
Analysis of AlgorithmsAnalysis of Algorithms

1. Asymptotic Notations
2 Analysis of simple algorithms2. Analysis of simple algorithms

Analysis of Algorithms / Slide 2

Learning outcomesLearning outcomes
You should be able to:You should be able to:

Describe asymptotic notations: O Ω and ΘDescribe asymptotic notations: O, Ω , and Θ

Analyze the time complexity of algorithms

Analysis of Algorithms / Slide 3

IntroductionIntroduction
What is Algorithm?What is Algorithm?

a clearly specified set of simple instructions to be followed to
solve a problem

Takes a set of values as input andTakes a set of values, as input and
produces a value, or set of values, as output

May be specified
I E li hIn English
As a computer program
As a pseudo-code

Data structures
Methods of organizing data

Program = algorithms + data structuresProgram = algorithms + data structures

Analysis of Algorithms / Slide 4

IntroductionIntroduction
Why need algorithm analysis ?Why need algorithm analysis ?

writing a working program is not good enough
The program may be inefficient!The program may be inefficient!
If the program is run on a large data set, then the
running time becomes an issue

Analysis of Algorithms / Slide 5

Example: Selection ProblemExample: Selection Problem
Given a list of N numbers determine the kthGiven a list of N numbers, determine the kth
largest, where k ≤ N.
Algorithm 1:Algorithm 1:
(1) Read N numbers into an array
(2) Sort the array in decreasing order by some () y g y

simple algorithm
(3) Return the element in position k

Analysis of Algorithms / Slide 6

Example: Selection ProblemExample: Selection Problem…
Algorithm 2:Algorithm 2:
(1) Read the first k elements into an array and sort

them in decreasing orderg
(2) Each remaining element is read one by one

If smaller than the kth element, then it is ignored
Oth i it i l d i it t t i thOtherwise, it is placed in its correct spot in the array,
bumping one element out of the array.

(3) The element in the kth position is returned as
the answer.

Analysis of Algorithms / Slide 7

Example: Selection ProblemExample: Selection Problem…
Which algorithm is better whenWhich algorithm is better when

N =100 and k = 100?
N =100 and k = 1?N 100 and k 1?

What happens when N = 1,000,000 and k =
500,000?,
There exist better algorithms

Analysis of Algorithms / Slide 8

Algorithm AnalysisAlgorithm Analysis
We only analyze correct algorithmsWe only analyze correct algorithms
An algorithm is correct

If, for every input instance, it halts with the correct output

Incorrect algorithms
Might not halt at all on some input instances
Might halt with other than the desired answerMight halt with other than the desired answer

Analyzing an algorithm
Predicting the resources that the algorithm requires
Resources include

Memory
Communication bandwidth
Computational time (usually most important)

Analysis of Algorithms / Slide 9

Algorithm AnalysisAlgorithm Analysis…
Factors affecting the running timeFactors affecting the running time

computer
compiler
algorithm usedalgorithm used
input to the algorithm

The content of the input affects the running time
typically the input size (number of items in the input) is the maintypically, the input size (number of items in the input) is the main
consideration

E.g. sorting problem ⇒ the number of items to be sorted
E.g. multiply two matrices together ⇒ the total number of

l t i th t t ielements in the two matrices

Machine model assumed
Instructions are executed one after another, with no

t ti N t ll l tconcurrent operations ⇒ Not parallel computers

Analysis of Algorithms / Slide 10

ExampleExample
Calculate ∑

N

i3Calculate ∑
=i

i
1

1 1

2

3

4

2N+2

4N

1

Lines 1 and 4 count for one unit each
Line 3: executed N times, each time four units
Line 2: (1 for initialization, N+1 for all the tests, N for
all the increments) total 2N + 2all the increments) total 2N + 2
total cost: 6N + 4 ⇒ O(N)

Analysis of Algorithms / Slide 11

Worst / average / best caseWorst- / average- / best-case
Worst-case running time of an algorithmWorst case running time of an algorithm

The longest running time for any input of size n
An upper bound on the running time for any input
⇒ guarantee that the algorithm will never take longer⇒ guarantee that the algorithm will never take longer
Example: Sort a set of numbers in increasing order; and the
data is in decreasing order
The worst case can occur fairly oftenThe worst case can occur fairly often

E.g. in searching a database for a particular piece of information

Best-case running time
sort a set of numbers in increasing order; and the data issort a set of numbers in increasing order; and the data is
already in increasing order

Average-case running time
May be difficult to define what “average” meansMay be difficult to define what average means

Analysis of Algorithms / Slide 12

Running time of algorithmsRunning-time of algorithms
Bounds are for the algorithms rather thanBounds are for the algorithms, rather than
programs

programs are just implementations of an algorithm,programs are just implementations of an algorithm,
and almost always the details of the program do
not affect the bounds

Bounds are for algorithms, rather than
blproblems

A problem can be solved with several algorithms,
some are more efficient than otherssome are more efficient than others

Analysis of Algorithms / Slide 13

Growth RateGrowth Rate

The idea is to establish a relative order among functions
for large nfor large n
∃ c , n0 > 0 such that f(N) ≤ c g(N) when N ≥ n0
f(N) grows no faster than g(N) for “large” N

Analysis of Algorithms / Slide 14

Asymptotic notation: Big OhAsymptotic notation: Big-Oh
f(N) = O(g(N))f(N) = O(g(N))
There are positive constants c and n0 such
thatthat

f(N) ≤ c g(N) when N ≥ n0

The growth rate of f(N) is less than or equal to
the growth rate of g(N)
g(N) is an upper bound on f(N)

Analysis of Algorithms / Slide 15

Big Oh: exampleBig-Oh: example
Let f(N) = 2N2 ThenLet f(N) = 2N2. Then

f(N) = O(N4)
f(N) = O(N3)f(N) O(N)
f(N) = O(N2) (best answer, asymptotically tight)

O(N2): reads “order N-squared” or “Big-Oh N-squared”

Analysis of Algorithms / Slide 16

Big Oh: more examplesBig Oh: more examples
N2 / 2 – 3N = O(N2)N / 2 3N O(N)
1 + 4N = O(N)
7N2 + 10N + 3 = O(N2) = O(N3)
log N log N / log 10 O(log N) O(log N)log10 N = log2 N / log2 10 = O(log2 N) = O(log N)
sin N = O(1); 10 = O(1), 1010 = O(1)

)(2NONNiN
=⋅≤∑

)(32
1

2 NONNiN

i
=⋅≤∑ =

)(
1

NONNi
i

=⋅≤∑ =

log N + N = O(N)
logk N = O(N) for any constant k
N = O(2N) but 2N is not O(N)N = O(2N), but 2N is not O(N)
210N is not O(2N)

Analysis of Algorithms / Slide 17

Math Re ie : logarithmic f nctionsMath Review: logarithmic functions
abiffbxa log ==

b
baab

abiffbx x

log
logloglog

log
+=

a
bb

b
m

m
a log

loglog =

na
aba

an

b loglog
loglog =

=

xd
aaa bbb

1log
log)(loglog ≠=

xdx
xd e 1log
=

Analysis of Algorithms / Slide 18

Some rulesSome rules
When considering the growth rate of a function usingWhen considering the growth rate of a function using
Big-Oh
Ignore the lower order terms and the coefficients of g
the highest-order term
No need to specify the base of logarithm

Ch i th b f t t t th h thChanging the base from one constant to another changes the
value of the logarithm by only a constant factor

If T1(N) = O(f(N) and T2(N) = O(g(N)), then
T1(N) + T2(N) = max(O(f(N)), O(g(N))),
T1(N) * T2(N) = O(f(N) * g(N))

Analysis of Algorithms / Slide 19

Big OmegaBig-Omega

∃ c , n0 > 0 such that f(N) ≥ c g(N) when N ≥ n0

f(N) grows no slower than g(N) for “large” N

Analysis of Algorithms / Slide 20

Big OmegaBig-Omega

f(N) = Ω(g(N))
There are positive constants c and n suchThere are positive constants c and n0 such
that

f(N) ≥ c g(N) when N ≥ nf(N) ≥ c g(N) when N ≥ n0

The growth rate of f(N) is greater than or g () g
equal to the growth rate of g(N).

Analysis of Algorithms / Slide 21

Big Omega: examplesBig-Omega: examples
Let f(N) = 2N2 ThenLet f(N) = 2N2. Then

f(N) = Ω(N)
f(N) = Ω(N2) (best answer)f(N) Ω(N) (best answer)

Analysis of Algorithms / Slide 22

f(N) = Θ(g(N))f(N) = Θ(g(N))

the growth rate of f(N) is the same as the growth rate
f (N)of g(N)

Analysis of Algorithms / Slide 23

Big ThetaBig-Theta

f(N) = Θ(g(N)) iff
f(N) = O(g(N)) and f(N) = Ω(g(N))f(N) O(g(N)) and f(N) Ω(g(N))
The growth rate of f(N) equals the growth rate
of g(N)
Example: Let f(N)=N2 , g(N)=2N2

Since f(N) = O(g(N)) and f(N) = Ω(g(N)),
th f(N) ((N))thus f(N) = Θ(g(N)).

Big-Theta means the bound is the tightest
possiblepossible.

Analysis of Algorithms / Slide 24

Some rulesSome rules

If T(N) is a polynomial of degree k, then
T(N) = Θ(Nk)T(N) = Θ(N).

For logarithmic functionsFor logarithmic functions,
T(logm N) = Θ(log N).

Analysis of Algorithms / Slide 25

Typical Growth Rates

Analysis of Algorithms / Slide 26

Growth ratesGrowth rates …
Doubling the input sizeDoubling the input size

f(N) = c ⇒ f(2N) = f(N) = c
f(N) = log N ⇒ f(2N) = f(N) + log 2
f(N) = N ⇒ f(2N) = 2 f(N)
f(N) = N2 ⇒ f(2N) = 4 f(N)
f(N) = N3 ⇒ f(2N) = 8 f(N)f(N) = N3 ⇒ f(2N) = 8 f(N)
f(N) = 2N ⇒ f(2N) = f2(N)

Advantages of algorithm analysisAdvantages of algorithm analysis
To eliminate bad algorithms early
pinpoints the bottlenecks, which are worth coding

f llcarefully

Analysis of Algorithms / Slide 27

Using L' Hopital's ruleUsing L Hopital s rule
L' Hopital's ruleL Hopital s rule

If and

then
)(lim Nf)(lim Nf ′

∞=
∞→

)(lim Nf
n

∞=
∞→

)(lim Ng
n

then =

Determine the relative growth rates (using L' Hopital's rule if

)(
lim

Ngn ∞→)(
lim

Ngn ′∞→

necessary)
compute

)(
)(lim

Ng
Nf

n ∞→

if 0: f(N) = O(g(N)) and f(N) is not Θ(g(N))
if constant ≠ 0: f(N) = Θ(g(N))
if ∞: f(N) = Ω(f(N)) and f(N) is not Θ(g(N))if ∞: f(N) = Ω(f(N)) and f(N) is not Θ(g(N))
limit oscillates: no relation

Analysis of Algorithms / Slide 28

General RulesGeneral Rules
For loops

at most the running time of the statements inside
the for-loop (including tests) times the number of
iterations.iterations.

Nested for loops

the running time of the statement multiplied by the
product of the sizes of all the for-loops.
O(N2)

Analysis of Algorithms / Slide 29

General rules (cont’d)General rules (cont d)
Consecutive statementsConsecutive statements

These just add
O(N) + O(N2) = O(N2)O(N) + O(N) O(N)

If S1
Else S2

never more than the running time of the test plus the larger of
the running times of S1 and S2.

Analysis of Algorithms / Slide 30

Another ExampleAnother Example
Maximum Subsequence Sum ProblemMaximum Subsequence Sum Problem
Given (possibly negative) integers A1, A2,,
A find the maximum value of ∑

j

AAn, find the maximum value of

For convenience the maximum subsequence sum

∑
=ik

kA

For convenience, the maximum subsequence sum
is 0 if all the integers are negative

E.g. for input –2, 11, -4, 13, -5, -2
Answer: 20 (A2 through A4)

Analysis of Algorithms / Slide 31

Algorithm 1: SimpleAlgorithm 1: Simple
Exhaustively tries all possibilities (brute force)Exhaustively tries all possibilities (brute force)

O(N3)

Analysis of Algorithms / Slide 32

Algorithm 2: Divide and conquerAlgorithm 2: Divide-and-conquer
Divide-and-conquerDivide and conquer

split the problem into two roughly equal subproblems, which
are then solved recursively
patch together the two solutions of the subproblems to arrivepatch together the two solutions of the subproblems to arrive
at a solution for the whole problem

The maximum subsequence sum can be
Entirely in the left half of the input
Entirely in the right half of the input
It crosses the middle and is in both halves

Analysis of Algorithms / Slide 33

Algorithm 2 (cont’d)Algorithm 2 (cont d)

The first two cases can be solved recursively
For the last case:For the last case:

find the largest sum in the first half that includes the last
element in the first half
the largest sum in the second half that includes the firstthe largest sum in the second half that includes the first
element in the second half
add these two sums together

Analysis of Algorithms / Slide 34

Algorithm 2Algorithm 2 …

O(1)

T(m/2)

T(m/2)

O(m)

T(m/2)

O(1)

Analysis of Algorithms / Slide 35

Algorithm 2 (cont’d)Algorithm 2 (cont d)
Recurrence equationRecurrence equation

T =1)1(

NNTNT +=)
2

(2)(

2 T(N/2): two subproblems, each of size N/2
N: for “patching” two solutions to find solution toN: for patching two solutions to find solution to
whole problem

Analysis of Algorithms / Slide 36

Algorithm 2 (cont’d)Algorithm 2 (cont d)
Solving the recurrence: NNTNT +=)

2
(2)(Solving the recurrence:

NNT += 2)
4

(4

)
2

()(

NNT

=

+= 3)
8

(8

L

With k=log N (i.e. 2k = N), we have
kNNT k

k +=)
2

(2

Thus the running time is O(N log N)
NNN

NNTNNT
+=
+=

log
log)1()(

Thus, the running time is O(N log N)
faster than Algorithm 1 for large data sets

Analysis of Algorithms / Slide 37

QuestionQuestion

??????

