An Analysis of the AAβ Asymmetric Encryption Scheme on Embedded Devices for IoT Environment Syed Farid bin Syed Adnan

Universiti Teknologi MARA Shah Alam

Abstract:

AA-Beta (AA_{β}) asymmetric cryptographic scheme whose algorithm consists of only basic arithmetic operations of addition and subtraction for the encryption processes offers energyefficient capabilities on low powered devices such as those commonly found in the Internet of Things (IoT). These features resulted in faster runtime compared to the more established RSA asymmetric encryption scheme, making AA_{β} a potential alternative for IoT security. At the time of this project, AA_{β} algorithm still exists as a mathematical concept and proven in a mathematical based software. In addition, this research found no known practical implementation of the AA_{β} algorithm to prove or to validate its efficiency on a real-world computing platform. It is also not known how the algorithm would perform against the widely used RSA on resource-constrained platforms. This research seeks to study the AA_{β} design philosophy and the specifications of the AA_{β} asymmetric encryption scheme, develop the AA_{β} encryption scheme and evaluate the computational speed, power consumption and feasibility of AA_{β} encryption scheme on an embedded system in the practical domain. The results from the study are being compared to the mathematical simulation, and experimentally, to the RSA. This investigation takes the form of an IoT environment, beginning with an in-depth examination of the AA_{β} encryption scheme design, and continuing into the development and real-world application of AA_B from its mathematical origin. The experimental analysis focused on the AA_{β} algorithm's performance on embedded platforms, namely, the Raspberry Pi microcomputer and microcontroller (ARM Cortex-M7) platforms. A feasibility assessment for an AA_{β} cryptosystem for sensor nodes including a client to server testbed with wireless communications was carried out in the final stage. In this research work, the performance analysis of the AA_{β} scheme produced remarkable timing improvements for the encryption and decryption of messages when compared to previous trials on a numeric computing environment. The research goes on to compare the energy consumptions for encryption and decryption using the AA_{β} scheme with similar processes using the Textbook RSA scheme on the aforesaid embedded platforms. The AA_{β} encryption process demonstrates a significantly lower energy consumption compared to RSA, where as much as three times less energy was used by AA_{β} when encrypting messages while considerable energy savings were also seen during AA_{β} message decryption on the Raspberry Pi 2 and ARM Cortex-M7 device.