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ABSTRACT 

The log-normal distribution is often used to model lifetime data due to its non-

monotonic hazard rate. However, with left-truncated data the normal approximation 

fails due to the increased skewness in this distribution. This sometimes results in the 

poor performance of the confidence interval estimation based on the asymptotic 

normality of the maximum likelihood estimates, especially when the sample sizes are 

small. The purpose of this research is to compare and analyze the performance of the 

Wald, likelihood ratio and jackknife confidence intervals based on the widths of the 

intervals for the parameters of the log-normal model with fixed covariates through a 

coverage probability study. A lifetime data is therefore simulated under six different 

settings; model 1 (no truncation with exact observations), model 2 (low truncation with 

exact observations), model 3 (high truncation with exact observations), model 4 (no 

truncation with low censoring), model 5 (low truncation with low censoring) and 

model 6 (high truncation with low censoring). The comparative study indicates that the 

Wald, likelihood ratio and jackknife intervals performed reasonably well when no 

truncation or truncation is present and exact observations are available (model 1, 

model 2 and model 3) compared to when no truncation or truncation is observed with 

the presence of censoring (model 4, model 5 and model 6). Additionally, it is also 

evident from the results that the jackknife method outperformed the Wald and 

likelihood ratio methods specifically for the covariate parameter of the log-normal 

model even with small sample sizes when data is left-truncated with the presence of 

low censoring. 

 

Keywords: Log-normal distribution, left-truncated and right censored, Wald, 

likelihood ratio, Jackknife  
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1. INTRODUCTION 

 The statistical distribution that has gained a popular use among 

medical practitioners to model lifetime data is the log-normal distribution 

which is known to have a non-monotone hazard rate; the hazard rate that 

increases to a maximum and later decreases. Studies on survival times after 

cancer diagnosis i.e lung and breast cancer diagnosis, age of onset Alzheimer 

disease and latency periods of diseases have often been shown to follow a 

log-normal distribution. This has been highlighted by authors Tai et.al 

(2003), Royston (2001) and Limpert et.al (2001). Conversely, lifetime of an 

observation is left-truncated when it is not feasible to follow an individual 

from the beginning time point of the study, 0t   but at some time point u  

due to cost or time constraint. Subsequently, only those who experience some 

transitional event i.e. diagnosed with lung cancer are recruited into the study 

and followed prospectively until the event of interest i.e. death occurs in 

addition to the usual right censoring. This type of data is also known as left-

truncated and right censored (LTRC) which is usually encountered in 

prevalence cohort study and has an extensive use in the field of survival 

studies (Grover and Sabharwal, 2012). Since time to onset might be random 

for each individual, observations may enter the study at random time points 

or delayed entry occurs (Shen (2009)).  
 

Information on lifetime of an observation is only considered upon 

time of entry, u or left-truncated at u. In other words, if t is the lifetime of an 

individual, under left-truncation t u , and individuals with t u  remains 

unknown or unobserved by researchers. Thus, when a log-normal model is 

fitted to LTRC data, some of the observations on the left-tail of the 

distribution will be disregarded consequently increasing the existing 

skewness of the log-normal distribution (Cain et.al, 2011).  In other words, 

the selection mechanism applied to the study design would result in reduced 

data and subsequently result in the poor performance of the normal 

approximation method in constructing the confidence intervals for the 

parameters.  
 

Many authors have shown interest in determining suitable inferential 

methods for the parameters of the log-normal distribution with censored data.  

Lawless (1982) has indicated that the Wald method would perform poorly 

with small samples particularly with heavy censoring. As an alternative, he 

proposed the likelihood ratio method which is based on asymptotic chi-

square distribution as the method which often outperforms the Wald for small 

to moderate samples. However, the likelihood ratio method is 
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computationally intensive and provide interval limits that is usually close to 

the one obtained using the Wald method when the sample sizes are large. 

Further Schmee et.al (1985) also presented that asymptotic based intervals 

result in anticonservative intervals for small samples. Doganaksoy and 

Schmee (1993) showed that the likelihood ratio method performed better 

with parameters of the log-normal distribution compared to the Wald method. 

Additionally, Mitra (2013) proposed the parametric bootstrap technique for 

parameters of the log-normal model fitted with LTRC data without 

covariates. Arasan and Lunn (2008) concluded that the jackknife method 

worked well than any of the bootstrap techniques for censored samples. 

Although many of the research works on coverage probability study are 

focused on censored samples, there is very limited work in investigating the 

LTRC survival data.  

 

On this basis, a coverage probability study is conducted to assess the 

performance of the Wald, likelihood ratio (LR) and jackknife (JK) based 

confidence interval estimation methods for the parameters in the log-normal 

model for a simulated lifetime data under six different settings; model 1 (no 

truncation with exact observations), model 2 (low truncation with exact 

observations), model 3 (high truncation with exact observations), model 4 (no 

truncation with moderate censoring), model 5 (low truncation with moderate 

censoring) and model 6 (high truncation with moderate censoring).  

 

2. LOG NORMAL MODEL WITH LEFT-TRUNCATION AND 

COVARIATES  

In this study, we considered a single fixed covariate. Following that, 

the density and survival function are given in (1) and (2) correspondingly as 

follows: 

𝑓(𝑡i ) =
1

2
i

t σ π

 
        
   

2

0 1log1

2
i it β β x

σ

e  (1) 

 

and 

𝑆(𝑡i ) =
  

   
 

0 1
log ( )

1 Φ i i
t β β x

σ
 (2) 
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for 1,2,...,i n . Following that, the likelihood function consisting both exact 

and right censored observations with and without left-truncation and 

0 1( , , )  θ is given in (3) and (4) respectively as follows:   

 

𝐿(𝛉) =





      
   
      


1

1

( ) ( )

( ) ( )

i ic c
n

i i

i i i

f t S r

S u S u
 (3) 

                        

𝐿(𝛉) =    





1

1

( ) ( )
i i

n
c c

i i
i

f t S r  (4) 

 

with failure times ( it ), right censored times ( ir ) and left truncated times ( iu ). 

Also the censoring indicators is defined in (5) as follows: 

 

𝑐𝑖 =
0 if subject is right-censored

1 otherwise





 (5) 

 

Therefore the log-likelihood function for observations with or without left-

truncation attribute can be derived by combining the likelihood function as 

given in (3), (4) and (5) with a truncation indicator variable (v𝑖 ). This is 

defined in (6) and (7).   

 

𝑙(𝛉) = ∑ [    
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(6) 

     

with 0 1 ix     and the truncation indicator,   
                                      

v𝑖 =
0 if subject is right-censored

1 otherwise





 (7) 
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By utilizing the result in (6) and (7), the log-likelihood for each model can be 

further simplified by choosing the appropriate values for ic  and v𝑖, e.g. when 

no truncation and exact observations are available, 1ic and v𝑖 =1. 

                           

3. CONFIDENCE INTERVAL ESTIMATES 

The exact confidence intervals (CI) are in practice difficult to 

construct and unavailable under Type-I and random censoring (Doganaksoy 

and Schmee, 1993). Thus, as an alternative, researchers opt for Wald based 

C.I for parameters followed by the likelihood ratio (LR) method. Arasan 

(2008) suggested that parameterization based confidence intervals such as 

 log  for the scale parameter   produce intervals that are more 

symmetrical as one should expect that Wald based interval estimates for 

parameter   to be highly asymmetrical due to a sharp boundary in the 

parameter space. The parameterization of  log  method addressed as PLS 

in this article is equally explored. We should anticipate that the jackknife 

(JK) method to perform the best compared to all the other proposed methods. 

The reason being, the jackknife adaptation of the consistent root of the 

maximum likelihood equation has equivalent asymptotic distribution as the 

consistent root; in addition to that the jackknife estimate of the variance of 

the asymptotic distribution of the consistent root is itself consistent, refer to 

Reeds (1978).  

 

The suitability of the proposed CI methods is assessed based on the 

least number of asymmetrical, conservative and anticonservative intervals 

produced. The following section discusses on methods of constructing 

confidence intervals (C.I) estimates for parameter  which would equally 

apply to the rest of the parameters 0 1 and   of the log-normal model.  

 

3.1  Wald method 

Let ̂  be the maximum likelihood estimate (mle) of  . The 100(1 )%  

C.I for the parameter   is given  by (8) as follows: 

 

𝜎̂ − 𝑧
1−

𝛼
2

ˆvar( )σ < 𝜎 < 𝜎̂ + 𝑧
1−

𝛼
2

ˆvar( )σ  (8) 
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with ˆvar( ) the first diagonal element of the inverse of the observed Fisher 

information matrix 
1 ˆ( )

I θ and θ̂  be the mle of vector of parameter θ . By 

utilizing the same principle, the PLS C.I for  log   is given by 

 

log(𝜎̂)  


 
 1

2

ˆvar log
α

z σ  (9) 

where the variance of   log   can be estimated  using the delta method and 

is given as  
 

   
 

  
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2 2

ˆ ˆvar( ) var( )
ˆvar log

ˆˆexp log

σ σ
σ

σσ

.  

 

Therefore the 100(1 )%  C.I for the parameter   using the result from (9) 

can be obtained using the back transformation method given by,  

 

𝜎̂exp (



1

2

ˆvar( )

ˆα

σ
z

σ
) < 𝜎 < 𝜎̂exp (

1
2

ˆvar( )

ˆα

σ
z

σ
) (10) 

 

Note that the PLS method is only applied to the shape parameter  . 

 

3.2  Likelihood Ratio (LR) method 

The LR statistics in inspecting the null hypothesis 𝐻0: 𝜎 = 𝜎̃ versus  𝐻1: 𝜎 ≠
𝜎̃ for parameter  can be written as,   

 

𝜓(𝜎̃) =
 

   
2

1,1
ˆˆ2 ( , ) ( , )

α
l σ l σ χη η  (11) 

 

with l  the likelihood function, 0 1( , ) η  the vector of nuisance 

parameters, ( , ) η maximizes ( , )l  η under the null hypothesis and ˆˆ( , ) η is 

the mle of ( , ) η .  Thus, the 100(1 )%  CI for  can be estimated as a set 

of values of  ; a lower bound by ˆ
L   and upper bound ˆ

U   for 

which the null hypothesis will not be rejected or equivalently by finding set 

of values of  so that    
2

1,1

1
ˆˆ, ( , )

2
l l


  


 η η , refer to (11).  
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3.3  Jackknife (JK) method 

Let 1 2( , ,..., )nw w w w be the original dataset with n observations and ̂ be 

the mle of  obtained from this dataset. The 
thi jackknife sample is 

constructed by excluding the 
thi  observation from the original dataset. Thus 

each jackknife sample would consist of 1n  observations. The 
thi jackknife 

sample with the 
thi  observation removed can be expressed as 

( ) 1 2 1 1,...,( , ,..., , )i i i nw w w w w w   and ( )
ˆ

i is the mle of  obtained from this 

sample. Thus, the 100(1 )%  CI for  using the JK method is given by, 

 

𝜎̂𝑗𝑘 −
 (1 /2, 1)α n

t 𝑠𝑒𝑗𝑘̂(𝜎̂) < 𝜎 < 𝜎̂𝑗𝑘 +
 (1 /2, 1)α n

t 𝑠𝑒𝑗𝑘̂(𝜎̂) (12) 

 

with    
( ) (.)

ˆ ˆ ˆ ˆ( 1)( )
jk

σ σ n σ σ  and 


(.) ( )
1

ˆ ˆ /
n

i
i

σ σ n . Also, the jackknife 

estimate of the bias, ( ) (.)
ˆ ˆ

i   and the standard error, 𝑠𝑒𝑗𝑘̂(𝜎̂) is obtained 

from the jackknife sample with  𝑠𝑒𝑗𝑘̂(𝜎̂)  



 

2

( ) (.)
1

1
ˆ ˆ

n

i
i

n
σ σ

n
.  

 

4. SIMULATION AND COVERAGE PROBABILITY STUDY 

The simulation study on LTRC survival data proposed by Mitra 

(2013) is adopted and modified to mimic the small cell lung cancer survival 

data studied by Tai et.al (2003) which provides a satisfactory fit with the log-

normal distribution.  

 

The estimates from the proposed model are used as the true 

parameter values for the simulation study namely 

0 1( , , ) (0.50,2.87,0.05)   θ  to obtain more realistic survival times. The 

month of truncation or the beginning time point of the study, y is fixed.  

 

A set of random number of months which basically represents the 

month of diagnosis of the lung cancer is simulated with unequal probabilities 

with replacement; before  
kby and after  

jay the month of truncation where               

k = 1,2,...,n1 and  j=1,2,...,n2. 
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In other words, 
kby  represents all prevalence cohort or left-truncated 

at y  with 
kby y  and is fixed at 20% and 60% to determine the effect of 

high and low truncation on the length of the confidence interval estimates. 

The remaining observations are incidence cohort, 
jay observed from the 

beginning time point of the study with 0y  and 
jay y . Note that in this 

simulation study the total observation is determined as  1 2n n n  .  
 

The lifetimes for the prevalence cohort, kt are simulated from the 

log-normal distribution as 
1exp( (1 ) )k kt z      for 11,2,...,k n with 

~ (0,1)kz unif , 1  the inverse of the cumulative distribution function of the 

normal distribution,  and    are the shape and the location parameter 

respectively. Further, the lifetimes, kt  are added to 
kby ; if the resulting 

failure times are less than y, these months of diagnosis are removed and a 

new set of random values of ,  ,  and 
kb k ky t z are simulated. Following that, the 

left truncation times ku  are obtained as 
kk bu y y   and for all the left-

truncated observations k kt u . Also, for all left-truncated observations in the 

study, additional parameters, 0 1 and    are modeled through  as 

0 1 kx     with covariate ~ (0,1)kx N . 
 

The lifetimes for incidence cohort, 
1exp( (1 ) )j jt z      for 

21,2,...,j n  with 0 1    jx are simulated in the same manner as above.  

Note that for the incidence cohort however 0ju   as all the individuals are 

observed from 0y  . 
 

Subsequently, as the method of simulation adopted for kt and jt  are 

the same and 1 2n n n  , the lifetimes for n  independent random samples 

can be simulated by 
1exp( (1 ) )i it z     with ~ (0,1)iz unif ,

~ (0,1)ix N and 0 1 ix    for 1,2,...,  .i n The censoring times, ic  are 

simulated as ~ exp( )ic  , where the value of   is adjusted to yield 

approximately 10% of censored data.  
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A coverage probability study is conducted to analyze and compare 

the performance of the Wald, LR and JK C.I estimates for the parameters 

0 1,  and     with the nominal probability error (npe), 0.05  .  
 

A coverage probability is the probability of a confidence interval 

containing the true parameter value, and we desire this value to be close to  

,  the nominal error probability. A coverage probability study is a 

simulation study conducted to evaluate the performance of a confidence 

interval estimation procedure. In any coverage probability study, we do not 

want a conservative (anticonservative) interval, which generates coverage 

probability that is greater (smaller) than (1  ). Further, we do not want an 

asymmetrical interval where when the larger error probability is less than 1.5 

times the smaller one.   
 

Following that, we generated 2000 samples of size 

20,30,80,100,200 and 250n   with the nominal probability error (npe), 

0.05  for model 1 (no truncation with exact observations), model 2 (20% 

truncation with exact observations), model 3 (60% truncation with exact 

observations), model 4 (no truncation with 10% censoring), model 5 (20% 

truncation with 10% censoring) and model 6 (60% truncation with 10% 

censoring). The estimated error probabilities on the left (lep) and right (rep) 

for parameter   is calculated by adding the number of times the left (right) 

endpoint was more (less) than the true parameter value divided by the 

number of simulations; 2000 times.  
 

Thus, for the Wald, LR , JK and PLS CI method this can be written 

as in (13), (14),(15) and (16) respectively as follows: 

 

lep = # {𝜎̂ − 𝑧1−𝛼
2⁄ √var(𝜎̂)  > 𝜎} 2000⁄  

rep = # {𝜎̂ + 𝑧1−𝛼
2⁄ √var(𝜎̂)  < 𝜎} 2000⁄  

 

(13) 

      

  lep = # {𝜓(𝜎) > 𝜒(1−𝛼)
2  and σ̂  > 𝜎} 2000⁄  

  rep = # {𝜓(𝜎) > 𝜒(1−𝛼)
2  and σ̂  < 𝜎} 2000⁄  

 

(14) 

lep = # {𝜎̂𝑗𝑘 −
 (1 /2, 1)α n

t 𝑠𝑒𝑗𝑘̂(𝜎̂) > σ} 2000⁄  

 rep = # {𝜎̂𝑗𝑘 +
 (1 /2, 1)α n

t 𝑠𝑒𝑗𝑘̂(𝜎̂) < σ} 2000⁄  

 

 

(15) 
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lep = # {𝜎̂exp(  z1−α 2⁄ √var(σ̂) σ̂⁄ ) > 𝜎} 2000⁄  

rep = # {𝜎̂exp(z1−α 2⁄ √var(σ̂) σ̂⁄ ) > 𝜎} 2000⁄  
(16) 

 

Therefore, the estimated total error probability (tep) for   is simply 

the sum of lep and rep. Following that outcome, a CI method is termed 

anticonservative (AC) if    ˆtep 2.58 se( )α α , conservative (C) if 

 ˆtep< -2.58 se( )α α  with ˆ( ) (1 ) /se N    . Also, the estimated error 

probabilities are asymmetric (AS) when the larger error probabilities on one 

side of the interval is greater than 1.5 times the smaller one.  

 

 A preferred confidence interval method produces least number of 

AS,  CV and AC intervals, the value of the lep and rep closer to 0.025 and the 

value of the tep closer to npe of 0.05, (Doganaksoy and Schmee (1993))  .  

 

In this study, it is assumed that it , iu  and ic  are non-informative and 

independent of each other. Also, the exact month of diagnosis is assumed to 

be known for all observations in this study. The analysis is done with R 

statistical software and the parameter estimates are obtained using the 

Newton-Raphson iteration procedure. 

 

5. RESULTS AND DISCUSSIONS 

The results in Table 1 indicates that the Wald, LR, JK and PLS 

methods produced AS intervals with parameter  although none of the 

proposed CI methods produced C intervals. Subsequently, it is also evident 

that the number of AC intervals decreased with the increase in sample size, 

see Table 2.  However, higher number of AC intervals are produced when the 

percentage of truncation is high (model 3) compared to when no or low 

truncation is observed (model 1 and 2) specifically with the Wald and PLS 

method. Also, the parameterization of  log  for parameter  did not 

improve the performance of the Wald method as the number of AC intervals 

remained the same for model 1 and 2 and increased under model 3, refer to 

Tables 1 and 2. It is interesting to note that the LR based intervals appear to 

be more symmetrical for parameter   provided that the number of exact 

observations are extremely large, preferably greater than 250. Conversely, 

with real lifetime or clinical data this may not be plausible.   
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TABLE 1: Number of AC, C and AS confidence intervals for parameters in model 1, 2 and 3 

 

Method Parameter 
Model 1 Model 2 Model 3 

AC C  AS AC C AS AC C AS 

Wald 

  3 0 6 2 0 6 4 0 6 

0  2 0 0 2 0 0 3 0 3 

1  1 0 0 2 0 0 2 0 0 

LR 

  2 0 5 3 0 6 3 0 6 

0  2 0 0 0 0 0 2 0 1 

1  2 0 0 1 0 0 1 0 0 

JK 

  2 0 6 2 0 6 2 0 6 

0  0 0 0 0 0 0 1 0 1 

1  0 0 0 1 0 0 0 0 0 

PLS   3 0 6 2 0 6 6 0 6 

 

TABLE 2: Estimated error probabilities for parameter  under models 1, 2 and 3 

 

             n 
Model 1 Model 2 Model 3 

lep rep tep lep rep tep lep rep tep 

Wald 

20 0.001 0.139 0.140 0.001 0.131 0.131 0.000 0.148 0.148 

30 0.003 0.104 0.107 0.002 0.106 0.108 0.003 0.113 0.116 

80 0.005 0.063 0.068 0.008 0.053 0.061 0.005 0.075 0.079 

100 0.008 0.051 0.059 0.005 0.055 0.060 0.008 0.057 0.065 
200 0.012 0.050 0.061 0.009 0.053 0.062 0.012 0.046 0.058 

250 0.012 0.042 0.054 0.011 0.048 0.059 0.013 0.042 0.055 

LR 

20 0.006 0.061 0.067 0.010 0.064 0.074 0.006 0.070 0.076 

30 0.016 0.058 0.074 0.011 0.060 0.071 0.012 0.058 0.069 
80 0.014 0.040 0.054 0.016 0.048 0.064 0.014 0.050 0.063 

100 0.014 0.039 0.052 0.014 0.037 0.051 0.016 0.037 0.053 

200 0.017 0.033 0.050 0.015 0.039 0.053 0.018 0.031 0.049 
250 0.020 0.029 0.049 0.016 0.036 0.051 0.018 0.034 0.051 

JK 

20 0.009 0.071 0.080 0.009 0.069 0.078 0.010 0.078 0.088 

30 0.011 0.060 0.071 0.011 0.048 0.059 0.008 0.071 0.079 

80 0.013 0.041 0.054 0.016 0.048 0.063 0.012 0.048 0.060 

100 0.014 0.045 0.059 0.017 0.043 0.059 0.012 0.043 0.055 

200 0.013 0.037 0.050 0.015 0.039 0.054 0.016 0.031 0.046 

250 0.020 0.036 0.056 0.013 0.041 0.054 0.016 0.035 0.051 

PLS 

20 0.000 0.147 0.147 0.000 0.139 0.139 0.000 0.126 0.126 

30 0.000 0.084 0.084 0.000 0.147 0.147 0.001 0.179 0.180 

80 0.003 0.077 0.080 0.001 0.055 0.056 0.005 0.109 0.114 

100 0.002 0.051 0.053 0.001 0.055 0.056 0.005 0.071 0.076 
200 0.004 0.051 0.055 0.005 0.054 0.059 0.010 0.055 0.065 

250 0.006 0.039 0.045 0.006 0.045 0.051 0.012 0.054 0.066 

 

In contrast, the Wald, LR and JK methods do not produce any AS 

and C intervals for parameter 0  under model 1 and 2  with AC intervals 

detected only for smaller sample sizes e.g. 20 and 30n   and at higher 

proportion of truncation (model 3), refer to Tables 1 and 3. Alternatively, the 



Thirunanthini Manoharan, Jayanthi Arasan, Habshah Midi & Mohd Bakri Adam 

 

 Malaysian Journal of Mathematical Sciences 138 

 

JK method outperform all the remaining methods by producing the least AC 

C.I for parameter 0   under models 1,2 and 3 as the estimated tep closer to 

0.05 and the error probabilities appears to be more symmetrical compared to 

the Wald or the LR method, refer to Tables 1 and 3. 

 

Subsequently all the proposed CI methods work well for the 

covariate parameter 1  , but as the estimated error probabilities are more 

symmetrical in addition that the estimated  tep are closer to 0.05, we can say 

that the  JK performs the best, refer to Tables 1 and 4. 

 

On the other hand, the presence of both censoring and truncation 

affect the performance of the Wald, LR and JK CI specifically for parameter 

  and 0  as more AS and AC CI are produced regardless of large sample 

sizes under models 4, 5 and 6, refer to the output in Tables 5, 6 and 7.  Also, 

the tpe is far from npe of 0.05 and the distance increases with the increase in 

the sample size, refer to Tables 6 and 7. 

 
TABLE 3: Estimated error probabilities for parameter 0  under model 1, 2 and 3 

 

              n 
Model 1 Model 2 Model 3 

lep rep tep lep rep tep lep rep tep 

Wald 

20 0.044 0.038 0.082 0.035 0.043 0.078 0.051 0.028 0.078 

30 0.035 0.032 0.067 0.044 0.041 0.085 0.043 0.025 0.068 
80 0.025 0.027 0.052 0.028 0.029 0.057 0.042 0.014 0.056 

100 0.025 0.026 0.050 0.022 0.030 0.052 0.027 0.026 0.052 

200 0.026 0.021 0.047 0.026 0.030 0.056 0.029 0.022 0.051 
250 0.029 0.026 0.055 0.023 0.027 0.050 0.036 0.031 0.067 

LR 

20 0.037 0.033 0.070 0.031 0.027 0.058 0.038 0.030 0.067 

30 0.030 0.027 0.057 0.028 0.034 0.062 0.033 0.027 0.059 

80 0.034 0.024 0.058 0.029 0.025 0.053 0.031 0.016 0.047 

100 0.027 0.032 0.059 0.021 0.030 0.051 0.024 0.028 0.052 

200 0.031 0.033 0.064 0.025 0.030 0.055 0.027 0.025 0.052 

250 0.030 0.022 0.051 0.023 0.027 0.050 0.034 0.033 0.067 

JK 

20 0.024 0.029 0.052 0.027 0.022 0.049 0.032 0.022 0.054 

30 0.022 0.024 0.046 0.030 0.024 0.054 0.031 0.020 0.050 

80 0.018 0.023 0.041 0.031 0.024 0.055 0.029 0.021 0.050 
100 0.026 0.030 0.056 0.019 0.025 0.043 0.024 0.024 0.048 

200 0.025 0.019 0.044 0.025 0.030 0.054 0.027 0.024 0.050 
250 0.028 0.022 0.050 0.023 0.024 0.047 0.035 0.030 0.065 
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TABLE 4: Estimated error probabilities for parameter 1 under model 1, 2 and 3 

 

                n 
Model 1 Model 2 Model 3 

lep rep tep lep rep tep lep rep tep 

Wald 

20 0.047 0.034 0.081 0.039 0.036 0.075 0.039 0.039 0.077 

30 0.031 0.030 0.060 0.040 0.033 0.073 0.030 0.037 0.067 

80 0.030 0.025 0.054 0.026 0.027 0.052 0.032 0.030 0.062 
100 0.034 0.024 0.057 0.027 0.025 0.051 0.027 0.020 0.047 

200 0.021 0.026 0.047 0.026 0.026 0.052 0.030 0.032 0.061 

250 0.026 0.025 0.051 0.023 0.026 0.048 0.022 0.030 0.052 

LR 

20 0.038 0.027 0.065 0.038 0.027 0.065 0.034 0.034 0.068 

30 0.031 0.033 0.064 0.029 0.032 0.061 0.027 0.033 0.059 

80 0.027 0.027 0.054 0.030 0.022 0.052 0.032 0.028 0.060 

100 0.022 0.025 0.046 0.024 0.024 0.048 0.026 0.020 0.046 

200 0.019 0.023 0.042 0.026 0.025 0.050 0.029 0.031 0.060 

250 0.025 0.028 0.053 0.023 0.026 0.048 0.020 0.030 0.050 

JK 

20 0.036 0.019 0.055 0.028 0.027 0.054 0.023 0.027 0.049 

30 0.030 0.027 0.057 0.034 0.036 0.070 0.026 0.034 0.059 

80 0.028 0.023 0.051 0.021 0.030 0.051 0.028 0.025 0.053 
100 0.022 0.025 0.046 0.026 0.023 0.049 0.026 0.019 0.045 

200 0.021 0.026 0.047 0.026 0.024 0.050 0.031 0.030 0.060 

250 0.024 0.025 0.048 0.023 0.027 0.049 0.022 0.030 0.052 

 

Nevertheless, it is observed that the PLS method performs fairly well 

for parameter   at moderate sample sizes e.g. 80 and 100n  particularly for 

model 4 as there is reduction in the number of AC and the intervals are more 

symmetric; even so, when low or high proportion of truncation is observed 

with censoring (model 5 and model 6) the PLS method generated many AC 

intervals even at larger sample sizes and C intervals are produced at moderate 

sample sizes, see Tables 5 and 6. 

 

Conversely, the presence of censoring do not affect the confidence 

intervals of  parameter 1  as the Wald, LR and JK method perform well 

specifically for model 4 as all the proposed CI method do not produce any 

AS or C intervals; AC intervals are produced only for small samples 

20 and 30n  , refer to Tables 5 and 8. However the JK method offers a 

better option for parameter 1  particularly when data is equally left- 

truncated with censored observations (models 5 and 6) as least number of AS, 

C and AC intervals are generated and the estimated error probabilities are 

more symmetric and tpe closer to npe of 0.05, refer to Tables 5 and 8. 
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TABLE 5: Number of AC, C and AS confidence intervals for parameters in model 4, 5 and 6 

 

Method Parameter 
Model 4 Model 5 Model 6 

AC C AS AC C AS AC C AS 

Wald 

  5 0 6 5 0 6 5 0 6 

0  6 0 6 6 0 6 6 0 6 

1  2 0 0 2 0 1 2 0 1 

LR 

  6 0 4 6 0 5 6 0 5 

0  6 0 6 6 0 6 6 0 6 

1  2 0 0 2 0 1 2 0 1 

JK 

  4 0 6 4 0 6 4 0 6 

0  4 0 6 4 0 6 5 0 6 

1  0 0 1 0 0 1 0 0 1 

PLS   2 0 5 5 1 5 4 2 5 

 
TABLE 6: Estimated error probabilities for parameter  under model 4, 5 and 6 

 

            n 
Model 4 Model 5 Model 6 

lep rep tep lep rep tep lep rep tep 

Wald 

20 0.002 0.091 0.093 0.004 0.091 0.094 0.001 0.103 0.104 

30 0.009 0.061 0.070 0.007 0.065 0.072 0.004 0.070 0.073 
80 0.045 0.016 0.061 0.038 0.013 0.051 0.041 0.014 0.055 

100 0.051 0.015 0.066 0.052 0.018 0.069 0.051 0.019 0.069 

200 0.114 0.003 0.117 0.114 0.006 0.120 0.111 0.005 0.115 

250 0.142 0.005 0.147 0.154 0.004 0.158 0.155 0.002 0.156 

LR 

20 0.028 0.039 0.066 0.037 0.038 0.075 0.028 0.040 0.068 

30 0.040 0.025 0.065 0.042 0.023 0.065 0.045 0.024 0.069 
80 0.081 0.011 0.092 0.080 0.013 0.093 0.071 0.012 0.083 

100 0.084 0.009 0.093 0.095 0.010 0.104 0.095 0.010 0.105 

200 0.158 0.002 0.160 0.156 0.005 0.161 0.161 0.003 0.163 
250 0.181 0.003 0.184 0.194 0.003 0.197 0.184 0.002 0.186 

JK 

20 0.016 0.045 0.061 0.011 0.046 0.057 0.018 0.051 0.068 

30 0.023 0.036 0.059 0.022 0.036 0.058 0.022 0.039 0.061 

80 0.062 0.012 0.073 0.064 0.014 0.078 0.049 0.012 0.061 

100 0.067 0.008 0.075 0.075 0.011 0.086 0.069 0.013 0.082 

200 0.134 0.005 0.139 0.133 0.005 0.137 0.130 0.004 0.133 

250 0.165 0.005 0.170 0.174 0.003 0.177 0.160 0.001 0.160 

PLS 

20 0.002 0.091 0.093 0.004 0.091 0.094 0.001 0.103 0.104 
30 0.009 0.061 0.070 0.007 0.065 0.072 0.004 0.070 0.073 

80 0.045 0.016 0.061 0.038 0.013 0.051 0.041 0.014 0.055 

100 0.051 0.015 0.066 0.052 0.018 0.069 0.051 0.019 0.069 
200 0.114 0.003 0.117 0.114 0.006 0.120 0.111 0.005 0.115 

250 0.142 0.005 0.147 0.154 0.004 0.158 0.155 0.002 0.156 
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TABLE 7: Estimated error probabilities for parameter 0 under model 4, 5 and 6 

 

               n 
Model 4 Model 5 Model 6 

lep rep tep lep rep tep lep rep tep 

Wald 

20 0.061 0.024 0.084 0.062 0.026 0.087 0.082 0.020 0.101 

30 0.061 0.015 0.076 0.065 0.017 0.082 0.076 0.008 0.084 

80 0.102 0.003 0.105 0.099 0.011 0.110 0.085 0.007 0.092 
100 0.098 0.004 0.102 0.124 0.004 0.128 0.097 0.004 0.101 

200 0.182 0.001 0.183 0.179 0.004 0.183 0.157 0.002 0.159 

250 0.210 0.001 0.211 0.194 0.001 0.195 0.195 0.001 0.196 

LR 

20 0.068 0.015 0.083 0.059 0.012 0.071 0.060 0.017 0.076 

30 0.075 0.012 0.087 0.066 0.015 0.081 0.061 0.014 0.074 

80 0.092 0.003 0.095 0.092 0.003 0.095 0.078 0.007 0.085 

100 0.126 0.006 0.132 0.105 0.006 0.111 0.090 0.004 0.094 

200 0.193 0.002 0.195 0.177 0.004 0.181 0.148 0.000 0.148 

250 0.208 0.003 0.210 0.200 0.001 0.201 0.174 0.001 0.175 

JK 

20 0.039 0.012 0.051 0.043 0.010 0.053 0.049 0.012 0.061 

30 0.047 0.008 0.055 0.053 0.010 0.063 0.059 0.011 0.069 

80 0.081 0.003 0.084 0.084 0.005 0.089 0.094 0.006 0.099 
100 0.112 0.006 0.118 0.095 0.006 0.101 0.082 0.002 0.084 

200 0.170 0.001 0.171 0.169 0.004 0.173 0.157 0.002 0.158 

250 0.204 0.000 0.204 0.197 0.001 0.198 0.190 0.002 0.191 

 
TABLE 8: Estimated error probabilities for parameter 1 under model 4, 5 and 6 

 

                n 
Model 4 Model 5 Model 6 

lep rep tep lep rep tep lep rep tep 

Wald 

20 0.044 0.036 0.080 0.039 0.034 0.072 0.041 0.038 0.079 

30 0.034 0.031 0.064 0.041 0.038 0.078 0.031 0.040 0.071 
80 0.028 0.024 0.052 0.025 0.024 0.049 0.021 0.033 0.054 

100 0.031 0.024 0.055 0.028 0.031 0.058 0.036 0.031 0.067 

200 0.029 0.022 0.051 0.029 0.018 0.047 0.032 0.027 0.059 
250 0.029 0.022 0.050 0.024 0.027 0.051 0.033 0.020 0.052 

LR 

20 0.040 0.028 0.068 0.032 0.035 0.067 0.034 0.032 0.066 

30 0.038 0.029 0.066 0.032 0.034 0.066 0.027 0.031 0.058 

80 0.022 0.018 0.040 0.036 0.026 0.062 0.033 0.034 0.067 

100 0.025 0.020 0.045 0.035 0.024 0.059 0.036 0.029 0.065 

200 0.026 0.019 0.045 0.028 0.018 0.046 0.035 0.022 0.056 

250 0.028 0.021 0.048 0.025 0.025 0.050 0.032 0.020 0.052 

JK 

20 0.032 0.020 0.052 0.029 0.027 0.056 0.025 0.027 0.052 

30 0.025 0.023 0.047 0.035 0.024 0.058 0.033 0.026 0.059 

80 0.026 0.024 0.050 0.021 0.022 0.043 0.026 0.026 0.052 
100 0.025 0.022 0.047 0.031 0.025 0.055 0.028 0.017 0.045 

200 0.023 0.020 0.043 0.029 0.018 0.047 0.030 0.025 0.055 

250 0.029 0.022 0.051 0.026 0.025 0.051 0.028 0.029 0.057 
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6. CONCLUSIONS 

In general, the Wald, LR and JK CI methods generate least number 

of AS,C and AC observed when exact observations are available (models 1,2 

and 3) compared to when data is censored (models 4,5 and 6).   
 

We recommend the JK method for parameter 0 1 and   when 

observations are truncated and exact failure times are available as the 

estimated error probabilities are all symmetrical with the tpe closer to 0.05 

although the proportion of truncation is high.  
 

Further, as all the suggested CI methods produce error probabilities 

that are not symmetrical for parameter   under models 1, 2 and 3, a search 

for an alternative C.I method is therefore necessary.  
 

 In conclusion, since left-truncated data is often skewed, fitting them 

to a symmetrical distribution would disregard some observations on the left-

tail of a specified distribution as demonstrated by Cain et.al, 2011. Also as 

data is equally skewed, the assumption of normality often fails as it can't fully 

capture the sampling distribution of the sample statistics being studied, 

subsequently resulting in the poor performance of the Wald and likelihood 

ratio methods in constructing the confidence intervals for the parameter 

estimates specifically when higher proportion of truncation and censoring is 

present in the data. Under these circumstances, one may opt for the JK CI 

method instead; as the estimated tpe are closer to the npe of 0.05 compared to 

the Wald method. 
 

As a rule of thumb, we propose that the JK based confidence 

intervals are only used with parameter 1  when the proportion of censoring 

is small or equally the number of observed failures are large in the presence 

of left-truncation.  
 

The parameterization of  log   may improve the performance of the 

Wald method and is therefore recommended for moderate sample sizes when 

no truncation is observed in the presence of censoring. Nevertheless, one may 

have to look into alternative methods such as bootstrap in estimating 

confidence limits for parameters 0 and    or equally for parameter 1  

characteristically when higher proportion of censoring is observed in the 

presence of left truncation, as bootstrap intervals are based on distribution of 

data in hand and not asymptotic normality.  
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We also recommend to include more number of new cases rather 

than using existing cases alone in a way to reduce truncation and to decrease 

sampling bias. This may equally help to improve the performance of the 

proposed CI methods.    
 

ACKNOWLEDGMENTS  

We would like to extend our gratitude to Fundamental Research 

Grant Scheme (FRGS), VOT 5524226, University Putra Malaysia and 

Dr.Patricia Tai, University of Saskatchewan, Saskatoon, Canada.  

 

REFERENCES 

Arasan, J. (2008). Parallel Weibull Regression Model. Pertanika Journal of 

Science & Technology. 16: 83-95.  

 

Arasan, J., and  Lunn, M. (2008). Alternative interval estimation for 

parameters of bivariate exponential model with time varying covariate. 

Computational Statistics. 23: 605-622.  

 
Cain, K .C., Harlow, S. D., Little, R . J., Nan, B., Yosef, M., Taffe, J . R., and

 Elliott, M . R. (2011). Bias due to left truncation and left censoring in 

longitudinal studies of developmental and disease processes. American 

journal of epidemiology. 173: 1078-84.  

 

Doganaksoy, N., and Schmee J. (1993). Comparison of approximate 

confidence interval distributions used in life-data analysis. Technometrics 

2: 175-84 . 

 

Grover, G., and Sabharwal, A. (2012). A parametric approach to estimate 

survival time of diabetic nephropathy with left truncated and right 

censored data. International Journal of Statistics and Probability. 1:128-

137. 

 

Lawless, J.F. (1982). Statistical Model and Methods for Lifetime Data. 

Wiley: New York.  

 

Limpert, E., Stahel W.A., and Abbt M. (2001). Log-normal distributions 

across the sciences: Keys and clues. BioScience. 51: 341-52 . 

 



Thirunanthini Manoharan, Jayanthi Arasan, Habshah Midi & Mohd Bakri Adam 

 

 Malaysian Journal of Mathematical Sciences 144 

 

Mitra, D. (2013). Likelihood Inference for Left-Truncated and Right 

Censored Lifetime Data. PhD thesis: McMaster University.  

 

Reeds, J.A. (1978). Jackknifing maximum likelihood estimates. The Annals 

of Statistics. 6: 727-739.  

 

Royston, P. (2001). The log-normal distribution as a model for survival time 

in cancer, with an emphasis on prognostic factors.  Stat Neerlandica. 55: 

89-104.  

 

Schmee, J., Gladstein, D., and Nelson, W. (1985). Confidence Limits for 

Parameters of a Normal Distribution from Singly Censored Sampels, 

Using Maximum Likelihood. Technometrics. 27: 119-128 . 

 

Shen, P. (2009). Semiparametric analysis of survival data with left truncation 

and right censoring. Computational Statistics and Data Analysis. 53:  

4417-32. 

 

Tai, P., Tonita, J., Yu, E., and Skarsgard, D. (2003).  Twenty-year folow-up 

study of long-term survival of limited-stage small-cell lung cancer and 

overview of prognostic and treatment factors. Int J.Radiatioan Oncology 

Bio/Phys. 56: 626-633.  

 

 

  

 

 

 

 


