, CV= Coefficient of variation, 

MeanEr=Average error, NRMSD=Normalized root mean square deviation 
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The fifth column of Table 4 and Figure 6A demonstrate that the discharge 

thresholds significantly affect the number of additional adaptive samples. 
These results show a sharp rising trend of additional adaptive samples for 

smaller initial sample sets (size 50 to 500) followed by a gentle rising for 

larger sample sets. In fact, several important units in the large size sample 
sets belong to initial samples rather than the additional adaptive samples. The 

number of additional adaptive samples in each low level discharge is twice of 

the next higher one, because of their occurrence probabilities.  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Comparison of SNR scenarios with respect to number of additional samples and NRMSD 

 
As shown in column 6, Table 4, ACS-SNR mostly overestimates the mean 

load for small and medium (up to 1500 or 2000) initial sample sizes. It then 

gets almost unbiased for large and very large initial sample sizes (>2000). 
The trend of mean percent error for the low DT is quite steady, starts from a 

high value gradually decreases to unbiased. Whereas, irregularities are shown 

in mean percent error trend for the UCS-YFDC1.25 and UCS-YFDC2.5 
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scenarios (the high and medium DTs). Note that the smallest final sample 

size for the low DT is 780 compared to 154 and 62 for the other scenarios. 
 

Regarding the CV, all scenarios show similar trends; start from a high value 

for the smallest initial sample size, gradually drop to less than one for the 

largest initial sample size (Column 7, Table 4). Although, the low DT shows 
better performance regarding the CV compared to other scenarios for similar 

initial samples; the relation is inverse considering final adaptive sample size.  
 

It is apparent from subplot B of Figure 6 that NRMSDs of estimations mostly 
show a negative correlation with final sample size except an irregularity for 

the FDC1.25. They became almost zero for large sample sizes.  
 

NRMSD for final sample sizes smaller than 500 is not better than 0.22, 
however, a few good results (NRMSD≈0.10) are obtained for sample sets 

with a size around 1000.  

 

Adaptive Cluster Sampling with Forward Neighborhood Relation  

Table 5 presents the results obtained from the simulations of ACS with FNR. 

Number of clusters for all treatments in this table are only one or two units 

less than the analogous values in SNR scenarios (Table 5) revealing that FNR 
does not affect the number of clusters very much.  

 
TABLE 5: Descriptive statistics obtained for scenarios with FNR* 

 

Scenario ISS NC 
Mean 
FSS 

NAS 
MeanEr 

(%) 
CV 

NRMSD 
 

F
N

R
-F

D
C

5
 

50 50.00 380.38 330.38 -35.90 21.99 0.39 
150 147.00 817.94 670.94 -30.07 15.52 0.32 
300 291.92 1084.70 792.78 -21.19 4.29 0.21 
500 484.70 1349.18 864.48 -18.38 7.96 0.19 
1000 964.18 1944.92 980.74 -13.85 5.62 0.15 
1500 1441.88 2472.08 1030.20 -10.87 3.78 0.11 
2000 1916.42 2974.96 1058.54 -8.16 3.00 0.09 
3000 2865.20 3957.44 1092.24 -4.50 1.59 0.05 
4000 3821.46 4930.26 1108.80 -2.85 0.95 0.03 
5000 4761.62 5882.10 1120.48 -1.85 0.59 0.02 

*FNR=Forward neighborhood relation, FDC5 & 2.5 & 1.25 are discharges exceed 5 & 2.5 & 1.25 % of 

time in flow duration curve,  ISS= Initial sample size, NC=Number of cluster, MeanFSS=Average final 

sample size, NAS= Number of additional adaptive samples, CV= Coefficient of variation, 

MeanEr=Average error, NRMSD=Normalized root mean square deviation 
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TABLE 5 (continued): Descriptive statistics obtained for scenarios with FNR* 

 
F

N
R

-F
D

C
2
.5

 

50 50.00 98.28 48.28 -30.26 36.06 0.39 
150 149.92 319.94 170.02 -22.65 21.00 0.28 
300 298.42 573.30 274.88 -14.15 5.32 0.15 
500 495.38 841.58 346.20 -15.66 9.20 0.17 
1000 986.10 1415.06 428.96 -12.07 5.00 0.13 
1500 1474.26 1938.06 463.80 -10.54 4.45 0.11 
2000 1962.92 2452.80 489.88 -7.32 3.42 0.08 
3000 2932.52 3451.84 519.32 -4.84 1.50 0.05 
4000 3903.10 4436.26 533.16 -3.37 0.93 0.03 
5000 4886.44 5428.28 541.84 -2.57 0.75 0.03 

F
N

R
-F

D
C

1
.2

5
 

50 50.00 56.54 6.54 -28.99 46.41 0.44 
150 149.96 177.62 27.66 -28.34 20.69 0.32 
300 300.00 366.66 66.66 -22.64 16.25 0.26 
500 499.48 616.84 117.36 -19.65 14.46 0.23 
1000 996.56 1159.28 162.72 -20.54 13.70 0.23 
1500 1492.42 1686.70 194.28 -15.53 6.39 0.16 
2000 1987.32 2200.84 213.52 -12.73 8.97 0.15 
3000 2976.62 3212.16 235.54 -7.15 4.76 0.08 
4000 3957.56 4206.10 248.54 -4.09 1.68 0.04 
5000 4943.76 5198.44 254.68 -3.02 1.25 0.03 

*FNR=Forward neighborhood relation, FDC5 & 2.5 & 1.25 are discharges exceed 5 & 2.5 & 1.25 % of 

time in flow duration curve,  ISS= Initial sample size, NC=Number of cluster, MeanFSS=Average final 

sample size, NAS= Number of additional adaptive samples, CV= Coefficient of variation, 

MeanEr=Average error, NRMSD=Normalized root mean square deviation 

 
 

Figure 7A shows the number of additional adaptive samples for ACS-FNR 

scenarios. It can be compared to Figure 6A of SNR that shows similar trends 
for different analogous scenarios. The number of additional samples for the 

smallest initial sample set of FNR scenarios are almost half of their analogous 

values with SNR. However, for the largest sample size, the former requires 
about 90% of additional samples compared to the SNR. 

 

Column 6, Table 5 presents percent of mean error for estimated loads. It 

underestimates the load by -30 to -40 % with the initial sample set size 50. 
Mean error shows an ascending trend for all scenarios. The mean percent 

error for largest sample size is almost near zero.  
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Figure 7: Comparison of FNR scenarios with respect to number of additional samples and NRMSD 

 

 

As shown in Column 7, Table 5, the trend of coefficient of variation for all 
three scenarios are similar. The CV values are near zero for very large sample 

sizes.  

 

The last column of Table 5 provides the value of NRMSD and Subplot B of 
Figure 7 compares scenarios graphically. NRMSD shows negative correlation 

with final sample size, however like as SNR. Nevertheless, the amounts of 

calculated NRMSDs for FNR are a little higher than their analogous values 
for SNR. For example, as Table 5 represents the minimum NRMSD with 

SNR is zero corrected to two decimal places. In comparison, the least 

NRMSD of FNR is not better than 0.03. 
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As it is apparent from Figure 7B, surprisingly the amount of NRMSD for 

estimates of FDC2.5 is the least and better than FDC1.25 and FDC5 
respectively. This finding is different with the result obtained from SNR 

scenarios.  

 

 

DISCUSSION 

So far, a number of scenarios and treatments on the use of ACS for 
sediment load estimation were compared under two SNR and FNR 

categories. The scenarios and treatments differed by the input parameters 

including neighborhood relation, discharge threshold, and initial sample size. 
The significance of related input parameters to achieve accurate sediment 

load is evaluated in the next three subsections.  

 

The Effect of Initial Sample Size 

Looking at the results of SNR scenarios show large variations and 

irregularities of mean percent error or overestimation for treatments with 

small and even medium initial sample sizes. The irregularities included 
instabilities in trends of mean percent errors for initial sample sizes ≤1500. 

The estimates for large (≥2000) initial sample sets showed relatively small 

percent error (<5) and very low CV (even <1 in several treatments). This 

result is consistent with Thompson (1992) who found ACS is more effective 
with high rate sampling of initial sample (even 25 or 50% of population). 

Therefore, taking an initial sample set with size at least 10-15 % of the 

concerned population would be necessary to achieve relatively accurate 
estimates.  

 

This small amount of biasedness could be attributed to the sampling design 
adopted in this study where the discharge threshold -as an auxiliary variable - 

was used instead of sediment concentration threshold (variable of interest). It 

is expected that the estimations made by the adopted ACS would be unbiased 

relative to discharge and not necessarily to sediment load.   
 

One major weakness of the ACS design is the ineffective use of a small initial 

sample size for a population when the aggregation and localization is 
significant. In fact, high CV of treatments with small initial sample size is 

because of extreme aggregations of study sediment population. For example, 

45 % of load was transported during only one percent of the time. 
Consequently, the probability of intersecting these very important rare storm 

flow events by a small initial sample set is low leading to high variance and 

CV values in every 50 replicates.  
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Effect of Discharge Threshold  

The number of additional samples becomes restricted by the use of high 
discharge thresholds. However, the study has also demonstrated that choosing 

low discharge threshold does not necessarily lead to an accurate estimation 

although the latter would involve more samples.  
 

Based on these findings, choosing a threshold that the additional samples do 

not exceed 25-30% of initial sample size could be satisfactory. The FDC may 

be helpful to find an appropriate threshold in this instance. 
 

The number of additional samples also is affected by the following properties 

of the study population: i) the length of storm flow events and ii) the length 
of each sampling unit. For rivers with long storm hydrographs and daily 

sampling unit, flow at a higher percentage of time can be selected. In 

practice, simulation of two or three discharge levels using the FDC of study 

river will help to decide on a threshold. 

 
The Effect of Forward Neighborhood Relation 

The ACS estimates for FNR scenarios for initial samples with size smaller 

than 1000-1500 showed significant underestimations, whereas the present 
errors decreased to -2 to -13 % for larger initial sample sizes.  

 

The lower estimations for FNR scenarios are probably due to fewer samples 

taken during the first halves of the storm hydrographs particularly, the rising 
limb compared to the SNR as shown in Figure 8. The horizontal axis in this 

figure is real time. If the initial sample set intersects the storm hydrograph 

only at 19:45 hrs, the SNR will extract 17 samples, while only 9 additional 
samples are identified by FNR using the discharge threshold 200 L/s.    

 

Most rivers usually carry more sediment load during the rising limb of a 

single storm than the corresponding discharge during the falling limb due to 
hysteresis effects which is called clockwise hysteresis (Vanoni 1980, 

Williams 1989, Gomi, Moore and Hassan 2005). Therefore, the first half of a 

hydrograph that coincides with the rising limb and sampling units around the 
peak have a considerable role in load transfer rather than the end half. This 

can be seen in Figure 8, which is an actual hydrograph of Sg. Pangsun dated 

8
th
 and 9

th
 November 1997. The amount of load transported by the first 8 

sampling units or time intervals of storm hydrograph (from 17:45 hrs to 19:45 

hrs) is 1450 kg, while for the remaining 9 sampling units, the load is only 142 

kg. 
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Figure 8: Comparison of SNR and FNR on the number of additional samples; shown by arrows’ length 

 
The underestimation with forward neighborhood relation also depends on the 

length of rising and falling limbs. Table 6 shows the percentages of rising and 

falling limbs for storm hydrographs higher than the study discharge 

thresholds. The lengths of average rising limb are less than 15 % of base 
time. Therefore, by substituting FNR instead of SNR, smaller amounts of 

load are anticipated.  

 
TABLE 6: Average percentages of rising and falling limbs in Sg.Pangsun 

Discharge 
thresholds* 

Rising limb 
(%) 

Falling limb 
(%) 

YFDC5 10 90 
YFDC2.5 11 89 

YFDC1.25 14 86 
*The values for discharge thresholds have been given in Table 3 

 

The effects of FNR on less additional samples from the first half particularly 

occur for short storm hydrographs, when only one initial sample intersects the 
event hydrograph. A large initial sample set, which intersects a prolonged 

storm hydrograph in many sampling units, would increase the chance of 

including samples from the early half and consequently increases the number 
of additional adaptive samples. Therefore, it is expected that the both 
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neighborhood relations (symmetric and forward) produce closer estimates by 

increasing the size of the initial sample.  
 

 

CONCLUSION 

This study showed relatively reliable performances for the ACS either 

with the SNR or with FNR when large enough initial sample sets would have 

been taken. In fact, an intensive initial systematic sampling ensures 
identifying the important additional samples. As a rule, taking an initial 

sample set larger than 10 % of the expected population size is suggested.  

 
The current study placed much emphasis on the performance of ACS. 

However, the cost of sampling is an important consideration.  The cost of 

taking samples with the ACS is probably less than calendar-based with 

respect to the travelling costs because the person-in-charge can stay on 
gauging site to take additional samples if so decided by ACS. This sampling 

design can also be recommended for remote gauging sites on rivers that are 

not easily accessible to save cost. 
 

In spite of the advantages offered by ACS, an important limitation 

needs to be considered. The number of taken additional samples in the ACS 

differs from year to year due to the stochastic nature of discharge and 
sediment. This will affect the number of final samples taken, while the budget 

allocated for sediment sampling is usually fixed each year. 

 
Choosing a sampling design for a gauging station depends on the 

nature of data collected, in particular the advantages and limitations. The 

most significant advantage of SALT and ACS designs compared to the 
calendar-based is that the two former methods work better as they select more 

samples during high flows. Therefore, they are suitable for estimating 

suspended sediment load since sediment is carried mostly during floods. 

Although, both the ACS and SALT take more samples during high flows, the 
use of the latter is restricted in most rivers, where the gauging site was not 

equipped with automatic sediment sampler. 
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