Analysis of Algorithms

1. Asymptotic Notations
2. Analysis of simple algorithms

Analysis of Algorithms / Slide 2

L earning outcomes

~2You should be able to:

m Describe asymptotic notations: O, Q, and ©

m Analyze the time complexity of algorithms

Analysis of Algorithms / Slide 3

Introduction

>4 What is Algorithm?
m a clearly specified set of simple instructions to be followed to
solve a problem

~~Takes a set of values, as input and
7~ produces a value, or set of values, as output

m May be specified
7~In English
7~As a computer program
7~As a pseudo-code

> Data structures
m Methods of organizing data

>4 Program = algorithms + data structures

Analysis of Algorithms / Slide 4

Introduction

>1Why need algorithm analysis ?
® Writing a working program is not good enough
m The program may be inefficient!

m |f the program is run on a large data set, then the
running time becomes an issue

Analysis of Algorithms / Slide 5

Example: Selection Problem

4 Given a list of N numbers, determine the kth
largest, where k < N.

>4 Algorithm 1.
(1) Read N numbers into an array

(2) Sort the array in decreasing order by some
simple algorithm

(3) Return the element in position k

Analysis of Algorithms / Slide 6

Example: Selection Problem...

>4 Algorithm 2:

(1) Read the first k elements into an array and sort
them in decreasing order

(2) Each remaining element is read one by one
~~1f smaller than the kth element, then it is ignored
7~ Otherwise, it Is placed in its correct spot in the array,
bumping one element out of the array.
(3) The element in the kth position is returned as
the answer.

Analysis of Algorithms / Slide 7

Example: Selection Problem...

>4 Which algorithm is better when
m N=100 and k = 1007
mN=100and k=17

><What happens when N = 1,000,000 and k =
500,0007

>4 There exist better algorithms

Analysis of Algorithms / Slide 8

Algorithm Analysis

>4 We only analyze correct algorithms

>4 An algorithm is correct
m If, for every input instance, it halts with the correct output

>4 Incorrect algorithms
m Might not halt at all on some input instances
m Might halt with other than the desired answer

>4 Analyzing an algorithm
m Predicting the resources that the algorithm requires

m Resources include
~Memory
7~Communication bandwidth
~Computational time (usually most important)

Analysis of Algorithms / Slide 9

Algorithm Analysis...

>4 Factors affecting the running time
computer

compiler

algorithm used

Input to the algorithm

7~The content of the input affects the running time

~typically, the input size (number of items in the input) is the main
consideration

e E.g. sorting problem = the number of items to be sorted

o E.g. multiply two matrices together = the total number of
elements in the two matrices

~ Machine model assumed

m [nstructions are executed one after another, with no
concurrent operations = Not parallel computers

Analysis of Algorithms / Slide 10

s2 Calculate int sum{int n)

int partialSum;

partialSum=0;
tor (int i=1;l<=n;i++)
partialSum += i"i";

retum partialSum;

4 Lines 1 and 4 count for one unit each
1 Line 3: executed N times, each time four units

>4 Line 2: (1 for initialization, N+1 for all the tests, N for
all the increments) total 2N + 2

>4 total cost: 6N + 4 = O(N)

Analysis of Algorithms / Slide 11

Worst- / average- / best-case

>4 Worst-case running time of an algorithm
m The longest running time for any input of size n
m An upper bound on the running time for any input
— guarantee that the algorithm will never take longer

m Example: Sort a set of numbers In increasing order; and the
data is in decreasing order

m The worst case can occur fairly often
7~E.qg. In searching a database for a particular piece of information
>4 Best-case running time

m sort a set of numbers in increasing order; and the data is
already in increasing order

>4 Average-case running time
m May be difficult to define what “average” means

Analysis of Algorithms / Slide 12

Running-time of algorithms

>< Bounds are for the algorithms, rather than
programs

m programs are just implementations of an algorithm,
and almost always the details of the program do
not affect the bounds

>< Bounds are for algorithms, rather than
problems

m A problem can be solved with several algorithms,
some are more efficient than others

Analysis of Algorithms / Slide 13

Growh Rate

|
|
|
i
|
|
|

n

&
f(n) = O(g(n))
>< The idea Is to establish a relative order among functions
for large n
>4 3 ¢, ng> 0 such that f(N) <c g(N) when N > n,
>4 f(N) grows no faster than g(N) for “large” N

Analysis of Algorithms / Slide 14

Asymptotic notation: Big-Oh

>11(N) = O(g(N))
>4 There are positive constants ¢ and n, such
that

f(N) <c g(N) when N > n,

>4 The growth rate of f(N) Is less than or equal to
the growth rate of g(N)

>4 g(N) Is an upper bound on f(N)

Analysis of Algorithms / Slide 15

Big-Oh: example

><Let f(N) = 2N?2. Then
m f(N) = O(N%)
m f(N) = O(N?3)
m f(N) = O(N?) (best answer, asymptotically tight)

>0 O(N?): reads “order N-squared” or “Big-Oh N-squared”

Analysis of Algorithms / Slide 16

Big Oh: more examples

N2 /2 — 3N = O(N?)

1+ 4N = O(N)

7N? + 10N + 3 = O(N?) = O(N?3)

log,, N =log, N /log, 10 = O(log, N) = O(log N)
sin N =0(1); 10=0(1), 109 =0(1)

log N + N = O(N)

logk N = O(N) for any constant k
N =0(2V), but 2Vis not O(N)
210N is not O(2V)

Analysis of Algorithms / Slide 17

Math Review: logarithmic functions

Analysis of Algorithms / Slide 18

Some rules

When considering the growth rate of a function using
Big-Oh

>4 Ignore the lower order terms and the coefficients of
the highest-order term

>4 No need to specify the base of logarithm

m Changing the base from one constant to another changes the
value of the logarithm by only a constant factor

=4 If T,(N) = O(f(N) and T,(N) = O(g(N)), then
B T,(N) + T,(N) = max(O(f(N)), O(g(N))),
m T,(N)* T,(N) = O(f(N) * g(N))

Analysis of Algorithms / Slide 19

Big-Omega

n

"0 f(n) = Qg(n)
>4 3 ¢, nyg> 0 such that f(N) > ¢ g(N) when N > n,
>4 f(N) grows no slower than g(N) for “large” N

Analysis of Algorithms / Slide 20

Big-Omega

>11(N) = Q(g(N))
>4 There are positive constants ¢ and n, such
that

f(N) > c g(N) when N > n,

>4 The growth rate of f(N) Is greater than or
equal to the growth rate of g(N).

Analysis of Algorithms / Slide 21

Big-Omega: examples

><Let f(N) = 2N?2. Then
m f(N) = Q(N)
m f(N) = Q(N?) (best answer)

Analysis of Algorithms / Slide 22

f(N) = ©(g(N))

fn) = ®(g(n)_)

> the growth rate of f(N) is the same as the growth rate
of g(N)

Analysis of Algorithms / Slide 23

Big-Theta

>1f(N) = ©(g(N)) iff
f(N) = O(g(N)) and (N) = €(g(N))
>4 The growth rate of f(N) equals the growth rate
of g(N)
< Example: Let f(N)=N?, g(N)=2N?
m Since f(N) = O(g(N)) and f(N) = Q(g(N)),
thus f(N) = ©(g(N)).
>4 Big-Theta means the bound is the tightest
possible.

Analysis of Algorithms / Slide 24

Some rules

=2 1f T(N) is a polynomial of degree k, then
T(N) = O(NK).

>4 For logarithmic functions,
T(log,, N) = ©(log N).

Analysis of Algorithms / Slide 25

Typical Growth Rates

Function Name

c Constant
logN Logarithmic
Log-squared
Linear

Quadratic
Cubic
Exponential

Figure 2.1 Typical growth rates

Analysis of Algorithms / Slide 26

Growth rates ...

>4 Doubling the input size
mf(N)=c — f(2N) = f(N) = ¢
mf(N) =log N = f(2N) =f(N) + log 2
mf(N)=N = f(2N) =2 f(N)
mf(N)=N2 = f(2N) = 4 f(N)
mf(N)=N3 = f(2N) = 8 f(N)
mf(N)=2N = f(2N) = f(N)

>4 Advantages of algorithm analysis
m To eliminate bad algorithms early

m pinpoints the bottlenecks, which are worth coding
carefully

Analysis of Algorithms / Slide 27

Using L' Hopital's rule

>4 L' Hopital's rule
m |f

then

>4 Determine the relative growth rates (using L' Hopital's rule if
necessary)

m compute

iIf O: f(N) = O(g(N))
If constant = 0: f(N) = ®(g(N))
if oo: HOVEEI(GY))

limit oscillates: no relation

Analysis of Algorithms / Slide 28

General Rules

>4 For loops

m at most the running time of the statements inside
the for-loop (including tests) times the number of
iterations.

>4 Nested for loops

for {I=0;i<n;i++)
for {j=0;]<n;]++)
K++;

m the running time of the statement multiplied by the
product of the sizes of all the for-loops.

m O(N?)

Analysis of Algorithms / Slide 29

General rules (cont’d)

> Consecutive statements

for {iI=0;l<n;i++)
a[i]=0;
for {I=0;l<n;i++)
for {j=0;]<n;j++)
ali] += a[j]+i+;

m These just add
m O(N) + O(N?) = O(N?)
=< IFf S1

Else S2

® never more than the running time of the test plus the larger of
the running times of S1 and S2.

Analysis of Algorithms / Slide 30

Another Example

> Maximum Subsequence Sum Problem

>4 Glven (possibly negative) integers A, A,,,
A., find the maximum value of

m For convenience, the maximum subsequence sum
Is O If all the integers are negative

>4 E.g. for input -2, 11, -4, 13, -5, -2
m Answer: 20 (A, through A,)

Analysis of Algorithms / Slide 31

Algorithm 1: Simple

>4 Exhaustively tries all possibilities (brute force)

imt maxSubSum1 {const vactor<dnt. &a)

imt maxSum=0;

for (imririgiif-aliﬂi.s f'{i+ gj++)

int thisSum=0;

g

it (thisSum > maxSum)
maxSum = thisSum;

}

retum maxSum;

}

Analysis of Algorithms / Slide 32

Algorithm 2: Divide-and-conquer

>4 Divide-and-conquer

m split the problem into two roughly equal subproblems, which
are then solved recursively

m patch together the two solutions of the subproblems to arrive
at a solution for the whole problem

First half Second half

-3

* The maximum subsequence sum can be
=Entirely in the left half of the input
=Entirely in the right half of the input
= |t crosses the middle and is in both halves

Analysis of Algorithms / Slide 33

Algorithm 2 (cont’d)

>4 The first two cases can be solved recursively

4 For the last case:

m find the largest sum in the first half that includes the last
element in the first half

m the largest sum in the second half that includes the first
element in the second half

m add these two sums together

|1l o]a] 23 JO JAN2]-A4] /] A0]2]6 [T]-9]
| T]o]a]l2]-rfS3JO -T2]-4]7/]-T0]2]6]T]-5

Analysis of Algorithms / Slide 34

Algorithm 2 ...

/l'nput: Ali...7] withz <y
// Output : the MCS of A[i...J

MCS(A,i,7)

1. Ifi == j return A[i] O(1)

2. Else

3. Find MCS(A, i, L—i D T(m/2)

4 Find MCS(A, |“52] + 1, j); T(m/2)

5 Find MCS that contains O(m)

both A ||*52|] and A ||*5L] + 1];
Return Maximum of the three sequences found C

Analysis of Algorithms / Slide 35

Algorithm 2 (cont’d)

>4 Recurrence equation

m 2 T(N/2): two subproblems, each of size N/2

m N: for “patching” two solutions to find solution to
whole problem

Analysis of Algorithms / Slide 36

Algorithm 2 (cont’d)

>4 Solving the recurrence:

> With k=log N (i.e. 2k = N), we have

>4 Thus, the running time is O(N log N)
> faster than Algorithm 1 for large data sets

Analysis of Algorithms / Slide 37

Question

