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ABSTRACT 

The main purpose of this paper is to examine the effectiveness of the Quarter-Sweep 
Gauss-Seidel (QSGS) method in solving the dense linear systems generated from the 
discretization of the linear Fredholm integral equations of the second kind. In addition, the 

applications of the various orders of closed Newton-Cotes quadrature discretization 
schemes will be investigated in order to form linear systems. Furthermore, the basic 
formulation and implementation of the proposed method are also presented. The numerical 
results of test examples are also included in order to verify the performance of the 
proposed method. 
 
Keywords: Linear Fredholm equations, Newton-Cotes quadrature, Gauss-Seidel, Quarter-
sweep iteration 

 

 

INTRODUCTION 

Integral equations have been one of the principal tools in various 

areas of science such as applied mathematics, physics, biology and 

engineering. On the other hand, integral equations are encountered in 

numerous applications in many fields including continuum mechanics, 
potential theory, geophysics, electricity and magnetism, kinetic theory of 

gases, hereditary phenomena in physics and biology, renewal theory, 

quantum mechanics, radiation, optimization, optimal control systems, 
communication theory, mathematical economics, population genetics, 

queuing theory, medicine, mathematical problems of radiative equilibrium, 

particle transport problems of astrophysics and reactor theory, acoustics, fluid 
mechanics, steady state heat conduction, fracture mechanics, and radiative 

heat transfer problems (Wang (2006)). From few types of the integral 

equations, the most frequently investigated integral equations are Fredholm 

linear equations and its nonlinear counterpart. However, in this paper, linear 
Fredholm integral equations of the second kind are considered. 
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Generally, second kind linear integral equations of Fredholm type in 

the generic form can be defined as follows 
 

( ) ( ) ( ) ( ),y x K x t y t dt f xλ
Γ

− =∫ , [ ],a bΓ =  0λ ≠                         (1) 

 

where the parameter λ , kernel K  and free term f  are given, and y  is the 

unknown function to be determined. Kernel K  is called Fredholm kernel if 

the kernel in Equation (1) is continuous on the square 

{ },S a x b a t b= ≤ ≤ ≤ ≤  or at least square integrable on this square and it is 

also assumed to be absolutely integrable and satisfy other properties that are 
sufficient to imply the Fredholm alternative theorem. Meanwhile, Equation 

(1) also can be rewritten in the equivalent operator form 

 

( ) y fλ κ− =                                                   (2) 

 

where the integral operator define as follows 

 

( ) ( ) ( ),y t K x t y t dtκ
Γ

= ∫ .                                         (3) 

 

Theorem (Fredholm Alternative) (Atkinson (1997)) 

Let χ  be a Banach space and let :κ χ χ→  be compact. Then the equation 

( ) y fλ κ− = , 0λ ≠  has a unique solution x χ∈  if and only if the 

homogeneous equation ( ) 0zλ κ− =  has only the trivial solution 0z = . In 

such a case, the operator 
1 1

:
onto

λ κ χ χ
−

− →  has a bounded inverse ( )
1

λ κ
−

− . 

 

Definition (Compact operators) (Atkinson (1997)) 

Let χ  and Υ  be normed vector space and let :κ χ → Υ  be linear. Then κ  

is compact if the set { }| 1x x xκ ≤  has compact closure in Υ . This is 

equivalent to saying that for every bounded sequence { }n
x χ⊂ , the 

sequences { }n
xκ  has a subsequence that is convergent to some points in Υ . 

Compact operators are also called completely continuous operators. 
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In many application areas, numerical approaches were used widely to solve 

Fredholm integral equations of the second kind than the analytical method. 

To solve Equation (2) numerically, we either seek to determine an 
approximate solution by using the quadrature method (Laurie (2001); Lin 

(2003); Muthuvalu and Sulaiman, (2008b; 2009))  

 

( )n n
I y fλ κ− =                                              (4) 

 

where I  is the identity matrix and 
n

κ  is the approximation of the κ  which 

is obtained by discretization of κ  by an n  point quadrature method, or use 

the projection method 

 

( )n n n
P y P fλ κ− =                                           (5) 

 

where 
n n

y V∈  and :
n n

P C V→  is a projection operator in a chosen finite 

dimensional space 
n

V ; see Kaneko (1989), Chen et al. (2002), Maleknejad 

and Kajani (2003), Asady et al. (2005), Kajani and Vencheh (2005),       
Xiao et al. (2006), Chen et al. (2007), Long and Nelakanti (2007), and 

Oladejo et al. (2008). Such discretizations of integral equations lead to dense 

linear systems and can be prohibitively expensive to solve as n , the order of 

the linear system increases. Thus, iterative methods are the natural options 

for efficient solutions. 

 
Consequently, the concept of the half-sweep iterative method has been 

proposed by Abdullah (1991) via the Explicit Decoupled Group (EDG) 

method to solve two-dimensional Poisson equations. Half-sweep iteration is 
also known as the complexity reduction approach (Hasan et al. (2007)). 

Since the implementation of half-sweep iterations will only consider half of 

all interior node points in a solution domain. Following to that, further 
studies on the applications of the half-sweep iterative methods have been 

reviewed by Yousif and Evans (1995), Abdullah and Ali (1996),        

Othman et al. (2000), Muthuvalu and Sulaiman (2008a; 2008b; 2009; 2011), 

Sulaiman et al. (2004a; 2007; 2008a) and Abdullah et al. (2006).  
 

In 2000, Othman and Abdullah extended the concept of half-sweep iteration 

by introducing quarter-sweep iterative method via the Modified Explicit 
Group (MEG) iterative method to solve two-dimensional Poisson equations. 

Further studies to verify the effectiveness of the quarter-sweep iterative 

methods have been carried out by Othman and Abdullah (2001),           
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Hasan et al. (2005), Sulaiman et al. (2004b), Hasan et al. (2008), Sulaiman 

et al. (2008b), and Sulaiman et al. (2010). However, in this paper, we 
examined the applications of the half- and quarter-sweep iteration concepts 

with Gauss-Seidel (GS) iterative method by using approximation equation 

based on Newton-Cotes quadrature schemes for solving problem (1). The 

standard GS iterative method is also called as the Full-Sweep Gauss-Seidel 
(FSGS) method. Meanwhile, combinations of the GS method with half- and 

quarter-sweep iterations are called as Half-Sweep Gauss-Seidel (HSGS) and 

Quarter-Sweep Gauss-Seidel (QSGS) methods respectively. 
 

The remainder of this paper is organized in following way. In next section, 

the formulation of the full-, half- and quarter-sweep quadrature 
approximation equations based on repeated Newton-Cotes schemes will be 

elaborated. The latter section of this paper will discuss the formulations of 

the FSGS, HSGS and QSGS iterative methods and some numerical results 

will be shown to assert the effectiveness of the proposed method. Besides 
that, analysis on computational complexity is also given and the concluding 

remarks are given in final section. 

 
 

QUARTER-SWEEP QUADRATURE APPROXIMATION 

EQUATION 

As explained in previous section, discretization method based on 

quadrature schemes was used to construct approximation equations for 

problem (1) by replacing the integral to finite sums. Generally, quadrature 
method can be defined as follows  

 

( ) ( ) ( )
0

n
b

j j n
a

j

y t dt A y t yε
=

= +∑∫                               (6) 

 

where 
j

t ( )0,1,2, ,j n= ⋯  is the abscissas of the partition points of the 

integration interval [ ],a b , 
j

A ( )0,1,2, ,j n= ⋯  is numerical coefficients that 

do not depend on the function ( )y t  and ( )n
yε  is the truncation error of 

Equation (6). Meanwhile, Figure 1 shows the finite grid networks in order to 
form the full-, half- and quarter-sweep quadrature approximation equations. 
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Based on Figure 1, the full-, half- and quarter-sweep iterative 

methods will compute approximate values onto node points of type  only 

until the convergence criterion is reached. According to Abdullah (1991) 
and, Othman and Abdullah (2000), the approximation solutions for the 

remaining points are calculated by using direct methods.  

 

           h 

                                                 ...                                                                  

         0     1      2     3     4                   n-4   n-3  n-2  n-1    n       
   

 
(a) 

 

             2h 

                                                 ...                                                                  
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                        4h 

                                                 ...                                                                  

         0     1      2     3     4                   n-4   n-3 n-2   n-1    n       

   
 

(c) 

 
Figure 1: (a), (b) and (c) show distribution of uniform node points for the full-, half- and 

quarter-sweep cases respectively 

 
However, in 2009, Muthuvalu and Sulaiman carried out a study to 

investigate the applications of the half-sweep iteration in solving dense 

linear system generated from the discretization of the second kind Fredholm 

integral equations using high-order Newton-Cotes schemes. From the results 
obtained, it has shown that applications of the half-sweep iteration with 

high-order Newton-Cotes discretization schemes reduce the accuracy of the 

numerical solutions and it is due to the computational technique for 
calculating the remaining points by using direct method.  
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Thus, in this paper, we will use second-order Lagrange interpolation 

method to compute the remaining points for both half- and quarter-sweep 
iterations in order to overcome the problem mentioned in Muthuvalu and 

Sulaiman (2009). Formulations to compute the remaining points using 

second order Lagrange interpolation for half- and quarter-sweep iterations 

are defined in Equations (7) and (8) respectively as follows 
 

1 1 3

1 1 3

3 3 1
, 1,3,5, , 3

8 4 8

3 3 1
, 1

4 8 8

i i i

i

i i i

y y y i n

y

y y y i n

− + +

− + −


+ − = −

= 
 + − = −


⋯

                      (7) 

 

2 2 6

2 2 6

1 1 3

1 1 3

3 3 1
, 2,6,10, , 6

8 4 8

3 3 1
, 2

4 8 8

3 3 1
, 1,3,5, , 3

8 4 8

3 3 1
, 1

4 8 8

i i i

i i i

i

i i i

i i i

y y y i n

y y y i n

y

y y y i n

y y y i n

− + +

− + −

− + +

− + −


+ − = −


 + − = −


= 
 + − = −


 + − = −


⋯

⋯

.                 (8) 

 
By applying Equation (6) into Equation (1) and neglecting the error, 

( )n
yε , a system of linear equations can be formed for approximation values 

of ( )y t . The following linear system generated using quadrature method can 

be easily shown in matrix form as follows 
 

~ ~

M y f=                                                           (9) 

 

where 

 

0 0,0 0, 2 0,2 0,

0 ,0 , 2 ,2 ,

0 2 ,0 2 , 2 2 ,2 2 ,

0 ,0 , 2 ,2 ,
1 1

p p p p n n

p p p p p p p n p n

p p p p p p p n p n

n nn p n p p n p n n n
x

p p

A K A K A K A K

A K A K A K A K

M A K A K A K A K

A K A K A K A K

λ

λ

λ

λ       
+ +         

      

− − − − 
 

− − − − 
 = − − − −
 
 
 

− − − −  

⋯

⋯

⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯

, 
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0 2 2
~

T

p p n p n p n
y y y y y y y− −

 =  ⋯ , 

0 2 2
~

T

p p n p n p n
f f f f f f f− −

 =  ⋯ . 

 

In order to facilitate the formulation of the full-, half- and quarter-
sweep quadrature approximation equations for problem (1), further 

discussion will be restricted onto Newton-Cotes quadrature method, which is 

based on interpolation formulas with equally spaced data. In this paper, three 

different schemes in Newton-Cotes quadrature method such as repeated 

trapezoidal (RT), repeated Simpson’s 
1

3
 (RS1) and repeated Simpson’s 

3

8
 

(RS2) schemes will be applied to discretize the problem (1). RT, RS1 and 

RS2 are first, second and third order schemes respectively. Further 
discussions on Newton-Cotes quadrature method to solve Fredholm integral 

equations can be found in Atkinson (1997), and Muthuvalu and Sulaiman 

(2009). 

 

Based on RT, RS1 and RS2 schemes, numerical coefficients jA  will 

satisfy following relations respectively. 

 

1
, 0,

2

,
j

ph j n
A

ph otherwise


=

= 


                                          (10) 

 

1
, 0,

3

4
, ,3 ,5 , ,

3

2
,

3

j

ph j n

A ph j p p p n p

ph otherwise


=




= = −





⋯                       (11) 
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3
, 0,

8

3
, 3 ,6 ,9 , , 3

4

9
,

8

j

ph j n

A ph j p p p n p

ph otherwise


=




= = −





⋯                   (12) 

 

where the constant step-size, h  is defined as follows 

 

b a
h

n

−
=                                                  (13) 

 

and n  is the number of subintervals in the interval [ ],a b . Meanwhile, the 

value of p , which corresponds to 1, 2 and 4, represents the full-, half- and 

quarter-sweep cases respectively.   

 

 

FORMULATION OF THE ITERATIVE METHODS 

As afore-mentioned, FSGS, HSGS and QSGS iterative methods will 
be applied to solve linear system generated from the discretization of the 

problem (1), as shown in Equation (9). Let matrix M  be decomposed into 

 

M D L U= − −                                             (14) 

 

where D , L−  and U−  are diagonal, strictly lower triangular and strictly 

upper triangular matrices respectively. Thus, the general scheme for FSGS, 
HSGS and QSGS iterative methods can be written as 

 

( ) ( ) ( )11

~ ~ ~

k k
y D L U y f

−+  = − + 
 

.                                (15) 

 
Actually, the iterative methods attempt to find a solution by 

repeatedly solving the linear system using approximations to the vector 
~

y  

and continue until the solution is within a predetermined acceptable bound 

on the error. Based on Abdullah (1991) and, Othman and Abdullah (2000), 
the general algorithm for FSGS, HSGS and QSGS iterative methods to solve 

problem (1) would be generally described in Algorithm 1. 
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Algorithm 1: FSGS, HSGS and QSGS methods 

 

For  0, , 2 , , 2 , ,i p p n p n p n= − −⋯  and 0, , 2 , , 2 , ,j p p n p n p n= − −⋯   

calculate 

 

( )

( )

( ) ( )

, ,

1( 1)

, ,

0

1

, , ,

0

, 0

,

,

n
k

i j i j j i i i

j p

n p
kk

i i j i j j i i i

j

i p n
k k

i j i j j j i j j i i i

j j i p

f A K y A K i

y f A K y A K i n

f A K y A K y A K i otherwise

λ

λ

λ

=

−
++

=

−
+

= = +

 
+ − = 

 

 

← + − = 
 
  + + − =  

∑

∑

∑ ∑

 

 

NUMERICAL SIMULATIONS 

In order to compare the performances of the iterative methods, 

several experiments were carried out on the following Fredholm integral 
equations problems. 

 

Example 1 (Wang (2006)) 

Consider the integral equation 

 

( ) ( ) ( )
1

2

0
4y x xt x y t dt x− − =∫                                      (16) 

 

and the exact solution of problem (16) is given by ( ) 2
24 9y x x x= − . 

 

Example 2 (Polyanin and Manzhirov (1998)) 

Consider the integral equation 

 
1

2 2 6 3

0
( ) ( ) ( ) 5 10y x x t y t dt x x x− + = − + +∫ .                      (17) 
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Exact solution of problem (17) is  

 

6 3 21045 2141
( ) 5

28 84
y x x x x x= − + + + . 

 

There are three parameters considered in numerical comparison such 

as number of iterations, execution time and maximum absolute error. 
Throughout the experiments, the convergence test considered the tolerance 

error of the 1010ε −= . The experiments were carried out on several different 

mesh sizes such as 240, 480, 960, 1920, 3840 and 7680. Results of 
numerical simulations, which were obtained from implementations of the 

FSGS, HSGS and QSGS iterative methods for Examples 1 and 2, have been 

recorded in Tables 1 and 2 respectively.  
 

TABLE 1: Comparison of a number of iterations, execution time (seconds) and maximum 
absolute error for the iterative methods for Example 1 

 
  Number of iterations Execution time (seconds) Maximum absolute error 

Mesh 

Size 
Methods FSGS HSGS QSGS FSGS HSGS QSGS FSGS HSGS QSGS 

240 

RT 193 192 189 0.51 0.20 0.19 2.136 E-3 8.547 E-3 3.425 E-2 

RS1 193 191 188 0.52 0.21 0.21 7.262 E-10 7.488 E-10 7.055 E-10 

RS2 193 192 189 0.54 0.26 0.23 7.376 E-10 6.830 E-10 6.641 E-10 

480 

RT 194 193 192 1.82 0.63 0.24 5.339 E-4 2.136 E-3 8.547 E-3 

RS1 194 193 191 1.84 0.66 0.29 7.156 E-10 7.262 E-10 7.488 E-10 

RS2 194 193 192 1.86 0.73 0.32 7.212 E-10 7.376 E-10 6.830 E-10 

960 

RT 194 194 193 6.72 2.01 0.85 1.335 E-4 5.339 E-4 2.136 E-3 

RS1 194 194 193 6.79 2.02 0.94 7.552 E-10 7.156 E-10 7.262 E-10 

RS2 194 194 193 6.84 2.25 0.97 7.581 E-10 7.212 E-10 7.376 E-10 

1920 

RT 195 194 194 26.24 7.58 2.63 3.337 E-5 1.335 E-4 5.339 E-4 

RS1 195 194 194 26.93 7.61 2.75 6.868 E-10 7.552 E-10 7.156 E-10 

RS2 195 194 194 27.05 7.79 2.77 8.341 E-6 7.581 E-10 7.212 E-10 

3840 

RT 195 195 194 100.09 27.48 8.55 6.961 E-10 3.337 E-5 1.335 E-4 

RS1 195 195 194 101.99 28.08 8.98 6.868 E-10 6.868 E-10 7.552 E-10 

RS2 195 195 194 102.30 29.33 9.09 6.968 E-10 6.881 E-10 7.581 E-10 

7680 

RT 195 195 195 397.81 108.77 31.44 2.085 E-6 8.341 E-6 3.337 E-5 

RS1 195 195 195 402.91 110.17 33.37 7.008 E-10 6.961 E-10 6.868 E-10 

RS2 195 195 195 403.95 111.43 34.09 7.012 E-10 6.968 E-10 6.881 E-10 
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TABLE 2: Comparison of a number of iterations, execution time (seconds) and maximum 
absolute error for the iterative methods for Example 2 

 
  Number of iterations Execution time (seconds) Maximum absolute error 

Mesh 

Size 
Methods FSGS HSGS QSGS FSGS HSGS QSGS FSGS HSGS QSGS 

240 

RT 56 55 55 0.18 0.14 0.09 2.174 E-3 8.697 E-3 3.481 E-2 

RS1 56 55 55 0.20 0.16 0.10 1.124 E-8 3.342 E-7 2.742 E-6 

RS2 56 55 55 0.21 0.17 0.11 2.542 E-8 3.567 E-7 3.102 E-6 

480 

RT 56 56 55 0.56 0.23 0.16 5.435 E-4 2.174 E-3 8.697 E-3 

RS1 56 56 55 0.57 0.27 0.17 5.882 E-10 4.122 E-8 3.342 E-7 

RS2 56 56 55 0.59 0.29 0.19 1.474 E-9 4.264 E-8 3.567 E-7 

960 

RT 56 56 56 2.52 0.58 0.34 1.359 E-4 5.435 E-4 2.174 E-3 

RS1 56 56 56 2.57 0.63 0.38 8.305 E-11 5.108 E-10 4.122 E-8 

RS2 56 56 56 2.65 0.64 0.40 3.887 E-11 5.196 E-9 4.264 E-8 

1920 

RT 56 56 56 8.24 2.71 1.11 3.397 E-5 1.359 E-4 5.435 E-4 

RS1 56 56 56 8.40 2.79 1.17 1.260 E-10 6.410 E-11 5.108 E-10 

RS2 56 56 56 8.71 2.83 1.20 1.227 E-10 6.355 E-11 5.196 E-9 

3840 

RT 56 56 56 31.62 11.04 5.40 8.492 E-6 3.397 E-5 1.359 E-4 

RS1 56 56 56 32.04 11.87 5.77 1.301 E-10 9.188 E-10 6.410 E-11 

RS2 56 56 56 34.01 12.04 5.91 1.299 E-10 9.155 E-10 6.355 E-11 

7680 

RT 56 56 56 122.70 35.16 22.83 2.123 E-6 8.492 E-6 3.397 E-5 

RS1 56 56 56 124.66 36.79 24.89 1.309 E-10 2.291 E-10 9.188 E-10 

RS2 56 56 56 127.33 38.14 25.11 1.310 E-10 2.291 E-10 9.155 E-10 

 
 

 

COMPUTATIONAL COMPLEXITY ANALYSIS 

In order to measure the computational complexity of the iterative 

methods, an estimation of the amount of the computational works required 

for both methods have been conducted. The computational works are 
estimated by considering the arithmetic operations performed per iteration. 

Based on Algorithm 1, it can be observed that there are 1
n

p

 
+ 

 
 

additions/subtractions (ADD/SUB) and 2 1
n

p

 
+ 

 
 multiplications/divisions 

(MUL/DIV) in computing a value for each node point in the solution 

domain. From the order of the coefficient matrix, M  in Equation (9), the 
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total number of arithmetic operations per iteration for the FSGS, HSGS and 

QSGS iterative methods has been summarized in Table 3. 

 
TABLE 3: Total number of arithmetic operations per iteration for FSGS, HSGS and QSGS 

methods 
 

Methods 
Arithmetic Operation 

ADD/SUB MUL/DIV 

FSGS ( )
2

1n +  ( )
2

2 1n +  

HSGS 

2

1
2

n 
+ 

 
 

2

2 1
2

n 
+ 

 
 

QSGS 

2

1
4

n 
+ 

 
 

2

2 1
4

n 
+ 

 
 

 

 

CONCLUSIONS 

In this paper, we present applications of the half- and quarter-sweep 

iterative methods for solving dense linear systems arising from the 

discretization of the second kind linear Fredholm integral equations by using 
three different orders of Newton-Cotes quadrature discretization schemes 

such as RT, RS1 and RS2 schemes. It has shown that the quadrature 

approximation equations based on Newton-Cotes schemes can be easily 
formulated and rewritten in general form as shown in Equation (9).  

 

Through numerical results obtained for both Examples 1 and 2 (refer 

Tables 1 and 2), it shows that number of iterations for HSGS and QSGS 
methods are nearly same compared to the FSGS method. Through the 

observation in Tables 1 and 2, HSGS and QSGS iterative methods reduce the 

execution time compared to the FSGS method. Computational time for 
FSGS, HSGS and QSGS iterative methods with RS1 and RS2 schemes are 

increased compared to the iterative methods with RT scheme. It is due to the 

computational complexity of the high-order discretization schemes. In terms 

of accuracy of numerical solutions obtained, RS1 and RS2 schemes are more 
accurate than the RT scheme. Besides that, applications of second order 

Lagrange interpolation to compute remaining points managed to overcome 

the problem discussed in Muthuvalu and Sulaiman (2009). 
 

Overall, the numerical results show that the QSGS method is a better 

method compared to the FSGS and HSGS methods in the sense of number of 
iterations and execution time. This is mainly because of computational 
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complexity of the QSGS method which is approximately 50% and 75% less 
than HSGS and FSGS methods respectively (refer Table 3). 
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