Analysis of Algorithms

1. Asymptotic Notations
2. Analysis of simple algorithms
Learning outcomes

You should be able to:

- Describe asymptotic notations: O, Ω, and Θ
- Analyze the time complexity of algorithms
Introduction

- What is Algorithm?
 - a clearly specified set of simple instructions to be followed to solve a problem
 - Takes a set of values, as input and
 - produces a value, or set of values, as output
 - May be specified
 - In English
 - As a computer program
 - As a pseudo-code

- Data structures
 - Methods of organizing data

- Program = algorithms + data structures
Introduction

Why need algorithm analysis?
- writing a working program is not good enough
- The program may be inefficient!
- If the program is run on a large data set, then the running time becomes an issue
Example: Selection Problem

- Given a list of N numbers, determine the kth largest, where $k \leq N$.

Algorithm 1:

1. Read N numbers into an array
2. Sort the array in decreasing order by some simple algorithm
3. Return the element in position k
Example: Selection Problem...

- Algorithm 2:
 (1) Read the first k elements into an array and sort them in decreasing order
 (2) Each remaining element is read one by one
 - If smaller than the kth element, then it is ignored
 - Otherwise, it is placed in its correct spot in the array, bumping one element out of the array.
 (3) The element in the kth position is returned as the answer.
Example: Selection Problem...

- Which algorithm is better when
 - N = 100 and k = 100?
 - N = 100 and k = 1?

- What happens when N = 1,000,000 and k = 500,000?

- There exist better algorithms
Algorithm Analysis

- We only analyze *correct* algorithms
- An algorithm is correct
 - If, for every input instance, it halts with the correct output
- Incorrect algorithms
 - Might not halt at all on some input instances
 - Might halt with other than the desired answer
- Analyzing an algorithm
 - Predicting the resources that the algorithm requires
 - Resources include
 - Memory
 - Communication bandwidth
 - Computational time (usually most important)
Algorithm Analysis…

- **Factors affecting the running time**
 - computer
 - compiler
 - algorithm used
 - input to the algorithm
 - The content of the input affects the running time
 - Typically, the *input size* (number of items in the input) is the main consideration
 - E.g. sorting problem ⇒ the number of items to be sorted
 - E.g. multiply two matrices together ⇒ the total number of elements in the two matrices

- **Machine model assumed**
 - Instructions are executed one after another, with no concurrent operations ⇒ Not parallel computers
Example

- Calculate \(\sum_{i=1}^{N} i^3 \)

```c
int sum(int n)
{
    int partialSum;
    partialSum = 0;
    for (int i=1;i<=n;i++)
        partialSum += i*i*i;
    return partialSum;
}
```

- Lines 1 and 4 count for one unit each
- Line 3: executed \(N \) times, each time four units
- Line 2: (1 for initialization, \(N+1 \) for all the tests, \(N \) for all the increments) total \(2N + 2 \)
- Total cost: \(6N + 4 \Rightarrow O(N) \)
Worst- / average- / best-case

- **Worst-case running time** of an algorithm
 - The longest running time for any input of size n
 - An upper bound on the running time for any input
 - ⇒ guarantee that the algorithm will never take longer
 - Example: Sort a set of numbers in increasing order; and the data is in decreasing order
 - The worst case can occur fairly often
 - E.g. in searching a database for a particular piece of information

- **Best-case running time**
 - sort a set of numbers in increasing order; and the data is already in increasing order

- **Average-case running time**
 - May be difficult to define what “average” means
Running-time of algorithms

- Bounds are for the **algorithms**, rather than programs
 - Programs are just implementations of an algorithm, and almost always the details of the program do not affect the bounds

- Bounds are for **algorithms**, rather than problems
 - A problem can be solved with several algorithms, some are more efficient than others
The idea is to establish a relative order among functions for large n.

- There exists $c, n_0 > 0$ such that $f(N) \leq c \cdot g(N)$ when $N \geq n_0$.
- $f(N)$ grows no faster than $g(N)$ for “large” N.

Growth Rate
Asymptotic notation: Big-Oh

- \(f(N) = O(g(N)) \)
- There are positive constants \(c \) and \(n_0 \) such that
 \[
 f(N) \leq c \cdot g(N) \text{ when } N \geq n_0
 \]
- The growth rate of \(f(N) \) is \textit{less than or equal to} the growth rate of \(g(N) \)
- \(g(N) \) is an upper bound on \(f(N) \)
Big-Oh: example

- Let \(f(N) = 2N^2 \). Then
 - \(f(N) = O(N^4) \)
 - \(f(N) = O(N^3) \)
 - \(f(N) = O(N^2) \) (best answer, asymptotically tight)

- \(O(N^2) \): reads “order N-squared” or “Big-Oh N-squared”
Big Oh: more examples

- $N^2 / 2 - 3N = O(N^2)$
- $1 + 4N = O(N)$
- $7N^2 + 10N + 3 = O(N^2) = O(N^3)$
- $\log_{10} N = \log_2 N / \log_2 10 = O(\log_2 N) = O(\log N)$
- $\sin N = O(1)$; $10 = O(1), 10^{10} = O(1)$
- $\sum_{i=1}^{N} i \leq N \cdot N = O(N^2)$
- $\sum_{i=1}^{N} i^2 \leq N \cdot N^2 = O(N^3)$
- $\log N + N = O(N)$
- $\log^k N = O(N)$ for any constant k
- $N = O(2^N)$, but 2^N is not $O(N)$
- 2^{10N} is not $O(2^N)$
Math Review: logarithmic functions

\[x^a = b \quad \text{iff} \quad \log_x b = a \]

\[\log a b = \log a + \log b \]

\[\log_a b = \frac{\log_m b}{\log_m a} \]

\[\log a^b = b \log a \]

\[a^{\log_a n} = n^{\log_a} \]

\[\log^b a = (\log a)^b \neq \log a^b \]

\[\frac{d}{dx} \log_e x = \frac{1}{x} \]
Some rules

When considering the growth rate of a function using Big-Oh

- Ignore the lower order terms and the coefficients of the highest-order term
- No need to specify the base of logarithm
 - Changing the base from one constant to another changes the value of the logarithm by only a constant factor

- If $T_1(N) = O(f(N)$ and $T_2(N) = O(g(N))$, then
 - $T_1(N) + T_2(N) = \max(O(f(N)), O(g(N)))$,
 - $T_1(N) \times T_2(N) = O(f(N) \times g(N))$
\[\exists \, c, n_0 > 0 \text{ such that } f(N) \geq c \, g(N) \text{ when } N \geq n_0 \]

\[f(N) \text{ grows no slower than } g(N) \text{ for “large” } N \]
Big-Omega

- $f(N) = \Omega(g(N))$
- There are positive constants c and n_0 such that

 $f(N) \geq c \ g(N)$ when $N \geq n_0$

- The growth rate of $f(N)$ is \textit{greater than or equal to} the growth rate of $g(N)$.
Big-Omega: examples

Let $f(N) = 2N^2$. Then

- $f(N) = \Omega(N)$
- $f(N) = \Omega(N^2)$ (best answer)
\[f(N) = \Theta(g(N)) \]

- the growth rate of \(f(N) \) is the same as the growth rate of \(g(N) \)
Big-Theta

- \(f(N) = \Theta(g(N)) \) iff
 - \(f(N) = O(g(N)) \) and \(f(N) = \Omega(g(N)) \)
- The growth rate of \(f(N) \) equals the growth rate of \(g(N) \)
- Example: Let \(f(N) = N^2 \), \(g(N) = 2N^2 \)
 - Since \(f(N) = O(g(N)) \) and \(f(N) = \Omega(g(N)) \), thus \(f(N) = \Theta(g(N)) \).
- Big-Theta means the bound is the tightest possible.
Some rules

- If $T(N)$ is a polynomial of degree k, then
 \[T(N) = \Theta(N^k) \].

- For logarithmic functions,
 \[T(\log_m N) = \Theta(\log N) \].
Typical Growth Rates

<table>
<thead>
<tr>
<th>Function</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Constant</td>
</tr>
<tr>
<td>$\log N$</td>
<td>Logarithmic</td>
</tr>
<tr>
<td>$\log^2 N$</td>
<td>Log-squared</td>
</tr>
<tr>
<td>N</td>
<td>Linear</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>Quadratic</td>
</tr>
<tr>
<td>N^2</td>
<td>Cubic</td>
</tr>
<tr>
<td>N^3</td>
<td>Exponential</td>
</tr>
</tbody>
</table>

Figure 2.1 Typical growth rates
Growth rates …

- Doubling the input size
 - $f(N) = c$ \Rightarrow $f(2N) = f(N) = c$
 - $f(N) = \log N$ \Rightarrow $f(2N) = f(N) + \log 2$
 - $f(N) = N$ \Rightarrow $f(2N) = 2 f(N)$
 - $f(N) = N^2$ \Rightarrow $f(2N) = 4 f(N)$
 - $f(N) = N^3$ \Rightarrow $f(2N) = 8 f(N)$
 - $f(N) = 2^N$ \Rightarrow $f(2N) = f^2(N)$

- Advantages of algorithm analysis
 - To eliminate bad algorithms early
 - pinpoints the bottlenecks, which are worth coding carefully
Using L' Hopital's rule

L' Hopital's rule

- If \(\lim_{n \to \infty} f(N) = \infty \) and \(\lim_{n \to \infty} g(N) = \infty \)

then \(\lim_{n \to \infty} \frac{f(N)}{g(N)} = \lim_{n \to \infty} \frac{f'(N)}{g'(N)} \)

Determine the relative growth rates (using L' Hopital's rule if necessary)

- compute \(\lim_{n \to \infty} \frac{f(N)}{g(N)} \)

- if 0: \(f(N) = O(g(N)) \) and \(f(N) \) is not \(\Theta(g(N)) \)
- if constant \(\neq 0 \): \(f(N) = \Theta(g(N)) \)
- if \(\infty \): \(f(N) = \Omega(f(N)) \) and \(f(N) \) is not \(\Theta(g(N)) \)
- limit oscillates: no relation
General Rules

- **For loops**
 - at most the running time of the statements inside the for-loop (including tests) times the number of iterations.

- **Nested for loops**
 - the running time of the statement multiplied by the product of the sizes of all the for-loops.
 - $O(N^2)$
Consecutive statements

- These just add
- $O(N) + O(N^2) = O(N^2)$

If S1

Else S2

- never more than the running time of the test plus the larger of the running times of S1 and S2.
Another Example

- **Maximum Subsequence Sum Problem**
- **Given** (possibly negative) integers A_1, A_2, \ldots, A_n, find the maximum value of $\sum_{k=i}^{j} A_k$

 - For convenience, the maximum subsequence sum is 0 if all the integers are negative

- **E.g.** for input $-2, 11, -4, 13, -5, -2$
 - **Answer:** 20 (A_2 through A_4)
Algorithm 1: Simple

- Exhaustively tries all possibilities (brute force)

```c
int maxSubSum1 (const vector<int> &a) {
    int maxSum=0;
    for (int i=0;i<a.size();i++)
        for (int j=i;j<a.size();j++)
            { int thisSum=0;
                for (int k=i;k<=j;k++)
                    thisSum += a[k];
                if (thisSum > maxSum) maxSum = thisSum;
            }
    return maxSum;
}
```

- $O(N^3)$
Algorithm 2: Divide-and-conquer

- **Divide-and-conquer**
 - split the problem into two roughly equal subproblems, which are then solved *recursively*
 - patch together the two solutions of the subproblems to arrive at a solution for the whole problem

<table>
<thead>
<tr>
<th>First half</th>
<th>Second half</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>-1</td>
</tr>
<tr>
<td>-3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

- The maximum subsequence sum can be
 - Entirely in the left half of the input
 - Entirely in the right half of the input
 - It crosses the middle and is in both halves
The first two cases can be solved recursively.

For the last case:
- find the largest sum in the first half that includes the last element in the first half.
- the largest sum in the second half that includes the first element in the second half.
- add these two sums together.
Algorithm 2 ...

// Input: \(A[i \ldots j]\) with \(i \leq j\)
// Output: the MCS of \(A[i \ldots j]\)

\[\text{MCS}(A, i, j)\]

1. If \(i === j\) return \(A[i]\) \(O(1)\)
2. Else
3. Find \(\text{MCS}(A, i, \lfloor \frac{i+j}{2} \rfloor)\); \(T(m/2)\)
4. Find \(\text{MCS}(A, \lfloor \frac{i+j}{2} \rfloor + 1, j)\); \(T(m/2)\)
5. Find MCS that contains both \(A \left\lfloor \frac{i+j}{2} \right\rfloor\) and \(A \left\lfloor \frac{i+j}{2} \right\rfloor + 1\); \(O(m)\)
6. Return Maximum of the three sequences found \(O(1)\)
Algorithm 2 (cont’d)

Recurrence equation

\[T(1) = 1 \]
\[T(N) = 2T\left(\frac{N}{2}\right) + N \]

- 2 \(T(N/2) \): two subproblems, each of size \(N/2 \)
- \(N \): for “patching” two solutions to find solution to whole problem
Algorithm 2 (cont’d)

- Solving the recurrence:

\[
T(N) = 2T\left(\frac{N}{2}\right) + N \\
= 4T\left(\frac{N}{4}\right) + 2N \\
= 8T\left(\frac{N}{8}\right) + 3N \\
= \ldots \\
= 2^k T\left(\frac{N}{2^k}\right) + kN
\]

- With \(k=\log N \) (i.e. \(2^k = N \)), we have

\[
T(N) = N T(1) + N \log N \\
= N \log N + N
\]

- Thus, the running time is \(\mathcal{O}(N \log N) \)
 - faster than Algorithm 1 for large data sets
Question

???