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Learning outcomesLearning outcomes
You should be able to:You should be able to:

Describe asymptotic notations: O Ω and ΘDescribe asymptotic notations:  O, Ω , and Θ

Analyze the time complexity of algorithms 
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IntroductionIntroduction
What is Algorithm?What is Algorithm? 

a clearly specified set of simple instructions to be followed to 
solve a problem

Takes a set of values as input andTakes a set of values, as input and 
produces a value, or set of values, as output

May be specified 
I E li hIn English
As a computer program
As a pseudo-code

Data structures
Methods of organizing data

Program = algorithms + data structuresProgram = algorithms + data structures
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IntroductionIntroduction
Why need algorithm analysis ?Why need algorithm analysis ?

writing a working program is not good enough
The program may be inefficient!The program may be inefficient!
If the program is run on a large data set, then the 
running time becomes an issue
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Example: Selection ProblemExample: Selection Problem
Given a list of N numbers determine the kthGiven a list of N numbers, determine the kth 
largest, where k ≤ N.
Algorithm 1:Algorithm 1:
(1) Read N numbers into an array
(2) Sort the array in decreasing order by some ( ) y g y

simple algorithm
(3) Return the element in position k
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Example: Selection ProblemExample: Selection Problem…
Algorithm 2:Algorithm 2:
(1) Read the first k elements into an array and sort 

them in decreasing orderg
(2) Each remaining element is read one by one

If smaller than the kth element, then it is ignored
Oth i it i l d i it t t i thOtherwise, it is placed in its correct spot in the array, 
bumping one element out of the array.

(3) The element in the kth position is returned as 
the answer.
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Example: Selection ProblemExample: Selection Problem…
Which algorithm is better whenWhich algorithm is better when

N =100 and k = 100?
N =100 and k = 1?N 100 and k  1?

What happens when N = 1,000,000 and k = 
500,000?,
There exist better algorithms
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Algorithm AnalysisAlgorithm Analysis
We only analyze correct algorithmsWe only analyze correct algorithms
An algorithm is correct

If, for every input instance, it halts with the correct output

Incorrect algorithms
Might not halt at all on some input instances
Might halt with other than the desired answerMight halt with other than the desired answer

Analyzing an algorithm
Predicting the resources that the algorithm requires
Resources include

Memory
Communication bandwidth
Computational time (usually most important)
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Algorithm AnalysisAlgorithm Analysis…
Factors affecting the running timeFactors affecting the running time

computer 
compiler
algorithm usedalgorithm used
input to the algorithm

The content of the input affects the running time
typically the input size (number of items in the input) is the maintypically, the input size (number of items in the input) is the main 
consideration

E.g. sorting problem ⇒ the number of items to be sorted
E.g. multiply two matrices together ⇒ the total number of 

l t i th t t ielements in the two matrices

Machine model assumed
Instructions are executed one after another, with no 

t ti N t ll l tconcurrent operations ⇒ Not parallel computers
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ExampleExample
Calculate ∑

N

i3Calculate ∑
=i
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Lines 1 and 4 count for one unit each
Line 3: executed N times, each time four units
Line 2: (1 for initialization, N+1 for all the tests, N for 
all the increments) total 2N + 2all the increments) total 2N + 2
total cost: 6N + 4 ⇒ O(N)
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Worst / average / best caseWorst- / average- / best-case
Worst-case running time of an algorithmWorst case running time of an algorithm

The longest running time for any input of size n
An upper bound on the running time for any input
⇒ guarantee that the algorithm will never take longer⇒ guarantee that the algorithm will never take longer
Example: Sort a set of numbers in increasing order; and the 
data is in decreasing order
The worst case can occur fairly oftenThe worst case can occur fairly often

E.g. in searching a database for a particular piece of information

Best-case running time
sort a set of numbers in increasing order; and the data issort a set of numbers in increasing order; and the data is 
already in increasing order

Average-case running time
May be difficult to define what “average” meansMay be difficult to define what average  means
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Running time of algorithmsRunning-time of algorithms
Bounds are for the algorithms rather thanBounds are for the algorithms, rather than 
programs

programs are just implementations of an algorithm,programs are just implementations of an algorithm, 
and almost always the details of the program do 
not affect the bounds

Bounds are for algorithms, rather than
blproblems

A problem can be solved with several algorithms, 
some are more efficient than otherssome are more efficient than others
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Growth RateGrowth Rate

The idea is to establish a relative order among functions 
for large nfor large n
∃ c , n0 > 0 such that  f(N) ≤ c g(N) when N ≥ n0
f(N) grows no faster than g(N) for “large” N
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Asymptotic notation: Big OhAsymptotic notation: Big-Oh
f(N) = O(g(N))f(N) = O(g(N))
There are positive constants c and n0 such 
thatthat 

f(N) ≤ c g(N) when N ≥ n0

The growth rate of f(N) is less than or equal to
the growth rate of g(N)
g(N) is an upper bound on f(N)
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Big Oh: exampleBig-Oh: example
Let f(N) = 2N2 ThenLet f(N) = 2N2.  Then

f(N) = O(N4)
f(N) = O(N3)f(N)  O(N )
f(N) = O(N2) (best answer, asymptotically tight)

O(N2): reads “order N-squared” or “Big-Oh N-squared”
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Big Oh: more examplesBig Oh: more examples
N2 / 2 – 3N = O(N2)N / 2 3N  O(N )
1 + 4N = O(N)
7N2 + 10N + 3 = O(N2) = O(N3)
log N log N / log 10 O(log N) O(log N)log10 N = log2 N / log2 10 = O(log2 N) = O(log N)
sin N = O(1);  10 = O(1), 1010 = O(1)
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log N + N = O(N)
logk N = O(N) for any constant k
N = O(2N) but 2N is not O(N)N = O(2N),   but  2N is not O(N)
210N is not O(2N)
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Math Re ie : logarithmic f nctionsMath Review: logarithmic functions
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Some rulesSome rules
When considering the growth rate of a function usingWhen considering the growth rate of a function using 
Big-Oh
Ignore the lower order terms and the coefficients of g
the highest-order term
No need to specify the base of logarithm

Ch i th b f t t t th h thChanging the base from one constant to another changes the 
value of the logarithm by only a constant factor

If T1(N) = O(f(N) and T2(N) = O(g(N)), then
T1(N) + T2(N) = max(O(f(N)),  O(g(N))),
T1(N) * T2(N) = O(f(N) * g(N))
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Big OmegaBig-Omega

∃ c , n0 > 0 such that f(N) ≥ c g(N) when N ≥ n0

f(N) grows no slower than g(N) for “large” N
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Big OmegaBig-Omega

f(N) = Ω(g(N))
There are positive constants c and n suchThere are positive constants c and n0 such 
that 

f(N) ≥ c g(N) when N ≥ nf(N) ≥ c g(N) when N ≥ n0

The growth rate of f(N) is greater than or g ( ) g
equal to the growth rate of g(N).
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Big Omega: examplesBig-Omega: examples
Let f(N) = 2N2 ThenLet f(N) = 2N2.  Then

f(N) = Ω(N)
f(N) = Ω(N2) (best answer)f(N)  Ω(N )      (best answer)
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f(N) = Θ(g(N))f(N) = Θ(g(N))

the growth rate of f(N) is the same as the growth rate 
f (N)of g(N)
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Big ThetaBig-Theta

f(N) = Θ(g(N)) iff 
f(N) = O(g(N)) and f(N) = Ω(g(N))f(N)  O(g(N)) and f(N)  Ω(g(N))
The growth rate of f(N) equals the growth rate 
of g(N)
Example: Let  f(N)=N2 ,  g(N)=2N2

Since f(N) = O(g(N)) and f(N) = Ω(g(N)), 
th f(N) ( (N))thus f(N) = Θ(g(N)).

Big-Theta means the bound is the tightest 
possiblepossible. 



Analysis of Algorithms / Slide 24

Some rulesSome rules

If T(N) is a polynomial of degree k, then 
T(N) = Θ(Nk)T(N) = Θ(N ).

For logarithmic functionsFor logarithmic functions,
T(logm N) = Θ(log N).
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Typical Growth Rates
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Growth ratesGrowth rates …
Doubling the input sizeDoubling the input size 

f(N) = c         ⇒ f(2N) = f(N) = c
f(N) = log N  ⇒ f(2N) = f(N) + log 2
f(N) = N        ⇒ f(2N) = 2 f(N) 
f(N) = N2 ⇒ f(2N) = 4 f(N) 
f(N) = N3 ⇒ f(2N) = 8 f(N)f(N) = N3 ⇒ f(2N) = 8 f(N) 
f(N) = 2N ⇒ f(2N) = f2(N) 

Advantages of algorithm analysisAdvantages of algorithm analysis 
To eliminate bad algorithms early
pinpoints the bottlenecks, which are worth coding 

f llcarefully
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Using L' Hopital's ruleUsing L  Hopital s rule
L' Hopital's ruleL  Hopital s rule

If                          and 

then
)(lim Nf )(lim Nf ′
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then                      =

Determine the relative growth rates (using L' Hopital's rule if 
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Ngn ∞→ )(
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necessary)
compute 
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n ∞→

if 0:                    f(N) = O(g(N))   and f(N) is not Θ(g(N))
if constant ≠ 0:  f(N) = Θ(g(N))
if ∞: f(N) = Ω(f(N)) and f(N) is not Θ(g(N))if ∞:                   f(N) = Ω(f(N))    and f(N) is not Θ(g(N))
limit oscillates: no relation
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General RulesGeneral Rules
For loops

at most the running time of the statements inside 
the for-loop (including tests) times the number of 
iterations.iterations.

Nested for loops

the running time of the statement multiplied by the 
product of the sizes of all the for-loops.
O(N2)
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General rules (cont’d)General rules (cont d)
Consecutive statementsConsecutive statements

These just add
O(N) + O(N2) = O(N2)O(N) + O(N )  O(N )

If S1
Else S2

never more than the running time of the test plus the larger of 
the running times of S1 and S2.
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Another ExampleAnother Example
Maximum Subsequence Sum ProblemMaximum Subsequence Sum Problem
Given (possibly negative) integers A1, A2, ...., 
A find the maximum value of ∑

j

AAn, find the maximum value of 

For convenience the maximum subsequence sum

∑
=ik

kA

For convenience, the maximum subsequence sum 
is 0 if all the integers are negative

E.g. for input –2, 11, -4, 13, -5, -2
Answer: 20 (A2 through A4)
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Algorithm 1: SimpleAlgorithm 1: Simple
Exhaustively tries all possibilities (brute force)Exhaustively tries all possibilities (brute force)

O(N3)
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Algorithm 2: Divide and conquerAlgorithm 2: Divide-and-conquer 
Divide-and-conquerDivide and conquer

split the problem into two roughly equal subproblems, which 
are then solved recursively
patch together the two solutions of the subproblems to arrivepatch together the two solutions of the subproblems to arrive 
at a solution for the whole problem

The maximum subsequence sum can be 
Entirely in the left half of the input
Entirely in the right half of the input
It crosses the middle and is in both halves
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Algorithm 2 (cont’d)Algorithm 2 (cont d)

The first two cases can be solved recursively
For the last case:For the last case: 

find the largest sum in the first half that includes the last 
element in the first half
the largest sum in the second half that includes the firstthe largest sum in the second half that includes the first 
element in the second half
add these two sums together
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Algorithm 2Algorithm 2 …

O(1)

T(m/2)

T(m/2)

O(m)

T(m/2)

O(1)
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Algorithm 2 (cont’d)Algorithm 2 (cont d)
Recurrence equationRecurrence equation

T =1)1(

NNTNT += )
2

(2)(

2 T(N/2): two subproblems, each of size N/2
N: for “patching” two solutions to find solution toN: for patching  two solutions to find solution to 
whole problem
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Algorithm 2 (cont’d)Algorithm 2 (cont d)
Solving the recurrence: NNTNT += )

2
(2)(Solving the recurrence:

NNT += 2)
4

(4

)
2
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NNT

=

+= 3)
8
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With k=log N (i.e. 2k = N), we have
kNNT k

k += )
2

(2

Thus the running time is O(N log N)
NNN

NNTNNT
+=
+=

log
log)1()(

Thus, the running time is O(N log N)
faster than Algorithm 1 for large data sets
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QuestionQuestion

??????


