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ABSTRACT 

This study considers the steady forced convection boundary layer flow over a 

horizontal circular cylinder, generated by Newtonian heating in which the heat 
transfer from the surface is proportional to the local surface temperature. The 
governing boundary layer equations are first transformed into a system of non-
dimensional equations via the non-dimensional variables, and then into non-
similar equations before they are solved numerically using a numerical scheme 
known as the Keller box method. Numerical solutions are obtained for the skin 
friction coefficient and the local wall temperature as well as the velocity and 
temperature profiles.  

 
Keywords: Forced convection, horizontal circular cylinder, Newtonian heating, 
numerical solution 

 

 

INTRODUCTION 

 Boundary layer flow over a circular cylinder was the subject of 
intense studies since the early work of Prandtl in 1904 (Schlichting 

(1968)). It is well known that the first solution of the steady forced 

convection momentum (velocity) boundary layer flow over a circular 
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cylinder was obtained by Blasius in 1908 (Schlichting (1968)) using the 

series method. In 1958, Frosslingɺɺ  solved also the thermal equation of this 

problem for the case when the surface temperature of the cylinder is 

subjected to a constant temperature (Schlichting (1968)). Merkin and Pop 
(1988) studied the free convection boundary layer on a horizontal circular 

cylinder with constant heat flux in a viscous fluid, while Ingham and Pop 

(1987) investigated the free convection about a heated horizontal cylinder 

embedded in a fluid saturated porous medium. This problem is then 
extended to viscous and micropolar fluids by many investigators such as 

Yih (2000), Nazar et al. (2002a, 2002b), Ahmad et al. (2005) and Molla et 

al. (2005) in various ways. In summary, all of the papers above 
considered either prescribed wall temperature or prescribed wall heat flux 

boundary condition. Merkin (1994) has shown that, in general, there are 

four common heating processes specifying the wall-to-ambient 
temperature distributions, namely, (i) prescribed wall temperature 

distributions; (ii) prescribed surface heat flux distributions; (iii) conjugate 

conditions, where heat is supplied through a bounding surface of finite 

thickness and finite heat capacity. The interface temperature is not known 
a priori but depends on the intrinsic properties of the system, namely the 

thermal conductivity of the fluid and solid, respectively; and (iv) 

Newtonian heating, where the heat transfer rate from the bounding surface 
with a finite heat capacity is proportional to the local surface temperature 

and which is usually termed conjugate convective flow. 

 
 Generally, in modelling the convective boundary layer flow 

problems, the boundary conditions that were usually applied are (i) and 

(ii). It seems that Merkin (1994) was the first to use the term Newtonian 

heating for the problem of free convection over a vertical flat. Recently 
Salleh et al. (2009, 2010a, 2010b, 2010c, 2011) and Salleh and Nazar 

(2010) studied the forced convection boundary layer flow at a forward 

stagnation point, forced, free and mixed convection boundary layer flow 
over a horizontal circular cylinder and a solid sphere with Newtonian 

heating.  

 

 The aim of the present paper is to investigate numerically the 
steady forced convection flow over a horizontal circular cylinder with 

Newtonian heating. The governing boundary layer equations are first 

transformed into a system of non-dimensional equations via the non-
dimensional variables, and then into non-similar equations before they are 

solved numerically by the Keller-box method, an implicit finite-difference 

scheme as described in the books by Cebeci and Bradshaw (1988) and 
Cebeci and Cousteix (2005).  
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Figure 1: Physical model and coordinate system 

 

 

PROBLEM FORMULATION 

Consider the steady forced convection boundary layer flow and 

heat transfer of a viscous and incompressible fluid of free stream velocity 

U∞  and ambient temperature T∞  over a horizontal circular cylinder of 

radius a, which is subjected to a Newtonian heating, as it is shown in 

Figure 1. It is assumed that the buoyancy forces and the viscous 
dissipation effects are neglected. Under the boundary layer 

approximations, the basic dimensional equations are 
 

 0
u v

x y

∂ ∂
+ =

∂ ∂
           (1) 

  

  

2

2

e

e

d uu u u
u v u

x y d x y
ν

∂ ∂ ∂
+ = +

∂ ∂ ∂
                                (2) 

 

2

2

T T T
u v

x y y
α

∂ ∂ ∂
+ =

∂ ∂ ∂
   (3) 

 

subject to the boundary conditions (Merkin (1994)) 
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0, at 0

( ), as

s

e

T
u v h T y

y

u u x T T y∞

∂
= = = − =

∂

→ → → ∞

             (4) 

 

Here ( ) 2 sin ( / ),
e

u x U x a∞= ( , )u v  are the velocity components 

along the ( , )x y  axes, T  is the local temperature, ν  is the kinematic 

viscosity, α  is the thermal diffusivity and sh  is the heat transfer 

parameter for Newtonian heating. 

 
 We introduce now the following non-dimensional variables: 

 
1/2 1/2

/ , Re ( / ), / , Re ( / )

( ) / , ( ) ( ) /e e

x x a y y a u u U v v U

T T T u x u x Uθ
∞ ∞

∞ ∞ ∞

= = = =

= − =
             (5)

  

where Re /U a ν∞=  is the Reynolds number. Equations (1) – (3) then 

become 

 

  0
u v

x y

∂ ∂
+ =

∂ ∂
                                                 (6)    

 
2

2

e
e

d uu u u
u v u

x y d x y

∂ ∂ ∂
+ = +

∂ ∂ ∂
                            (7)   

   

   
2

2

1

Pr
u v

x y y

θ θ θ∂ ∂ ∂
+ =

∂ ∂ ∂
                                     (8)   

 

and the boundary conditions (4) become        

       

0, (1 ) at 0

( ), 0 ase

u v y
y

u u x y

θ
γ θ

θ

∂
= = = − + =

∂

→ → → ∞

                      (9) 

 

where 1/ 2Re
s

ahγ −=  represents the conjugate parameter for Newtonian 

heating. We noticed that (9) gives 0θ =  when 0γ = , corresponding to 

having 0
s

h =  and hence no heating from the cylinder exists. On the other 
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hand, ( ) 2sin
e

u x x=  and Pr /ν α=  is the Prandtl number. Further, 

following Merkin (1994), we look for a solution for this problem of the 
form 

 

( , ), ( , )x f x y x yψ θ θ= =                      (10) 

 

where ψ  is the stream function which is defined as /u yψ= ∂ ∂  and 

/ ,v xψ= −∂ ∂ and this automatically satisfies Equation (6). Using 

variables (10), Equations. (7) and (8) become 

 
2

3 2 2 2

3 2 2

sin cos
4

f f x x f f f f f
f x

y y x y y x y x y

  ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + − = −  

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
       (11)

    
2

2

1

Pr

f f
f x

y y y x x y

θ θ θ θ ∂ ∂ ∂ ∂ ∂ ∂
+ = − 

∂ ∂ ∂ ∂ ∂ ∂ 
                  (12) 

 
with the boundary conditions  

 

0, (1 ) at 0

sin
2 , 0 as

f
f y

y y

f x
y

y x

θ
γ θ

θ

∂ ∂
= = = − + =

∂ ∂

∂
→ → → ∞

∂

                   (13) 

      
It can be easily shown that near the lower stagnation point of the 

cylinder, 0x ≈ , Equations (11) and (12) reduce to the following ordinary 

differential equations: 
 

24 0f f f f′′′ ′′ ′+ + − =                       (14) 

 

Pr 0fθ θ′′ ′+ =                                  (15) 

 

where the prime (′) denotes differentiation with respect to y and the boundary 
conditions are 

 

0, (1 ) at 0

2, 0 as

f f y

f

θ γ θ

θ

′ ′= = = − + =

′ → → → ∞
                          (16) 
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In practical applications, the physical quantities of interest are the 

skin friction coefficient 
f

C  and the wall temperature ( )
w

xθ , which can 

be written in non-dimensional form as 

 
2

1/2

2
Re ( ,0), ( ) ( ,0)x f w

f
C x x x x

y
θ θ

∂
= =

∂
              (17) 

 

where Re /U x ν∞=  is the Reynolds number, 
2

/
f w

C Uτ ρ ∞=  is the skin 

friction coefficient, with 
0

( )
w y

u

y
τ µ =

∂
=

∂
 is the local wall shear stress and 

ρ  is the fluid density. 

 

 

THE KELLER BOX METHOD 

Finite Difference Scheme 

This paper discusses the finite difference scheme on forced convection 

boundary layer flow over a horizontal circular cylinder, i.e. from 

Equations (11) and (12) with boundary conditions (13) when 1.γ =  We 

start with introducing new dependent variables ( , ),u x y  ( , ),v x y  ( , )t x y  

and ( , )s x yθ =  so that Equations (11) and (12) can be written as 

 

f = u, u' = v, s' = t′                     (18a,b,c) 

 

2sin cos
4

x x u f
v

x x x
v f v u x u

∂ ∂ 
− 

∂ ∂ 
′ + + − =         (18d) 

 

1

Pr

s f
t f t t

x x
x u

∂ ∂ 
′ + = − 

∂ ∂ 
        (18e) 

 

We now consider the net rectangle in the x y−  plane shown in Figure 2 

and the net points defined as below: 

 
0 10, ,n n

n
x        x x k−= = +  1, 2,..., ,n N=  

0 1
0, ,

j j j
y       y y h−= = +  , , ,j 1  2   J= …  

,
J

y y∞≡
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4P  

where 
n

k  is the 
nx∆ -spacing and 

j
h  is the 

j
y∆ -spacing.  Here n  and j are 

just the sequence of numbers that indicate the coordinate location, not 

tensor indices or exponents. 
 

 

   

 

 

 

 

 

 

 
Figure 2: Net rectangle for difference approximations 

 

The derivatives in the x -direction are replaced by finite difference. For 

example, the finite difference forms for any points are 
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We start by writing the finite difference form of equations (18a,b,c) for the 

midpoint 1 2( , )
n

jx y − of the segment 1 2PP  using centered-difference 

derivatives. This process is called “centering about 1 2( , )
n

jx y − ”.  We get 
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( )1 1 0
2

j

j j j j

h
s s t t− −− − + =                       (19c) 
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where 
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We note that ( ) 11
2

j
R

−
 and ( ) 12

2
j

R
−

 involve only the known 

quantities if we assume that the solution is known on 1n
x x

−= . In terms of 

the new dependent variables, the boundary conditions become  
 

( ,0) 0,f x =  ( ,0) (1 ( ,0))t x s x= − +  
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u x

x
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Equation (19) are imposed for j = 1, 2… J at given n, and the transformed 

boundary layer thickness, ,
J

y
 
is to be sufficiently large so that it is beyond 

the edge of the boundary layer. The boundary conditions yield at n
x x=  

are 

 

0 0 0,n nf u= =   0 0(1 )n nt s= − + , 2,n

J
u =   0n

J
s = .          (21) 

 

Newton’s Method 

To linearize the nonlinear system of Equation (19) using Newton’s 
method, we introduce the following iterates: 

 
( 1) ( ) ( )

,
k k k

j j jf f fδ+ = +
 

( 1) ( ) ( )
,

k k k

j j ju u uδ+ = +  
( 1) ( ) ( )

,
k k k

j j jv v vδ+ = +  

( 1) ( ) ( )k k k
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( 1) ( ) ( )k k k
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Substituting these expressions into Equations (19) and then drop the 

quadratic and higher-order terms in 
( )

,
k

jfδ  
( )

,
k

juδ ( )k

jvδ ( )k

jsδ  and 
( )

,
k

jtδ  

this procedure yields the following linear tridiagonal system (we have also 
dropped the superscript (k) for simplicity): 
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1
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1
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To complete the system (23) we recall the boundary conditions (21), 

which can be satisfied exactly with no iteration. Therefore, in order to 
maintain these correct values in all the iterates, we take  

 

0 0,fδ = 0 0,uδ = 0 0,tδ = 0
J

uδ = and 0.
J

sδ =           (26) 

 

The Block Tridiagonal Matrix 

The linearized difference Equation (23) have a block tridiagonal structure 

consists of variables or constants, but here it consists of block matrices. 
For constant wall temperature, the elements of the matrices are defined as 

follows: 

 

1 1
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J J
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 
 
 
 
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 
 
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⋱
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 
 
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  

⋮ =

1

2

1

[ ]

[ ]

[ ]

[ ]

J

J

r

r

r

r

−

 
 
 
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That is: [ ][ ] [ ]A rδ =                                  (27) 

 
where 
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 
 
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h
d = −           (28a) 
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 
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2

j
h

d = −
  

2 j J≤ ≤         (29) 
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d

C
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b b

 
 
 
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 
 
  

  ,
2

j
h

d = −     1 1j J≤ ≤ −          (30) 
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1

1
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j
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u

s
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v
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δ
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δ
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−

−
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=    2 j J≤ ≤                (31) 

 

and 

1 1

2
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2

3 1
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4 1

2

5 1

2

( )

( )

( )[ ] ,

( )

( )

j

j

jj

j

j

r

r

rr

r

r

−

−

−

−

−

 
 
 
 
 
 =
 
 
 
 
 
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       1 .j J≤ ≤                      (32) 
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To solve Equation (27), we assume that A is nonsingular and it can be 

factored into  
 

[ ] [ ][ ]A L U=            (33) 

 

where 

 

[ ]

1

2 2

1

[ ]

[ ] [ ]

[ ]

[ ] [ ]

J

J J

B

L

B

α

α

α

α
−

 
 
 
 =
 
 
  

⋱

⋱

  and [ ]

1

2

1

[ ] [ ]

[ ] [ ]

,

[ ][ ]

[ ]

J

I

I

U

I

I

−

Γ 
 Γ 
 

=  
 
 Γ
 
  

⋱

⋱
 

 

 
 

 

where [I] is the identity matrix of order 5 and [ ],i
α  and [ ]i

Γ  are 5× 5 

matrices which elements are determined by the following equations: 
 

[ ] [ ]1 1Aα =             (34) 

 

[ ] [ ] [ ]1 1 1 A CΓ =   and                       (35) 

 

 
1

[ ] [ ] [ ] [ ],
j j j j

A Bα −= − Γ
   

j = 2, 3, … , J                (36) 

 

 [ ][ ] [ ],
j j j

Cα Γ =        j = 2, 3, … , J-1.           (37) 

 

Equation (33) can now be substituted into Equation (27), and we get  

 

[ ][ ][ ] [ ].L U rδ =                         (38) 

 

If we define [ ][ ] [ ]U Wδ =                   (39) 

 

then Equation (38) becomes  [ ][ ] [ ]L W r=                             (40) 
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where 

1

2

1

[ ]

[ ]

[ ]

[ ]

J

J

W

W

W

W

W

−

 
 
 
 =
 
 
  

⋮  

 

and the [ ]
j

W  are 5 × 1 column matrices. The elements W can be solved 

from Equation (40) 

 

1 1 1[ ][ ] [ ]W rα =            (41) 

 

1[ ][ ] [ ] [ ][ ],
j j j j j

W r B Wα −= −     2 .j J≤ ≤           (42) 

 

 

The step in which ,  and 
j j j

WαΓ  are calculated is usually referred to as the 

forward sweep. Once the elements of W are found, Equation (39) then 

gives the solution δ  in the so-called backward sweep, in which the 

elements are obtained by the following relations: 
 

[ ] [ ]
J J

Wδ =                (43) 

 

1[ ] [ ] [ ][ ],
j j j j

Wδ δ += − Γ      1 1.j J≤ ≤ − .                     (44) 

 

These calculations are repeated until some convergence criterion is 

satisfied and calculations are stopped when  
 

( )

0 1

ivδ ε<                 (45) 

 

where 1ε  is a small prescribed value.  

 

 

RESULTS AND DISCUSSION 

The solution starts at 0x = , with a proper step size y,∆ for the 

interval 0 y y∞≤ ≤  by iteration, then proceeds to the 0x >  location with a 
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proper step size x.∆ A solution is considered to converge when the 

difference between the input and output of the ( 0)v x,  came within 5
10 .

−  

After obtaining a converged solution, the computation will continue by 

marching in the x − direction. The step size y∆  in y, and the edge of the 

boundary layer y∞  had to be adjusted for different values of parameters to 

maintain accuracy. Therefore, we have used the step size of 0 02y .∆ =  

and 0 01x .∆ =  in the present study. 

 

 Equations (11) and (12) subject to the boundary conditions (13) 

are solved numerically using the Keller-box method with three parameters 

considered, namely, the Prandtl number Pr, the conjugate parameter 1γ =  

and the coordinate running along the surface of the cylinder, x . In this 

paper, numerical solutions start at the lower stagnation point of the 

cylinder, 0x ,≈  and proceed round the cylinder up to the separation point. 

For the Prandtl number Pr, it is worth mentioning that small values of Pr 

( 1)≪  physically correspond to liquid metals, which have high thermal 

conductivity but low viscosity, while large values of Pr ( 1)≫  correspond 

to high viscosity oils.  

 

Solving Equation (11) subjects to the corresponding boundary 

conditions (13), it is found that the separation of the momentum (velocity) 
boundary layer from the surface of the cylinder takes place at the point 

0104.50 ,sx = which is in very good agreement with the results reported by 

Schlichting (1968), Leal (1992) and Ahmad et al. (2005). On the other 

hand, solving Equation (14) subjects to the boundary conditions (16), it is 
found that there is only a unique value of the reduced skin friction 

coefficient,  (0) 3.4864f ′′ =  which is in good agreement with the value 

(0) 3.4919f ′′ =  found by Ahmad et al. (2005). We can, thus, conclude 

that this method works efficiently also for the present problem and we are, 

therefore, confident that the results presented here are accurate. 

 

Tables 1 and 2 present the values of  
2

2
( ), ( ,0)w

f
x x

y
θ

∂

∂
 and 

( , )f x ∞   obtained by solving Equations (11) and (12) subject to boundary 

conditions (13) and the values of the reduced skin friction coefficient 
2

2
( ,0)

f
x

y

∂

∂
 at some positions x  for Pr 7=  and 10 when 1,γ =  
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respectively. It is noticed from Table 1 that the values of the wall 
temperature are sensitive to the small changes in Pr. For example, as Pr 

increases, the value of the wall temperature ( )w xθ  decreases. On the other 

hand, it is seen from Table 2 that due to the decoupled boundary layer 
equations (11) and (12), there is only a unique value of the reduced skin 

friction 
2

2
( ,0)

f
x

y

∂

∂
 for all values of Pr at different positions x  until 

separation takes place. The reduced skin friction coefficient decreases as 

the position x  increases around the cylinder.  
 

TABLE 1: Values of 
2

2
( ), ( ,0)w

f
x x

y
θ

∂

∂
 and ( , )f x ∞  for Pr = 7 and 10, obtained by 

solving Equations (11) - (13) when 1γ =  

 
 

 

 

TABLE 2: Values of the reduced skin friction coefficient 
2

2
( ,0)

f
x

y

∂

∂
 at some positions x  

when 1γ =  

 
x  0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

0x  0
0  0

11.46  0
22.92  0

34.38

 

0
45.84

 

0
57.30  0

68.75  0
80.21  0

91.67  0
103.13

 
2

2
( ,0)

f
x

y

∂

∂

 

3.4864 3.4293 3.2661 3.0056 2.6601 2.2462 1.7825 1.2858 0.7646 0.1437 

 

 

 

Pr 
x  

( )w xθ  

7 10 

0 1.4511  1.0704 
0.2 0.9153 0.5371 
0.4 0.7519 0.3548 
0.6 0.6741 0.2599 
0.8 0.6440 0.2091 

1.0 0.6497 0.1872 
1.2 0.6930 0.1915 
1.4 0.7896 0.2283 
1.6 0.9935 0.3251 
1.8 1.7549 0.7209 

2

2
( ,0)

f
x

y

∂

∂
 

3.4864 3.4864 

( , )f x ∞  11.0742 11.0742 
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Figure 3 displays the velocity profiles 
f

y

∂

∂
 near the lower 

stagnation point of the cylinder, 0,x ≈  when 1γ =  for the present results 

and those reported by Ahmad et al. (2005). This figure shows that the 
present results are in good agreement with the previously published 

results.  
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 3: Velocity profiles ( , )
f

x y
y

∂

∂
 near the lower stagnation point of the 

cylinder, 0x ≈ when 1γ =
 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

Figure 4: Variation of the reduced skin friction 
2

2
( ,0)

f
x

y

∂

∂
 and the skin friction coefficient 

( ,0)fC x  when 1γ =  
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Figure 4 illustrates the variation of the reduced skin 

friction
2

2
( ,0)

f
x

y

∂

∂
 and the skin friction coefficient ( ,0).fC x  From these 

figures, it is found that we have only a unique graph of ,
f

y

∂

∂
 

2

2
( ,0)

f
x

y

∂

∂
 

and ( ,0)fC x  for all values of Pr, due to the decoupled Equations (11) and 

(12). 
  

Figure 5 presents the temperature profiles near the lower 

stagnation point of the cylinder, 0,x ≈  for Pr = 7 and 10 when 1.γ =  It 

can be seen that as Pr increases, the temperature profiles decrease and the 

thermal boundary layer thickness also decreases. This is because for small 

values of the Prandtl number Pr ( 1)≪  the fluid is highly conductive. 

Physically, if Pr increases, the thermal diffusivity decreases and this 

phenomenon lead to the decreasing of energy transfer ability that reduces 

the thermal boundary layer.  

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
Figure 5: Temperature profiles ( , )x yθ  near the lower stagnation point of the 

cylinder, 0x ,≈  for values of  Pr 7=  and 10 when 1γ =  
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Figure 6 illustrates the variation of wall temperature ( ,0)xθ  with 

Prandtl number Pr when 1.γ = To get a physically acceptable solution, Pr 

must be greater than or equals to a critical value of Pr, say Pr ,c  depending 

on γ . It can be seen from this figure that ( ,0)xθ  becomes large as Pr 

approaches the critical value Pr
c

 = 1.7519 when 1.γ =  From Equation 

(12), we obtain  
 

2

2
0

y

θ∂
=

∂
             (46) 

 

for small values of Pr ( 1).≪ Solving this equation with the boundary 

conditions (13) and with 0( ) 0,xθ =
 
we get 

 

( )y yθ = −            (47) 
 

when Pr small ( 1)≪  and near 0x  ( 0x  refers to x  in degrees). This 

relation shows that near the point 0x  the temperature becomes negative 

for small values of the Prandtl number and this is not physically 

realizable. However, for larger values of the Prandtl number, namely Pr = 
7 and 10, the temperature of the thermal boundary layer does not diminish 

at the surface of the cylinder. 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 
Figure 6: Variation of the wall temperature ( ,0)xθ  with Prandtl number Pr when 1γ =  
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Figure 7 illustrates the variation of the wall temperature ( ,0)xθ  

with conjugate parameter γ  when Pr = 7 and 10. Also, to get a physically 

acceptable solution, γ  must be less than or equal to a critical value of ,γ  

say ,cγ  depending on Pr. It can be seen from this figure that ( ,0)xθ  

becomes large as γ  approaches the critical values 1.0353cγ =  and 1.5167 

when Pr = 7 and 10, respectively. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 
Figure 7: Variation of the wall temperature ( ,0)xθ  with conjugate parameter γ  when     

Pr = 7 and 10 

 

 

CONCLUSIONS 

In this paper, we have numerically studied the problem of forced 

convection boundary layer flow over a horizontal circular cylinder with 
Newtonian heating condition. It is shown in this paper how the Prandtl 

number Pr and the parameter conjugate γ  affect the temperature profiles 

and also the position of the temperature profiles around the surface of the 
cylinder where it diminishes. We can conclude that  

 

•  an increase in the value of Pr leads to a decrease in temperature 

profiles 
•  to get a physically acceptable solution, Pr must be greater than or 

equal to Prc (critical value of Pr) depending on ,γ and also, γ  
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must be less than or equal to cγ  (critical value of γ ) depending 

on Pr 
•  the separation of the momentum boundary layer from the surface 

of the cylinder takes places at the point 0104.50sx =  for all values 

of Pr and .γ  

 
 

ACKNOWLEDGEMENTS 

The authors gratefully acknowledge the financial supports 
received from the Universiti Kebangsaan Malaysia (UKM-ST-07-

FRGSS0036-2009) and research grant from the Universiti Malaysia 

Pahang (RDU090308).  
 

 

REFERENCES 

Ahmad, S., Nazar, R.M. and Pop, I. 2005. Forced convection boundary 

layer flow over a horizontal circular cylinder with constant 

surface heat flux. Prosiding Simposium Kebangsaan Sains 

Matematik ke XIII, Kedah, Malaysia, 31 May - 2 June 2005. 

 

Cebeci, T. and Cousteix, J. 2005. Modeling and Computation of 

Boundary-Layer Flows: Laminar, Turbulent and Transitional 

Boundary Layers in incompressible and Compressible Flow. New 

York: Springer Berlin Heidelberg,. 

 
Cebeci, T. and Bradshaw, P. 1988. Physical and Computational Aspects 

of Convective Heat Transfer. New York:  Springer. 

 
Ingham, D.B. and Pop, I. 1987. Natural convection about a heated 

horizontal cylinder in porous medium. Journal of Fluid 

Mechanics. 184: 157-181. 

 
Leal, L.G. 1992. Laminar Flow and Convective Transport Processes: 

Scaling Principles and Asymptotic Analysis. London: 

Butterworth-Heinemann. 
 

Merkin, J.H. 1977. Mixed convection from a horizontal circular cylinder. 

International Journal of Heat and Mass Transfer. 20: 73-77. 



Mohd Zuki Salleh, Roslinda Nazar, Norihan Md Arifin and Ioan Pop 

 

182 Malaysian Journal of Mathematical Sciences 
 

 
Merkin, J.H. and  Pop, I. 1988. A note on the free convection boundary 

layer on a horizontal circular cylinder with constant heat flux. 

Warme- und Stoffubert.22: 79-81. 
 

Merkin, J.H. 1994. Natural convection boundary-layer flow on a vertical 

surface with Newtonian Heating. International Journal of Heat 

and Fluid Flow. 15: 392-398. 
 

Mola, M.M., Hossain, M.A. and Gorla, R.S.R. 2005. Natural convection 

flow from an isothermal horizontal circular cylinder with 
temperaturw dependent viscosity. Heat and Mass Transfer. 41: 

594-598. 

 

Nazar, R., Amin, N. and Pop, I. 2002a. Mixed convection boundary layer 
flow from a horizontal circular cylinder with a constant surface 

heat flux. Heat and Mass Transfer. 40: 219-227. 

 
Nazar, R., Amin, N. and  Pop, I. 2002b. Free convection boundary layer 

on an isothermal horizontal circular cylinder in a micropolar fluid. 

Heat Transfer 2002, Proceedings of the Twelfth International 

Heat Transfer Conference. 525–530. 

 

Salleh, M.Z., Nazar, R. and Pop, I. 2009. Forced convection boundary 

layer flow at a forward stagnation point with Newtonian heating. 
Chemical Engineering Communications. 196: 987-996. 

 

Salleh, M.Z. and Nazar, R. 2010. Free convection boundary layer flow 
over a horizontal circular cylinder with Newtonian heating. Sains 

Malaysiana. 39(4): 671-676. 

 
Salleh, M.Z., Nazar, R. and Pop, I. 2010a. Mixed convection boundary 

layer flow over a horizontal circular cylinder with Newtonian 

heating. Heat and Mass Transfer. 46(1): 1411-1418. 

 
Salleh, M.Z., Nazar, R. and Pop, I. 2010b. Modeling of free convection 

boundary layer flow on a solid sphere with Newtonian heating. 

Acta Applicandae Mathematicae. 112: 263-274. 
 

Salleh, M.Z., Nazar, R. and Pop, I. 2010c. Mixed convection boundary 

layer flow about a solid sphere with Newtonian heating. Archives 

of Mechanics. 62(4): 283-303. 



Numerical Solutions of Forced Convection Boundary Layer Flow on a Horizontal Circular Cylinder 

with Newtonian Heating 

 

 Malaysian Journal of Mathematical Sciences 183 
 

Salleh, M.Z., Nazar, R., Arifin, N.M., Pop, I. and Merkin, J.H. 2011. 

Forced convection heat transfer over a horizontal circular cylinder 
with Newtonian heating, Journal of Engineering Mathematics. 

69(1): 101-110.  

 

Schlichting, H. 1968. Boundary Layer Theory (6th edition). New York: 
Mc-Graw-Hill Inc. 

 

Yih, K.A. 2000. Effect of uniform blowing/suction on MHD-natural 
convection over a horizontal cylinder: UWT or UHF. Acta 

Mechanica. 144: 17-27. 

 

 

 

 


